首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Responses of 71 single salivatory neurons, identified by antidromic spikes evoked by stimulation of the chorda tympani, were tested to stimulation of the ipsilateral infraorbital (IO), inferior alveolar (IA) and lingual nerves (LN) in the cat. Fifty-one neurons responded with spike potentials to stimulation of one or more of these nerves (responsive type, R), while the remaining 20 neurons did not respond to stimulation of any of them (non-responsive type, NR). Thirty-three R neurons activated by stimulation of all of the 3 trigeminal afferent branches, while 12 neurons responded with spikes to stimulation of only one branch, usually of LN. Reflex spike responses appeared with a latency of 5.6–14.6 ms to LN stimulation, 6.4–15.7 ms to IO stimulation and 6.0–26.0 ms to IA stimultion. Impulses of both Aβ and Aδ afferent fibres of the trigeminal nerve were found to be effective for activation of salivatory neurons.  相似文献   

2.
Single salivatory neurons of the brain stem of the urethane-chloralose anesthetized cat were identified by their antidromic responses to stimulation of the chorda tympani. The antidromically identified neurons were recorded in the lateral reticular formation of the brain stem between the spinal trigeminal nucleus and the vestibular complex. As suggested by previous anatomic work, the salivatory neurons appear to be diffusely distributed within the region. The identified neurons responded synaptically to stimulation of the lingual nerve, but this reflex activity was not mediated by an input from the taste fibers.  相似文献   

3.
Application of HRP to the proximal stumps of the ramifications of the trigeminal nerve shows that all those belonging to the mandibular branch contain parasympathetic fibers originating in the otic ganglion. The nerve with the largest proportion of these fibers is the auriculotemporal nerve (50–60% of all labeled neurons), while the smallest percentages are found in the lingual nerve and motor root (about 5% each). The presence of otic fibers in the inferior alveolar, mylohyoid, buccal and motor branches of the trigeminal nerve has not hitherto been reported.  相似文献   

4.
The central projections of five peripheral branches of the trigeminal nerve were investigated by the method of transganglionic transport of horseradish peroxidase (HRP). In separate animals, the corneal, supraorbital, infraorbital, mental, or inferior alveolar branches were transected and soaked in concentrated solutions of HRP. Forty-eight to 72 hours after surgery, the brainstem, upper cervical spinal cord, and trigeminal ganglia were perfusion-fixed and processed according to the tetramethylbenzidine technique. The results show that trigeminal primary afferent neurons which innervate the cornea project mainly to the levels of caudal pars interpolaris and caudal pars caudalis. In contrast, trigeminal primary afferent neurons whose peripheral processes course through the supraorbital, infraorbital, or mental nerves project most heavily to the trigeminal main sensory nucleus, pars interpolaris, and the rostrocaudal middle three-fifths of pars caudalis. Trigeminal primary afferent neurons which give origin to the inferior alveolar nerve project heavily and in approximately equal numbers of all rostrocaudal levels of the trigeminal brainstem nuclear complex (TBNC). A small number of fibers from each of the latter four cell populations project directly to the contralateral C1-C2 dorsal horn. A small number of fibers from each cell population studied end in the reticular formation immediately adjacent to the spinal nucleus of V. It is concluded that the cornea and facial skin regions of the cat are represented nonuniformly along the rostrocaudal length of the TBNC.  相似文献   

5.
The co-expression of calretinin with parvalbumin and calbindin D-28k was examined in the rat cranial and spinal sensory ganglia by triple immunofluorescence method. In the trigeminal and nodose ganglia, 9% and 5% of calretinin-immunoreactive neurons, respectively, also contained both parvalbumin- and calbindin D-28k immunoreactivity. These neurons had large cell bodies. In the trigeminal ganglion, they were restricted to the caudal portion. Such neurons were evenly distributed throughout the nodose ganglion. The co-expression could not be detected in the dorsal root, jugular or petrosal ganglia. Nerve fibers which co-expressed all the three calcium-binding proteins were observed in the inferior alveolar nerve but not the infraorbital nerve or palate. In the periodontal ligament, these nerve fibers formed Ruffini-like endings. These findings suggest that (1) the co-expression in trigeminal neurons is intimately related to their peripheral receptive fields; (2) the three calcium-binding proteins (calretinin, parvalbumin, calbindin D-28k) co-expressed in the trigeminal neurons may have mechanoreceptive function in the periodontal ligament.  相似文献   

6.
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity and the central terminal fields of branches of the mandibular and chorda tympani nerves were visualized histochemically at the same time using transganglionic transport of wheat germ agglutinin conjugated with horseradish peroxidase. The blue NADPH-d-positive neurons comprised a sparse network in the dorsomedial spinal trigeminal subnucleus oralis and a dense one in the rostral lateral division of the nucleus of the solitary tract. In the subnucleus caudalis, most labeled neurons were in the superficial zone, and smaller numbers were in the magnocellular zone. The NADPH-d-positive neurons in the subnucleus oralis and the nucleus of the solitary tract overlapped mostly with the transganglionically labeled terminal field from the lingual nerve, partly with the terminal field from the inferior alveolar and chorda tympani nerves, and rarely with the terminal field from the mental nerve. The NADPH-d-positive neurons in the dorsomedial paratrigeminal nucleus and subnucleus caudalis overlapped mostly with the terminal field from the lingual nerve, partly with the terminal field from the inferior alveolar and mental nerves and never with the terminal field from the chorda tympani. A statistically significant reduction in the number of NADPH-d-positive neurons was seen bilaterally in subnucleus oralis and the nucleus of the solitary tract when the lingual nerve was transected. Inflammatory insults to the lingual nerve or tooth pulps significantly increased the number of NADPH-d-positive neurons in subnucleus oralis, the nucleus of the solitary tract, and subnucleus caudalis. These results show that the NO/cyclic GMP system in the trigeminal and solitary nuclei is differentially regulated trans-synaptically by trigeminal afferents depending on the nucleus and sensory modality.  相似文献   

7.
We measured the changes in lower lip blood flow and systemic arterial blood pressure evoked by lingual nerve or trigeminal spinal nucleus (Vsp) stimulation to gain an insight into the brainstem integration of sympathetic and parasympathetic responses to nociceptive stimulation. We used artificially ventilated, cervically vago-sympathectomized cats deeply anesthetized with alpha-chloralose and urethane. A lip blood flow increase occurred in an intensity- and frequency-dependent manner following electrical stimulation of Vsp or lingual nerve regardless of whether systemic arterial blood pressure increased or decreased. In contrast, there was no apparent optimal frequency for the changes in systemic arterial blood pressure elicited by electrical stimulation of Vsp or lingual nerve. No relationship was found between the amplitude of the lip blood flow increase and that of the systemic arterial blood pressure change. Microinjection of lidocaine or kainic acid into the Vsp evoked, respectively, reversible and irreversible inhibition of the lip blood flow increase and systemic arterial blood pressure change evoked by lingual nerve stimulation. When microinjected unilaterally directly into the ipsilateral Vsp, the GABA agonist muscimol abolished both lingual nerve-evoked effects (increase in lip blood flow and changes in systemic arterial blood pressure) without changing basal systemic arterial blood pressure, suggesting the presence in the Vsp of GABA receptors serving to modulate both the parasympathetically mediated lip blood flow increase and the sympathetically mediated systemic arterial blood pressure change. Lidocaine microinjection into the salivatory nucleus caused a significant attenuation of the lingual nerve-induced blood flow increase, but had no effect on the lingual nerve-induced systemic arterial blood pressure change. Thus, the neural pathway mediating the lingual nerve-induced lip blood flow increase seems to be simple, requiring a minimum of four neurons: trigeminal afferent-Vsp-parasympathetic pre-ganglionic neurons with cell body located in the inferior salivatory nucleus-otic postganglionic neuron. On the other hand, the pathway underlying the evoked systemic arterial blood pressure changes, presumably mediated via altered sympathetic activity, seems to be more complicated and could be affected by more numerous factors.  相似文献   

8.
The infraorbital nerve was sectioned and the ipsilateral whisker follicles were cauterized in hamsters within 12 h of birth. Sixty to ninety days later application of HRP to the proximal stumps of the ipsilateral lingual, inferior alveolar, mylohyoid and auriculotemporal nerves resulted in increased numbers of labeled somata in trigeminal ganglion regions which contain primarily infraorbital cell bodies in normal animals. The labeled central processes of mandibular nerves also occupied portions of the brainstem trigeminal complex normally innervated by infraorbital axons. These findings represent the first anatomical demonstration of trigeminal primary afferent plasticity.  相似文献   

9.
10.
Sensory disturbances following nerve injury may result from abnormal neural activity initiated at the injury site. We have studied the activity generated in the lingual nerve after three types of injury which may have variable potentials for the initiation of sensory disturbances. We have also compared the results with those found after damage to the inferior alveolar nerve, another branch of the trigeminal nerve, to determine whether differences in nerve fibre type or location affect the level of abnormal activity. In anaesthetised adult male ferrets the left lingual nerve was either ligated and cut distally, chronically constricted, or sectioned and allowed to regenerate. Following recovery periods of 3 days-6 months, single unit electrophysiological recordings were made from central to the injury site. After all three types of injury, some of the damaged axons at the injury site developed spontaneous activity (up to 36% of units) and mechanical sensitivity (up to 35% of units). There were significantly fewer spontaneously active units after ligation than after the other two types of injury but the level of mechanical sensitivity was not significantly different between the three types of injury. There was a significant increase in the spontaneous activity between 3 weeks and later recovery periods following both ligation and section injuries, and this late increase was not seen in our previous studies on the inferior alveolar nerve. Differences in the time-course of ectopic activity in adjacent branches of the trigeminal nerve suggest that the fibre types or anatomical relationships affect the outcome of injury.  相似文献   

11.
The sensory modalities of taste and touch, for the anterior tongue, are relegated to separate cranial nerves. The lingual branch of the trigeminal nerve mediates touch: the chorda tympani branch of the facial nerve mediates taste. The chorda tympani also contains efferent axons which originate in the superior salivatory nucleus. The central projections of these two nerves have been visualized in the hamster by anterograde labelling with horseradish peroxidase (HRP). Afferent fibers of the chorda tympani distribute to all rostral-caudal levels of the solitary nucleus. They synapse heavily in the dorsal half of the nucleus at its rostral extreme; synaptic endings are sparser and located laterally in caudal regions. These taste afferents travel caudally in the solitary tract and reach different levels by a series of collateral branches which extend medially in the the solitary nucleus, where they exhibit preterminal and terminal swellings. Taste afferent axons range in diameter from 0.2 micrometer to 1.5 micrometers. The thickest axons project exclusively to the rostral and intermediate subdivisions of the solitary nucleus; the find ones may distribute predominantly to the caudal subdivision. Afferent fibers of the lingual nerve terminate heavily in the dorsal one-third of the spinal nucleus of the trigeminal nerve and also as a dense patch in the lateral solitary nucleus at the midpoint between its rostral and caudal poles. This latter projection overlaps that of the chorda tympani. Thus the two sensory nerves which subserve taste and touch from coincident peripheral fields on the tongue converge centrally on the intermediate subdivision of the solitary nucleus. Efferent neurons of the superior salivatory nucleus were labelled retrogradely following application of HRP to the chorda tympani. These cells are located ipsilaterally in the medullary reticular formation ventral to the rostral pole of the solitary nucleus; their dendrites are oriented dorsoventrally. The efferent axons course dorsally, form a genu lateral to the facial somatomotor genu, and course ventrolaterally through the spinal nucleus of the trigeminal nerve to exit the brain ventral to the entering facial afferents.  相似文献   

12.
Transganglionic transport of HRP was used to study the patterns of termination of somatic afferent fibers innervating oral and facial structures within the trigeminal nucleus caudalis and upper cervical dorsal horn of the cat. In separate animals, the superior alveolar, pterygopalatine, buccal, inferior alveolar, lingual, frontal, corneal, zygomatic, infraorbital, mental, mylohyoid, and auriculotemporal branches of the trigeminal nerve were traced in this experiment. The organization of the primary afferents innervating the oral structures is not uniform across laminae and at different rostrocaudal levels of the nucleus caudalis. The superior alveolar and pterygopalatine nerves mainly terminate in laminae I, II, and V at the level of the rostral one-third of the caudalis. By contrast, the lingual, inferior alveolar, and buccal nerve terminate in laminae I-V of, respectively, the rostral third, the entire length, and caudal two-thirds of the caudalis. In addition, the lingual, buccal, and pterygopalatine nerves terminate in the dorsal and middle parts of the interstitial islands or pockets of lamina I neuropil extending to the rostral levels parallel to the nucleus interpolaris. Mediolaterally, in laminae I, II, and V of the rostral third an extensive overlap of projections was found between the branches from each trigeminal division, and some overlap was observed between projections from the mandibular and maxillary divisions. On the other hand, the projections of primary afferents innervating the facial structures are arranged in a somatotopic fashion in rostrocaudal and mediolateral axes over the laminae (I-IV) through the nucleus caudalis and upper cervical dorsal horn. Fibers from the perioral and perinasal regions terminate most rostrally in caudalis, and fibers from progressively more posterior facial regions terminate at successively lower levels. A mediolateral somatotopic arrangement was observed, with fibers from the ventral parts of face ending in the medial regions and fibers from the progressively more dorsal parts of the face ending in successively more lateral regions of the medullary and upper cervical dorsal horns. Corneal afferent terminals are concentrated in the outer parts of lamina II at the levels of the rostral parts of the caudal two-thirds of the caudalis and the interstitial islands of lamina I. The maxillary division terminates first at the most caudal level of the caudalis, followed by the ophthalmic division descending as far as the C2 segment and the mandibular division reaching the most caudal level of the C2 segment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The central projection of primary neurons comprising the auriculotemporal nerve, cutaneous branch of the mylohyoid nerve, inferior alveolar nerve, mental nerve, lingual nerve, and buccal nerve was investigated using transganglionic transport of HRP in young rats. In view of the topographic organization of central projection fields, the nerves were divided into two groups; i.e., those projecting to the dorsolateral margin of the trigeminal nucleus principalis, subnucleus oralis, and interpolaris (the auriculotemporal, mylohyoid, and mental nerves) and those projecting more medially (the inferior alveolar, lingual, and buccal nerves). The former group of nerves projected more caudally than the latter in the medullary and spinal dorsal horn complex rostral to the 3rd cervical segment, in general. Furthermore, the latter group projected to the nucleus of the solitary tract and the supratrigeminal and paratrigeminal nuclei, whereas the other nerves did not. The data indicate the following points: Primary neurons innervating the intraoral structures terminate medial (in trigeminal nucleus principalis and subnucleus oralis) and ventral (in subnucleus interpolaris) to the terminal fields of those innervating the facial skin. Primary neurons innervating the intraoral structures project to the nucleus of the solitary tract and the supra- and paratrigeminal nuclei, whereas those innervating the facial skin do not. Primary neurons innervating the periphery of the face project to the spinal dorsal horn and those innervating the intra/perioral region project to medullary dorsal horn, though this segregation from the medulla to the 3rd cervical segment is relatively loose. Only those trigeminal primary neurons, whose receptive fields extend to or beyond the midline, project to the contralateral dorsal horn from the medulla to the 3rd cervical segment.  相似文献   

14.
The extracellular response of medullary trigeminal neurons to electrical stimulation of the dura was studied in anesthetized cats. Fifty-six medullary trigeminal units were excited by stimulation sites near major dural vessels with an average latency of 11.0 ms. Many units also responded to infraorbital nerve shock and had cutaneous receptive fields that included the ipsilateral periorbital region. These cutaneous responses were either wide dynamic range or nociceptive specific in type. Electrical stimulation of the midbrain periaqueductal gray region suppressed the response of medullary trigeminal units to either dural stimulation or infraorbital nerve shock. Medullary trigeminal neurons that receive convergent inputs from dura and facial skin may provide a physiological substrate for the cutaneous referral of dural sensation.  相似文献   

15.
Peripheral input convergence on trigeminal premotor neurons in the vicinity of trigeminal motor nucleus has been investigated. Thirty neurons were identified by their antidromic responses to microstimulation of the masseteric subnucleus of trigeminal motor nucleus (NVmot-mass). Peripheral receptive fields were found in the buccal mucosae, periodontal ligaments, palate, tongue and vibrissae for 16 neurons located in the intertrigeminal area (NVint), supratrigeminal area (NVs), main sensory trigeminal nucleus (NVsnpr) and subnucleus gamma of the oral nucleus of the spinal trigeminal tract (NVspo-gamma). Eleven neurons in the NVint, NVs and NVspo-gamma responded to passive jaw opening: nine neurons were activated and two were inhibited. None of the neurons responded to both the orofacial mechanical stimulation and passive jaw opening. Forty-six percent of neurons (13 out of 28 tested) received inputs from the inferior alveolar nerve (IAN) and 53% of neurons (8 out of 15 tested) received inputs from the infraorbital nerve (ION). Out of 15 neurons tested for inputs from the IAN and ION, 7 neurons in the NVsnpr and NVspo-gamma received input from both. Sixteen percent of neurons (4 out of 25) received inputs from the masseteric nerve (MassN). None of the neurons with inputs from IAN and/or ION also received inputs from the MassN. We suggest that trigeminal premotor interneurons with projections to the NVmot-mass fall into two broad categories, those with inputs from the IAN and/or ION and those with inputs from the MassN, possibly muscle spindle afferents, and no neuron receiving inputs from both.  相似文献   

16.
The inferior alveolar nerve is a sensory branch of the trigeminal nerve that is frequently damaged, and such nerve injuries can give rise to persistent paraesthesia and dysaesthesia. The mechanisms behind neuropathic pain following nerve injury is poorly understood. However, remodeling of voltage-gated sodium channels in the neuronal membrane has been proposed as one possible mechanism behind injury-induced ectopic hyperexcitability. The TTX-resistant sodium channel SNS/PN3 has been implicated in the development of neuropathic pain after spinal nerve injury. We here study the effect of chronic axotomy of the inferior alveolar nerve on the expression of SNS/PN3 mRNA in trigeminal sensory neurons. The organization of sodium channels in the neuronal membrane is maintained by binding to ankyrin, which help link the sodium channel to the membrane skeleton. Ankyrin(G), which colocalizes with sodium channels in the initial segments and nodes of Ranvier, and is necessary for normal neuronal sodium channel function, could be essential in the reorganization of the axonal membrane after nerve injury. For this reason, we here study the expression of ankyrin(G) in the trigeminal ganglion and the localization of ankyrin(G) protein in the inferior alveolar nerve after injury. We show that SNS/PN3 mRNA is down-regulated in small-sized trigeminal ganglion neurons following inferior alveolar nerve injury but that, in contrast to the persistent loss of SNS/PN3 mRNA seen in dorsal root ganglion neurons following sciatic nerve injury, the levels of SNS/PN3 mRNA appear to normalize within a few weeks. We further show that the expression of ankyrin(G) mRNA also is downregulated after nerve lesion and that these changes persist for at least 13 weeks. This decrease in the ankyrin(G) mRNA expression could play a role in the reorganization of sodium channels within the damaged nerve. The changes in the levels of SNS/PN3 mRNA in the trigeminal ganglion, which follow the time course for hyperexcitability of trigeminal ganglion neurons after inferior alveolar nerve injury, may contribute to the inappropriate firing associated with sensory dysfunction in the orofacial region.  相似文献   

17.
We developed a method for determination of motor conduction along the mandibular and sensory conduction along the lingual and inferior alveolar nerves in 10 controls and 6 patients with lingual neuropathy following lower wisdom tooth extraction. Patients with lingual neuropathy had reduced/absent or delayed compound sensory action potentials and normal conduction along the fibers of the inferior alveolar nerve and mandibular nerve. The method provides a useful electrophysiological means of evaluating lingual nerve lesions. © 1998 John Wiley-Liss, Inc. Muscle Nerve 21:410–412, 1998.  相似文献   

18.
Transganglionic transport of HRP from the circumvallate papilla of the rat   总被引:1,自引:0,他引:1  
To learn whether horseradish peroxidase (HRP) injections in gustatory papillae on the tongue can be used to study central topographical projections of taste buds and papillae, injections were made into the circumvallate papilla in rats. Labeled central projections after papilla injections were compared to projections after applying HRP to the cut glossopharyngeal nerve. Papilla injections result in HRP transport by afferent and efferent fibers of the glossopharyngeal nerve, and the pattern of central projections is similar to that after labeling the cut nerve. Projections include a separation in the brainstem of afferent, dorsally located fibers and efferent, ventrally located fibers. Afferent fibers project to the solitary nucleus and the trigeminal system. Efferent projections label muscle motorneurons in the nucleus ambiguus and the cells of origin of parasympathetic preganglionic fibers, which from the inferior salivatory nucleus. The parasympathetic neurons labeled after papilla projections are preganglionic fibers to Remak's ganglia in the tongue; post-ganglionic fibers of these ganglia are the secretomotor supply to the von Ebner's glands. In summary, injections of HRP into gustatory papillae reliably label central projections of the papilla and can be used for studies to discern topography in central projections of the taste system. Injections into the circumvallate papilla also have demonstrated that the parasympathetic neurons innervating von Ebner's glands are located in the inferior salivatory nucleus.  相似文献   

19.
Transganglionic transport of horseradish peroxidase (HRP) was used to study the patterns of termination of somatic afferent fibers innervating oral and facial structures within the principal nucleus (Vp), nucleus oralis (Vo), and nucleus interpolaris (Vi). The primary trigeminal afferent fibers that innervate the oral cavity supplied by the pterygopalatine, superior alveolar, lingual, buccal, and inferior alveolar branches, as well as the facial skin supplied by the frontal, corneal, zygomatic, infraorbital, auriculotemporal, mylohyoid, and mental branches, were traced in this experiment. The results show that trigeminal afferent nerves that innervate the oral cavity project mainly to the principal nucleus, the rostrodorsomedial part (Vo.r) and dorsomedial division (Vo.dm) of pars oralis, and the dorsomedial region of pars interpolaris, while an extensive overlap of projections is found in the Vo.r, Vo.dm, and rostral Vi. The central processes of fibers innervating the anterior face (i.e., mental, infraorbital, and frontal nerves) terminate in the ventral division of principalis (Vpv), caudal region pars oralis (Vo.c), and ventrolateral Vi, with the largest numbers of terminals being found in the Vpv and Vi. In contrast, the central projection patterns of the corneal, zygomatic, mylohyoid, and auriculotemporal afferents are different from those of other afferent nerves examined, and present a discrete projection to the trigeminal sensory nuclear complex (TSNC). The corneal, mylohyoid, and auriculotemporal afferents mainly project to the restricted regions of principalis and caudal Vi, while zygomatic afferent nerve fibers project to the caudal third of pars interpolaris. The typical somatotopic organization with the face of the mouth open inverted is represented in the rostrocaudal midlevels of the Vpv and caudal pars interpolaris. The Vpd receives topographical projection from primary afferent nerves that innervate the oral structure only, while this projection was organized in a complicated manner. The relationship between the functional segregation and the cytoarchitectonic differentiation of the TSNC is discussed, particularly with respect to this somatotopic organization, combined with the characteristics of projecting cells in the TSNC.  相似文献   

20.
Osteopontin-immunoreactivity (OPN-ir) was examined in the oro-facial tissues and trigeminal sensory nuclei (principal sensory nucleus and spinal trigeminal nucleus) to ascertain the peripheral ending and central projection of OPN-containing primary sensory neurons in the trigeminal ganglion (TG). No staining was observed using mouse monoclonal anti-OPN antibody preabsorbed with recombinant mature OPN. OPN-immunoreactive (ir) peripheral endings were classified into two types: encapsulated and unencapsulated types. Unencapsulated endings were subdivided into two types: simple and complex types. Simple endings were characterized by the thin neurite that was usually devoid of ramification. These endings were seen in the hard plate and gingiva. The complex type was characterized by the thick ramified neurite, and observed in the vibrissa, hard palate, and molar periodontal ligament. Encapsulated endings were found only in the hard palate. The trigeminal sensory nuclei contained OPN-ir cell bodies and neuropil. The neuropil was devoid of ir in laminae I and II of the medullary dorsal horn (MDH), and had various staining intensities in other regions of the trigeminal sensory nuclei. Transection of the infraorbital and inferior alveolar nerves caused an increase of OPN-ir intensity in ipsilateral TG neurons. The staining intensity of the neuropil also increased in the trigeminal sensory nuclei ipsilateral to the neurotomy excepting laminae I and II of the MDH. The present study indicates that OPN-ir primary sensory neurons in the TG innervate encapsulated and unencapsulated corpuscular endings. Such neurons probably project their central terminals to the trigeminal sensory nuclei except for the superficial laminae of the MDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号