首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical properties of bone implanted with a mixture of apatite-wollastonite containing glass ceramic (A-W.GC) granules and fibrin were examined by compression testing. A 1:1 mixture of A-W.GC granules and fibrin (Group 1), 1:4 mixture of A-W.GC granules and fibrin (Group 2), and 1:1 mixture of hydroxyapatite (HA) granules and fibrin (Group 3) were implanted in the distal femoral metaphyses of rabbits. Histomorphometric analysis suggested that A-W.GC has a greater osteoconductive potential than HA. Trabeculalike structures were observed 24 weeks after the operation in all groups but were most notable in Group 2. Twenty-four weeks after the operation, in Groups 1 and 3, the compressive strength and compressive stiffness were higher than that of normal cancellous bone, and the fracture toughness was comparable with that of normal cancellous bone. In Group 2, all three values were similar to those of normal cancellous bone. Implantation of A-W.GC granules at a low density induces the formation of bone tissue which is similar to normal bone in both mechanical properties and morphology.  相似文献   

2.
The purpose of this study was to investigate bone formation after implantation of a mixture of apatite--wollastonite containing glass ceramic granules (A-W.GC, 220-355 microns) and fibrin glue with a low A-W.GC granular density. The fibrinogen was prepared from rat blood plasma. A mixture of A-W.GC granules and fibrin glue 1:4 in volume ratio (1:4 mixture) was implanted in the proximal metaphysis of the rat tibia, and bone formation was evaluated quantitatively by histomorphometry in undecalcified specimens. Microangiography was performed in animals sacrificed 5 days after the operation. The results were compared with those of a previous study in which a 1:1 mixture of A-W.GC granules and fibrin glue was used. With the 1:4 mixture, the A-W.GC density was 39.7% because of concentration of fibrin at packing. Good early vascularization comparable to that after implantation of the 1:1 mixture was observed. Bone formation proceeded at the same rate as after implantation of 1:1 mixture, but the level of the plateau was higher than that for the 1:1 mixture. The osteoconductive potential of the 1:4 A-W.GC-fibrin mixture was similar to that of the 1:1 mixture, and was higher than that of A-W.GC without fibrin.  相似文献   

3.
Acrylic bone cement containing hydroxyapatite (HA) as a filler was developed using 4-methacryloyloxyethyl trimellitate anhydride (4-META) to promote adhesion both to bone and HA. The mechanical strengths of the cement did not decrease significantly with increasing HA in the cement by 4-META. However, strengths decreased with increasing HA content in the absence of 4-META. Scanning electron micrographic examination of fractured surfaces of the cement clearly showed that the HA particles adhered to the matrix resin when 4-META was added. Thus, it was important to maintain the original mechanical strengths for 4-META. The HA particles along the surface increased with increased HA content in the cement. The cement adhered to bone with a tensile bond strength was higher than 10 MPa.  相似文献   

4.
A composite bone cement of Alcoa A-10 Alumina and very finely ground poly(methyl methacrylate) beads (PMMA) was fabricated. It was tested in an attempt to improve on the conventionally used pure PMMA bone cement.

By knowing the densities of the powders and their volumes, the mass of each was calculated for the most efficient packing of PMMA and Al2O3 powders and a 65% PMMA: 35% Al2O3 ratio by weight composition was determined. This was tested, as well as the pure cement so comparisons could be made. Cylinders for the strength tests were also made of silane treated Al2O3.

The compositions were tested for compressive and tensile strengths. The pure PMMA, composite and silane treated composite had compressive strengths of 79.64 ± 13.0, 83.17 ± 4.8, and 71.52±8.6 MPa and the tensile strengths were 6.69 ±0.6, 5.12 ±0.3, and 7.12±0.5 MPa respectively. Also the 65%–35% PMMA-Al2O3 composite required 64% less monomer for mixing than did the pure cement which is thought to be better for tissue healing. The maximum temperature attained from room temperature was 110°–115°C for both cements. The composite took 6.5 min longer to reach its peak temperature than did the pure cement. The bone cements were implanted for one week in a rabbit and both compositions seemed acceptable by the tissue.  相似文献   


5.
In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.  相似文献   

6.
The degradation of a new bioactive bone cement (GBC), comprised of an inorganic filler (bioactive MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass beads) and an organic matrix [high-molecular-weight polymethyl methacrylate (PMMA)], was evaluated in an in vivo aging test. Hardened rectangular specimens (20 x 4 x 3 mm) were prepared from two GBC formulations (containing 50% w/w [GBC50] or 60% w/w [GBC60] bioactive beads) and a conventional PMMA bone cement control (CMW-1). Initial bending strengths were measured with the use of the three-point bending method. Specimens of all three cements were then implanted into the dorsal subcutaneous tissue of rats, removed after 3, 6, or 12 months, and tested for bending strength. The bending strengths (MPa) of GBC50 at baseline (0 months), 3, 6, and 12 months were 136 +/- 1, 119 +/- 3, 106 +/- 5 and 104 +/- 5, respectively. Corresponding values were 138 +/- 3, 120 +/- 3, 110 +/- 2 and 109 +/- 5 for GBC60, and 106 +/- 5, 97 +/- 5, 92 +/- 4 and 88 +/- 4 for CMW-1. Although the bending strengths of all three cements decreased significantly from 0 to 6 months, those of GBC50 and GBC60 did not change significantly thereafter, whereas that of CMW-1 declined significantly between 6 and 12 months. Thus, degradation of GBC50 and GBC60 does not appear to continue after 6 months, whereas CMW-1 degrades progressively over 12 months. Moreover, the bending strengths of GBC50 and GBC60 (especially GBC60) were significantly higher than that of CMW-1 throughout. It is believed that GBC60 is strong enough for use under weight-bearing conditions and that its mechanical strength is retained in vivo; however, its dynamic fatigue behavior will need assessment before application in the clinical setting.  相似文献   

7.
Nanoscale organized organic-inorganic nanocomposite systems have great potential in the development of biomaterials with advanced properties. Herein, we developed a novel nanocomposite biomaterial consisting of bioactive glass nanofiber (BGNF) and collagen reconstituted fibrous matrix for bone regenerative medicine. A sol-gel derived glass with a bioactive composition (58SiO(2). 38CaO.4P(2)O(5)) was electrospun to a nanoscale fiber with an average diameter of approximately 320 nm. The BGNF was subsequently hybridized with type I collagen, which is the main organic constituent of bone matrix. The BGNF and self-assembled collagen sol were combined in aqueous solution, and then crosslinked to produce a BGNF-collagen nanocomposite, in the form of either a thin membrane or a macroporous scaffold, by adopting appropriate processing conditions. The BGNF was observed to be distributed uniformly within the collagen reconstituted nanofibrous matrix. The nanocomposite matrices induced rapid formation of bone-like apatite minerals on their surfaces when incubated in a simulated body fluid, exhibiting excellent bioactivity in vitro. Osteoblastic cells showed favorable growth on the BGNF-collagen nanocomposite. In particular, the alkaline phosphatase activity of the cells on the nanocomposite was significantly higher than that on the collagen. This novel BGNF-collagen nanocomposite is believed to have significant potential in bone regeneration and tissue engineering applications.  相似文献   

8.
背景:生物活性玻璃是一种多相复合材料,具有良好的生物活性、骨传导性及生物相容性,但作为骨修复材料仍然存在不能完全降解、机械强度较低等不足。 目的:设计生物活性玻璃/壳聚糖复合材料骨组织工程支架,并检测其理化性能。 方法:将2.0%壳聚糖盐酸溶液与β-甘油磷酸钠以7∶1的体积比混合制备壳聚糖溶液。称取0.5,1.0,1.5 g生物活性玻璃分别加入上述壳聚糖溶液中,使得壳聚糖与生物活性玻璃的质量比为2∶1,1∶1及1∶1.5。将复合材料浸泡于模拟生理体液中7 d进行体外矿化。 结果与结论:扫描电镜见复合支架具有相互贯通的多孔结构,孔隙率最高可达89%,孔径大小合适,为100-  300 µm,生物活性玻璃以针状形式分散在壳聚糖支架之间,均匀排列,被壳聚糖支架充分包裹结合紧密。随生物活性玻璃含量的增加,复合材料的孔隙率逐渐下降,断裂强度逐渐升高,他们之间呈正相关性。X射线衍射图及傅里叶变换红外光谱证实复合支架中的单一材料未发生性质改变,示差扫描量热法分析显示正常体温情况下材料无质量丢失。矿化3 d后材料表面形成的羟基磷灰石逐渐长大为绒毛状,数量也明显增多;矿化7 d后绒毛状的羟基磷灰石长成为针状,数量进一步增多,且众多的矿化物结成球状。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

9.
In a prospective randomized study, 25 patients with benign bone tumors were surgically treated with either bioactive glass S53P4 (BG) or autogenous bone (AB) as bone graft material. X-rays were taken preoperatively and postoperatively at 2 weeks and at 3, 8, 12, 18, 24, and 36 months. In addition, for most of the patients, CT scans were performed at the same time-points. No infections or material-related adverse reactions occurred in any patient. The filled cavity was replaced faster by new bone in the AB group than in the BG group (p = 0.0001). However, at 36 months, no statistical difference in cavity volume between the two groups was observed on X-rays (p = 0.7881) or on CT scans (p = 0.9117). In the BG group at 3 years, the filled cavity appeared, however, dense on X-rays, and glass granules on CT scans were observed. During the follow-up period, the cortical thickness seemed to increase more in the BG group than in the AB group (p < 0.0001).  相似文献   

10.
OBJECTIVE: The aim of this preliminary study was to test the bioactive glass-coated fiber-reinforced composite (FRC) as a reconstruction material in the treatment of experimental defects in the frontal bone of rabbits. METHODS: FRC made of E-glass fiber and BisGMA-PMMA resin matrix system was used in the study. Pieces of nonpolymerized FRC were coated with particulate bioactive glass granules S53P4 (BAG), and then the FRC was polymerized and post-cured by heat in air to reduce the quantity of residual monomers, and to sterilize the material for the animal study. Two round defects (5 mm in diameter) were drilled in the upper bony walls of 12 NZW rabbits' frontal sinuses, and rectangular FRC plates were applied over the defects. In the control group, no FRC plates were used. The bone defect healing process was evaluated on histological sections at 3, 6, and 8 weeks, postoperatively. SEM-EDX analysis was used to determine reactive layers of bioactive glass granules. RESULTS: The healing progressed from the fibroconnective tissue phase at 3 weeks to lamellar bone formation at 6 and 8 weeks. The difference in new bone formation between the implantation groups and control groups was not statistically significant, although in some animals the effect of the implant on bone healing was clearly positive. A moderate foreign body reaction was seen on the implant surface where BAG granules did not uniformly cover the implant's polymer matrix. CONCLUSIONS: This study suggests that the tested FRC implant with bioactive glass coating provides an alternative for bone defect reconstruction. However, more research on this composite material and its biocompatibility is needed.  相似文献   

11.
The use of local antibiotics from a biodegradable implant is appealing concept for treatment of chronic osteomyelitis. Our aim was to develop a new drug delivery system based on controlled ciprofloxacin release from poly(D/L-lactide). Cylindrical composite pellets (1.0 x 0.9 mm) were manufactured from bioabsorbable poly(D/L-lactide) matrix and ciprofloxacin (7.4 wt %). In vitro studies were carried out to delineate the release profile of the antibiotic and to verify its antimicrobial activity by means of MIC testing. A long-term study in rabbits was performed to validate the release of ciprofloxacin from the composite in vivo. Therapeutic level of ciprofloxacin (>2 microg/mL) was maintained between 60 and 300 days and the concentration remained below the potentially detrimental level of 20 microg/mL in vitro. The released ciprofloxacin had retained its antimicrobial properties against common pathogens. In an exploratory long-term in vivo study with three rabbits, ciprofloxacin could not be detected from the serum after moderate filling (160 mg) of the tibia (follow-up 168 days), whereas after high dosing (a total dose of 1,000 mg in both tibias) ciprofloxacin was found temporarily at low serum concentrations (14-34 ng/mL) during the follow-up of 300 days. The bone concentrations of ciprofloxacin could be measured in all samples at 168 and 300 days. The tested copolylactide matrix seems to be a promising option in selection of resorbable carriers for sustained release of antibiotics, but the composite needs modifications to promote ciprofloxacin release during the first 60 days of implantation.  相似文献   

12.
Purpose/Aim of the study: To evaluate the biomechanical characteristics and biocompatibility of an injectable, biodegradable calcium phosphate cement (CPC) containing poly lactic-co-glycolic acid (PLGA). Materials and methods: A vertebral compression fracture model was established using 20 human cadaveric vertebrae (T11-L3) divided into CPC/PLGA composite versus PMMA groups for biomechanical testing. In addition, 35 New Zealand rabbits were used to evaluate biodegradability and osteoconductive properties of CPC/PLGA using a bone defect model. In vitro cytotoxicity was evaluated by culturing with L929 cells. Results: The CPC/PLGA composite effectively restored vertebral biomechanical properties. Compared with controls, the maximum load and compression strength of the CPC/PLGA group were lower, and stiffness was lower after kyphoplasty (all p <.05). Degradation was much slower in the control CPC compared with CPC/PLGA group. The bone tissue percentage in the CPC/PLGA group (44.9 ± 23.7%) was significantly higher compared with control CPC group (25.7 ± 10.9%) (p <.05). The viability of cells cultured on CPC/PLGA was greater than 70% compared with the blanks. Conclusions: Our biodegradable CPC/PLGA composite showed good biomechanical properties, cytocompatibility, and osteoconductivity and may represent an ideal bone substitute for future applications.  相似文献   

13.
目的通过检测具有活血补肾作用的接骨合剂对骨缺损修复过程中的转化生长因子(TGF-β)表达的影响,探讨接骨合剂对同种异体骨修复的作用。方法用新西兰大白兔,制成双侧桡骨骨缺损模型,用同种异体髂骨骨松质制成颗粒状植于骨缺损处,一组用接骨合剂(骨碎补、续断、自然铜土鳖虫)饲养,一组用普通饲料饲养,于手术后1、2、4、6、8周处死动物取材,标本进行HE及TGF-β免疫组化及原位杂交染色,光镜观察。结果在1周时TGF-β表达呈弱阳性,实验组4周时表达呈强阳性,2、6、8周时表达呈阳性,对照组除4周时表达呈阳性外,2、6、8周时表达呈弱阳性。结论接骨合剂对同种异体骨修复骨缺损有明显的促进和成骨作用。  相似文献   

14.
Bae MS  Yang DH  Lee JB  Heo DN  Kwon YD  Youn IC  Choi K  Hong JH  Kim GT  Choi YS  Hwang EH  Kwon IK 《Biomaterials》2011,32(32):8161-8171
We describe in this study the positive influences on in vitro and in vivo osteogenesis of photo-cured hyaluronic acid (HA) hydrogels loaded with simvastatin (SIM). Prior to loading SIM, we first characterized the HA hydrogels for their mechanical properties and swelling ratios. The results from this testing indicated that these two factors improved as the substitution degree of 2-aminoethyl methacrylate (AEMA) increased. MTT and live/dead assays showed that the HA hydrogels have good biocompatibility for use as scaffolds for bone tissue regeneration. Moreover, another MTT assay showed that the photo-cured HA hydrogels III fabricated with 30% AEMA (300 mg) conjugated HA (HA-AEMA iii) loaded with between 0.1 and 1 mg of SIM had a similar cytotoxicity as compared to the HA hydrogel III itself. The sustained release of SIM was observed to occur in the HA hydrogel III loaded with 1 mg of SIM. In vitro and in vivo experiments showed that the HA hydrogel III loaded with 1 mg of SIM had a significant influence on osteogenesis.  相似文献   

15.
A new bioactive bone cement (designated GBC), consisting of bioactive glass beads as an inorganic filler and polymethylmethacrylate (PMMA) as an organic matrix, has been developed. The purpose of the present study was to examine the effect of the amount of glass bead filler added to GBC on its mechanical and biological properties, and to decide the most suitable content of filler. Serial changes in GBC with time were also examined. The newly designed bioactive beads, consisting of MgO-CaO-SiO2-P2O5-CaF2 glass, were added to the cement in the proportions 30, 40, 50, 60, and 70 wt %. These cements were designated GBC30, GBC40, GBC50, GBC60, and GBC70, respectively. The compressive strength and the elastic modulus of bending of GBC increased as the glass bead content increased. The various types of GBC were packed into the intramedullar canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index calculated as the length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface. Rats were killed at 4 and 8 weeks after the operation and the affinity index was calculated for each type of GBC. Histologically, new bone had formed along the surface of all types of GBC within 4 weeks, even in GBC30 containing only 30 wt % of glass beads. At each time interval studied, there was a trend for the affinity index of GBC to increase as the glass bead filler content increased. There was no significant increase of affinity index between GBC60 and GBC70. The affinity indices for all types of GBC increased significantly with time up to 8 weeks. The handling properties of GBC were comparable to those of conventional PMMA bone cement. We conclude that when mechanical properties and osteoconductivity are both taken into consideration, GBC60 is the most suitable formulation; it shows excellent osteoconductivity and sufficient mechanical strength for clinical use.  相似文献   

16.
Three types of bioactive polymethylmethacrylate (PMMA)-based bone cement containing nano-sized titania (TiO2) particles were prepared, and their mechanical properties and osteoconductivity are evaluated. The three types of bioactive bone cement were T50c, ST50c, and ST60c, which contained 50 wt% TiO2, and 50 and 60 wt% silanized TiO2, respectively. Commercially available PMMA cement (PMMAc) was used as a control. The cements were inserted into rat tibiae and allowed to solidify in situ. After 6 and 12 weeks, tibiae were removed for evaluation of osteoconductivity using scanning electron microscopy (SEM), contact microradiography (CMR), and Giemsa surface staining. SEM revealed that ST60c and ST50c were directly apposed to bone while T50c and PMMAc were not. The osteoconduction of ST60c was significantly better than that of the other cements at each time interval, and the osteoconduction of T50c was no better than that of PMMAc. The compressive strength of ST60c was equivalent to that of PMMAc. These results show that ST60c is a promising material for use as a bone substitute.  相似文献   

17.
The objective of the present study is to investigate the addition effect of transforming growth factor (TGF)-beta1 on the bone formation at a rabbit skull defect induced by autologous bone marrow (BM). Following application of gelatin microspheres containing TGF-beta1, with or without BM cells to skull bone defects, bone formation at the defect was assessed by soft X-ray, dual energy X-ray absorptometry (DEXA), and histological examinations. After implantation for 6 weeks, gelatin microspheres containing 0.05 microg of TGF-beta1 plus 10(6) of BM cells induced bone formation at the 6 mm diameter bone defect. The defect was histologically closed by newly formed bone tissue, whilst both gelatin microspheres containing 0.05 microg of TGF-beta1, and 10(6) and 10(7) of BM cells were ineffective. A DEXA experiment revealed that combination of gelatin microspheres containing TGF-beta1 with BM cells enhanced the bone mineral density at the skull defect to a significantly greater extent than other agents. These findings indicate that a combination of gelatin microspheres containing TGF-beta1 enabled BM cells to enhance the osteoinductive ability, resulting in bone formation even at the cell number at which BM cells alone were ineffective.  相似文献   

18.
Phosphate glass (PG) of the composition 0.46(CaO)-0.04(Na(2)O)-0.5(P(2)O(5)) was used as filler in poly-L-lactic acid (PLA) foams developed as degradable scaffolds for bone tissue engineering. The effect of PG on PLA was assessed both in bulk and porous composite foams. Composites with various PG content (0, 5, 10, and 20 wt %) were melt-extruded, and either compression-molded or foamed through supercritical CO(2). Dynamic mechanical analysis on the bulk composites showed that incorporating 20 wt % PG resulted in a significant increase in storage modulus. Aging studies in deionized water in terms of weight loss, pH change, and ion release inferred that the degradation was due to PG dissolution, and dependent on the amount of glass in the composites. Foaming was only possible for composites containing 5 and 10 wt % PG, as an increase in PG increased the foam densities; however, the level of porosity was maintained above 75%. PLA-T(g) in the foams was higher than those obtained for the bulk. Compressive moduli showed no significant reinforcement with glass incorporation in either expansion direction, indicating no anisotropy. Biocompatibility showed that proliferation of human fetal bone cells was more rapid for PLA compared to PLA-PG foams. However, the proliferation rate of PLA-PG foams were similar to those obtained for foams of PLA with either hydroxyapatite or beta-tricalcium phosphate.  相似文献   

19.
Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12 weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250–300 μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12 week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair.  相似文献   

20.
Resorbable calcium phosphate ceramics are only osteoconductive; therefore, their combination with osteogenic substances may lead to stimulation of bone healing. In the present study this combination, using autologous bone marrow, was investigated. In 31 sheep, a 3-cm tibial segmental defect was created and stabilized with an intramedullary nail. The animals were divided into four groups: empty defects (group 1, n = 7), and defects filled with 10-mL dense resorbable calcium phosphate particles (group 2, n = 8), with 10-mL particles soaked in bone marrow (group 3, n = 8), or with 10-mL autologous bone (group 4, n = 8). On evaluation after 12 weeks, significantly higher values were seen in group 3 than in group 2 for callus volume (p = .016), bone mineral density ratio (p = .03), bone mineral content ratio (p = .04), torsional strength (p = .005), and torsional stiffness (p = .01). For all end points, the outcome of group 3 was lower than that of group 4. In the histology, there was direct contact between newly formed bone and remnants of the particles. There were no signs of inflammatory reactions. Although a stimulatory effect of bone marrow was seen, the combination of resorbable calcium phosphate particles with bone marrow does not provide an alternative for autologous bone grafting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号