首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Background: T-type calcium channels regulate neuronal membrane excitability and participate in a number of physiologic and pathologic processes in the central nervous system, including sleep and epileptic activity. Volatile anesthetics inhibit native and recombinant T-type calcium channels at concentrations comparable to those required to produce anesthesia. To determine whether T-type calcium channels are involved in the mechanisms of anesthetic action, the authors examined the effects of general anesthetics in mutant mice lacking [alpha]1G T-type calcium channels.

Methods: The hypnotic effects of volatile and intravenous anesthetics administered to mutant and C57BL/6 control mice were evaluated using the behavioral endpoint of loss of righting reflex. To investigate the immobilizing effects of volatile anesthetics in mice, the minimum alveolar concentration (MAC) values were determined using the tail-clamp method.

Results: The 50% effective concentration for loss of righting reflex and MAC values for volatile anesthetics were not altered after [alpha]1G channel knockout. However, mutant mice required significantly more time to develop anesthesia/hypnosis after exposure to isoflurane, halothane, and sevoflurane and after intraperitoneal administration of pentobarbital.  相似文献   


2.
BACKGROUND: Recent molecular strategies demonstrated that the N-methyl-d-aspartate (NMDA) receptor is a major target site of anesthetic agents. In a previous article, the authors showed that knocking out the NMDA receptor epsilon1 subunit gene markedly reduced the hypnotic effect of ketamine in mice. In the current study, the authors examined the in vivo contribution of the NMDA receptor epsilon1 subunit to the action of other anesthetic drugs. METHODS: The authors determined the anesthetic effects of nitrous oxide on sevoflurane potency in NMDA receptor epsilon1 subunit knockout mice compared with those in wild-type mice. They then tested the hypnotic effect of gamma-aminobutyric acid-mediated agents, such as propofol, pentobarbital, diazepam, and midazolam, in knockout mice and wild-type mice. RESULTS: The anesthetic action of sevoflurane itself was unaffected by the abrogation of the NMDA receptor epsilon1 subunit. Adding nitrous oxide reduced the required concentration of sevoflurane to induce anesthesia in wild-type mice, whereas this sparing effect was diminished in knockout mice. Furthermore, propofol, pentobarbital, diazepam, and midazolam also had markedly attenuated effects in knockout mice. CONCLUSIONS: Although it has been demonstrated that knocking out the expression of receptors may induce changes in the composition of the subunits, the network circuitry, or both, the current findings show consistently that the NMDA receptor epsilon1 subunit mediates nitrous oxide but not sevoflurane anesthesia. Furthermore, the attenuated anesthetic impact of propofol, pentobarbital, diazepam, and midazolam as well as ketamine in knockout mice suggests that the NMDA receptor epsilon1 subunit could be indirectly involved in the hypnotic action of these drugs in vivo.  相似文献   

3.
BACKGROUND: T-type calcium channels regulate neuronal membrane excitability and participate in a number of physiologic and pathologic processes in the central nervous system, including sleep and epileptic activity. Volatile anesthetics inhibit native and recombinant T-type calcium channels at concentrations comparable to those required to produce anesthesia. To determine whether T-type calcium channels are involved in the mechanisms of anesthetic action, the authors examined the effects of general anesthetics in mutant mice lacking alpha1G T-type calcium channels. METHODS: The hypnotic effects of volatile and intravenous anesthetics administered to mutant and C57BL/6 control mice were evaluated using the behavioral endpoint of loss of righting reflex. To investigate the immobilizing effects of volatile anesthetics in mice, the minimum alveolar concentration (MAC) values were determined using the tail-clamp method. RESULTS: The 50% effective concentration for loss of righting reflex and MAC values for volatile anesthetics were not altered after alpha1G channel knockout. However, mutant mice required significantly more time to develop anesthesia/hypnosis after exposure to isoflurane, halothane, and sevoflurane and after intraperitoneal administration of pentobarbital. CONCLUSIONS: The 50% effective concentration for loss of righting reflex and MAC values for the volatile anesthetics were not altered after alpha1G calcium channel knockout, indicating that normal functioning of alpha1G calcium channels is not required for the maintenance of anesthetic hypnosis and immobility. However, the timely induction of anesthesia/hypnosis by volatile anesthetic agents and some intravenous anesthetic agents may require the normal functioning of these channel subunits.  相似文献   

4.
PURPOSE: Drugs that suppress neuronal activity, including all general anesthetics that have been tested thus far (ketamine, midazolam, isoflurane, propofol, and a cocktail of midazolam, nitrous oxide and isoflurane), trigger neuroapoptosis in the developing rodent brain. Combinations of nitrous oxide and isoflurane, or ketamine and propofol, cause more severe neuroapoptosis than any single agent by itself, which suggests a positive correlation between increased levels of anesthesia and increased severity of neuroapoptosis. In contrast, there is evidence that the rare gas, xenon, which has anesthetic properties, protects against isoflurane-induced neuroapoptosis in the infant rat brain, while not inducing neuroapoptosis by itself. The present study was undertaken to evaluate the potential of xenon to induce neuroapoptosis or to protect against neuroapoptosis induced by isoflurane in the infant mouse brain. METHODS: Seven-day-old C57BL/6 mice were exposed to one of four conditions: air (control); 0.75% isoflurane; 70% xenon; or 0.75% isoflurane + 70% xenon for four hours. For histopathological evaluation of the brains, all pups were euthanized two hours later using activated caspase-3 immunohistochemical staining to detect apoptotic neurons. Under each condition, quantitative assessment of the number of apoptotic neurons in the cerebral cortex (CC) and in the caudate/putamen (C/P) was performed by unbiased stereology. RESULTS: The combination of xenon + isoflurane produced a deeper level of anesthesia than either agent alone. Both xenon alone (p < 0.003 in CC; p < 0.02 in C/P) and isoflurane alone (p < 0.001 in both CC and C/P) induced a significant increase in neuroapoptosis compared to controls. The neuroapoptotic response to isoflurane was substantially more robust than the response to xenon. When xenon was administered together with isoflurane, the apoptotic response was reduced to a level lower than that for isoflurane alone (p < 0.01 in CP; marginally non-significant in CC). CONCLUSIONS: We conclude that xenon, in the infant mouse brain, has paradoxical properties. It triggers neuroapoptosis, and when combined with isoflurane, it increases the depth of anesthesia, and retains its own apoptogenic activity. However, it suppresses, rather than augments, isoflurane's apoptogenic activity.  相似文献   

5.
Background: Recent molecular strategies demonstrated that the N-methyl-d-aspartate (NMDA) receptor is a major target site of anesthetic agents. In a previous article, the authors showed that knocking out the NMDA receptor [epsilon]1 subunit gene markedly reduced the hypnotic effect of ketamine in mice. In the current study, the authors examined the in vivo contribution of the NMDA receptor [epsilon]1 subunit to the action of other anesthetic drugs.

Methods: The authors determined the anesthetic effects of nitrous oxide on sevoflurane potency in NMDA receptor [epsilon]1 subunit knockout mice compared with those in wild-type mice. They then tested the hypnotic effect of [gamma]-aminobutyric acid-mediated agents, such as propofol, pentobarbital, diazepam, and midazolam, in knockout mice and wild-type mice.

Results: The anesthetic action of sevoflurane itself was unaffected by the abrogation of the NMDA receptor [epsilon]1 subunit. Adding nitrous oxide reduced the required concentration of sevoflurane to induce anesthesia in wild-type mice, whereas this sparing effect was diminished in knockout mice. Furthermore, propofol, pentobarbital, diazepam, and midazolam also had markedly attenuated effects in knockout mice.  相似文献   


6.
Chronobiology, which focuses on the biological rhythms that occur in the organization of living organisms, has been studied for several decades. Chronopharmacology, however, has received little attention until recently. We examined the hypnotic duration of intraperitoneally administered ketamine, pentobarbital, propofol, midazolam, and ethanol, to test whether they have obvious dosing-time dependent effects. Male C57BL/6 mice, which showed clear circadian rhythms of water-intake under a strict 12-h lighting cycle, were used. All tested drugs had significantly longer episodes of loss of righting reflex when administered at 22:00 (early active phase) than at 10:00 (early inactive phase). This dosing-time dependent hypnotic duration did not depend on the contents and activities of cytochrome P450 enzymes in the liver. These findings might be of clinical benefit in deciding the administration time and doses of anesthetics.  相似文献   

7.
背景随着人口老龄化,老年痴呆症确诊或初期接受手术患者越来越多。全身麻醉可能加重其症状和病理进展,所以让这些患者接受尽量少的麻醉药十分重要。因此我们需要了解老年痴呆症病理是否改变麻醉药物作用的强度。方法根据12-14月龄3XTgAD老年痴呆症模型小鼠和野生型C57BL6小鼠翻正反射消失的最小肺泡药物浓度来测定异氟烷、氟烷、七氟烷的诱导浓度和恢复时间。3XTgAD小鼠带有3处独立的突变:APPswe、taup301和PS1人类转基因,其中每一个转基因均与人类家族性老年痴呆症有关。结果3XTgAD小鼠对吸入麻醉药表现出轻微的抵抗作用(8%-30%),但是3种药物的恢复时间并没有差别。结论老年痴呆症所引起的基因易损性与神经病理学改变会使个体对3种吸入性麻醉药物的催眠作用的敏感性产生微小但明显的降低,但恢复时间没有改变。  相似文献   

8.
In this study, we measured the minimum alveolar anesthetic concentration (MAC) in several mouse strains, including strains used in the construction of genetically engineered mice. This is important because defined genetic modifications are used increasingly to test mechanisms of inhaled anesthetic action, and background variability in MAC can potentially influence the interpretation of these studies. We investigated the effect of strain on MAC for desflurane, isoflurane, halothane, ethanol, the experimental anesthetic 1-chloro-1,2,2-trifluorocyclobutane, and convulsive 50% effective dose (the dose required to produce convulsions in 50% of animals) of the nonimmobilizer 1,2-dichlorohexafluorocyclobutane. These drugs were studied in eight inbred strains, including both laboratory and wild mouse strains (129/J, 129/SvJ, 129/Ola Hsd, C57BL/6NHsd, C57BL/6J, DBA/2J, Spret/Ei, and Cast/Ei), one hybrid strain (B6129F2/J, derived from the C57BL/6J and 129/J strains), and one outbred strain (CD-1). To test our ability to detect effects in a genetically modified mouse, we compared these data with those for a mouse lacking the gamma (neuronal) isoform of the protein kinase C gene (PKCgamma). We also assessed whether amputating the tail tip of mice (a standard method of obtaining tissue for genetic analysis) increased MAC (e.g., by sensitization of the spinal cord). MAC and convulsant 50% effective dose values differed modestly among strains, with a range of 17% to 39% from the lowest to highest values for MAC using conventional anesthetics, and up to 48% using the experimental anesthetic 1-chloro-1,2,2-trifluorocyclobutane. Convulsivity to the nonimmobilizer varied by 47%. Amputating the tail tip did not affect MAC. PKCgamma knockout mice had significantly higher MAC values than control animals for isoflurane, but not for halothane or desflurane, which implies that protein phosphorylation by PKCgamma can alter sensitivity to isoflurane. IMPLICATIONS: Anesthetic potency differs by modest amounts among inbred, outbred, wild, and laboratory mouse strains. Absence of the neural form of protein kinase C increases minimum alveolar anesthetic concentration for isoflurane, indicating that protein phosphorylation by the gamma-isoform of protein kinase C (PKCgamma) can influence the potency of this anesthetic.  相似文献   

9.
Background: General anesthetics differentially affect various families of potassium channels, and some potassium channels are suggested to be potential targets for anesthetics and alcohols.

Methods: The voltage-gated (ERG1, ELK1, and KCNQ2/3) and inwardly rectifying (GIRK1/2, GIRK1/4, GIRK2, IRK1, and ROMK1) potassium channels were expressed in Xenopus oocytes. Effects of volatile agents [halothane, isoflurane, enflurane, F3 (1-chloro-1,2,2-trifluorocyclobutane), and the structurally related nonimmobilizer F6 (1,2-dichlorohexafluoro-cyclobutane)], as well as intravenous (pentobarbital, propofol, etomidate, alphaxalone, ketamine), and gaseous (nitrous oxide) anesthetics and alcohols (ethanol and hexanol) on channel function were studied using a two-electrode voltage clamp.

Results: ERG1, ELK1, and KCNQ2/3 channels were either inhibited slightly or unaffected by concentrations corresponding to twice the minimum alveolar concentrations or twice the anesthetic EC50 of volatile and intravenous anesthetics and alcohols. In contrast, G protein-coupled inwardly rectifying potassium (GIRK) channels were inhibited by volatile anesthetics but not by intravenous anesthetics. The neuronal-type GIRK1/2 channels were inhibited by 2 minimum alveolar concentrations of halothane or F3 by 45 and 81%, respectively, whereas the cardiac-type GIRK1/4 channels were inhibited only by F3. Conversely, IRK1 and ROMK1 channels were completely resistant to all anesthetics tested. Current responses of GIRK2 channels activated by [mu]-opioid receptors were also inhibited by halothane. Nitrous oxide (~0.6 atmosphere) slightly but selectively potentiated GIRK channels. Results of chimeric and multiple amino acid mutations suggest that the region containing the transmembrane domains, but not the pore-forming domain, may be involved in determining differences in anesthetic sensitivity between GIRK and IRK channels.  相似文献   


10.
The authors evaluated the potential of a variety of anesthetics in mice to produce subsequent alterations in host defenses. Specific monoclonal antibodies and immunofluorescent microscopy were used to enumerate splenic helper/inducer: suppressor/cytotoxic lymphocyte ratios (HSR), and resistance to bacterial challenge was evaluated by a cecal ligation and puncture (CLP) model. Two hours of anesthesia with the intravenous agents ketamine and pentobarbital and with the inhalational agents isoflurane, enflurane, halothane, and halothane-nitrous oxide, were utilized. All anesthetics produced marked depression in the HSR, measured 24 h postanesthesia (P less than 0.05); with all agents, helper T-cell populations were decreased and suppressor populations increased. The HSR remained depressed 72 h postanesthetic, following both ketamine and halothane anesthesia (P less than 0.05). A dose-response curve was determined with enflurane; increasing the anesthetic time from 1 to 6 h resulted in progressively greater depression of the HSR 24 h later. Changes in lymphocyte subtypes of similar magnitude were found in mice after burn injury or hind limb crush injury and amputation, whereas simple laparotomy did not produce such changes. Serum corticosterone levels were not elevated 24 h post-anesthetic with enflurane, suggesting that the alterations were not nonspecific stress reactions. Resistance to sepsis was determined by measuring survival for 96 h after CLP. With CLP performed 24 h following 2 h anesthesia, mortality was increased from normal: control mortality 36.3%; ketamine 65.0% (P less than 0.023); isoflurane 69.5% (P less than 0.006); enflurane 84.2% (P less than 0.0002).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Many adjuvant drugs have demonstrated anesthetic-sparing properties when combined with volatile anesthetics. Nitrous oxide is combined with volatile anesthetics to reduce the concentrations of volatile anesthetics required to produce anesthesia. Analgesic doses of opioids clearly reduce the requirement for inhaled anesthetics in both human patients and experimental animals. We performed this study to determine whether the combination of nitrous oxide and morphine decreased isoflurane minimum alveolar anesthetic concentration (MAC) even further in the rat. Fifty-eight female rats were used. The rats were divided into 8 groups: isoflurane in 4 possible nitrous oxide concentrations (0%, 30%, 50%, or 70%) with saline or morphine (1 mg/kg). Then the MAC of isoflurane (MAC(ISO))was determined from alveolar gas samples at the time of tail clamp. The MAC of isoflurane was significantly different at each nitrous oxide concentration, and increasing nitrous oxide concentrations reduced anesthetic requirements for isoflurane. The administration of morphine reduced the MAC(ISO) when used with 0% or 30% nitrous oxide. This MAC(ISO) by morphine reduction was less with 50% nitrous oxide and nonexistent at 70% nitrous oxide. However, with morphine present the MAC(ISO) was independent of the nitrous oxide concentration in the 30%-70% range.  相似文献   

12.
Yamakura T  Harris RA 《Anesthesiology》2000,93(4):1095-1101
BACKGROUND: Ligand-gated ion channels are considered to be potential general anesthetic targets. Although most general anesthetics potentiate the function of gamma-aminobutyric acid receptor type A (GABAA), the gaseous anesthetics nitrous oxide and xenon are reported to have little effect on GABAA receptors but inhibit N-methyl-d-aspartate (NMDA) receptors. To define the spectrum of effects of nitrous oxide and xenon on receptors thought to be important in anesthesia, the authors tested these anesthetics on a variety of recombinant brain receptors. METHODS: The glycine, GABAA, GABA receptor type C (GABAC), NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, 5-hydroxytryptamine3 (5-HT3), and nicotinic acetylcholine (nACh) receptors were expressed in Xenopus oocytes and effects of nitrous oxide and xenon, and as equipotent concentrations of isoflurane and ethanol, were studied using the two-electrode voltage clamp. RESULTS: Nitrous oxide (0.58 atmosphere [atm]) and xenon (0.46 atm) exhibited similar effects on various receptors. Glycine and GABAA receptors were potentiated by gaseous anesthetics much less than by isoflurane, whereas nitrous oxide inhibited GABAC receptors. Glutamate receptors were inhibited by gaseous anesthetics more markedly than by isoflurane, but less than by ethanol. NMDA receptors were the most sensitive among glutamate receptors and were inhibited by nitrous oxide by 31%. 5-HT3 receptors were slightly inhibited by nitrous oxide. The nACh receptors were inhibited by gaseous and volatile anesthetics, but ethanol potentiated them. The sensitivity was different between alpha4beta2 and alpha4beta4 nACh receptors; alpha4beta2 receptors were inhibited by nitrous oxide by 39%, whereas alpha4beta4 receptors were inhibited by 7%. The inhibition of NMDA and nACh receptors by nitrous oxide was noncompetitive and was slightly different depending on membrane potentials for NMDA receptors, but not for nACh receptors. CONCLUSIONS: Nitrous oxide and xenon displayed a similar spectrum of receptor actions, but this spectrum is distinct from that of isoflurane or ethanol. These results suggest that NMDA receptors and nACh receptors composed of beta2 subunits are likely targets for nitrous oxide and xenon.  相似文献   

13.
BACKGROUND: General anesthetics differentially affect various families of potassium channels, and some potassium channels are suggested to be potential targets for anesthetics and alcohols. METHODS: The voltage-gated (ERG1, ELK1, and KCNQ2/3) and inwardly rectifying (GIRK1/2, GIRK1/4, GIRK2, IRK1, and ROMK1) potassium channels were expressed in Xenopus oocytes. Effects of volatile agents [halothane, isoflurane, enflurane, F3 (1-chloro-1,2,2-trifluorocyclobutane), and the structurally related nonimmobilizer F6 (1,2-dichlorohexafluorocyclobutane)], as well as intravenous (pentobarbital, propofol, etomidate, alphaxalone, ketamine), and gaseous (nitrous oxide) anesthetics and alcohols (ethanol and hexanol) on channel function were studied using a two-electrode voltage clamp. RESULTS: ERG1, ELK1, and KCNQ2/3 channels were either inhibited slightly or unaffected by concentrations corresponding to twice the minimum alveolar concentrations or twice the anesthetic EC50 of volatile and intravenous anesthetics and alcohols. In contrast, G protein-coupled inwardly rectifying potassium (GIRK) channels were inhibited by volatile anesthetics but not by intravenous anesthetics. The neuronal-type GIRK1/2 channels were inhibited by 2 minimum alveolar concentrations of halothane or F3 by 45 and 81%, respectively, whereas the cardiac-type GIRK1/4 channels were inhibited only by F3. Conversely, IRK1 and ROMK1 channels were completely resistant to all anesthetics tested. Current responses of GIRK2 channels activated by mu-opioid receptors were also inhibited by halothane. Nitrous oxide (approximately 0.6 atmosphere) slightly but selectively potentiated GIRK channels. Results of chimeric and multiple amino acid mutations suggest that the region containing the transmembrane domains, but not the pore-forming domain, may be involved in determining differences in anesthetic sensitivity between GIRK and IRK channels. CONCLUSIONS: G protein-coupled inwardly rectifying potassium channels, especially those composed of GIRK2 subunits, were inhibited by clinical concentrations of volatile anesthetics. This action may be related to some side effects of these agents.  相似文献   

14.
Lee HT  Ota-Setlik A  Fu Y  Nasr SH  Emala CW 《Anesthesiology》2004,101(6):1313-1324
BACKGROUND: Volatile anesthetics protect against cardiac ischemia-reperfusion injury via adenosine triphosphate-dependent potassium channel activation. The authors questioned whether volatile anesthetics can also protect against renal ischemia-reperfusion injury and, if so, whether cellular adenosine triphosphate-dependent potassium channels, antiinflammatory effects of volatile anesthetics, or both are involved. METHODS: Rats were anesthetized with equipotent doses of volatile anesthetics (desflurane, halothane, isoflurane, or sevoflurane) or injectable anesthetics (pentobarbital or ketamine) and subjected to 45 min of renal ischemia and 3 h of reperfusion during anesthesia. RESULTS: Rats treated with volatile anesthetics had lower plasma creatinine and reduced renal necrosis 24-72 h after injury compared with rats anesthetized with pentobarbital or ketamine. Twenty-four hours after injury, sevoflurane-, isoflurane-, or halothane-treated rats had creatinine (+/- SD) of 2.3 +/- 0.7 mg/dl (n = 12), 1.8 +/- 0.5 mg/dl (n = 6), and 2.4 +/- 1.2 mg/dl (n = 6), respectively, compared with rats treated with pentobarbital (5.8 +/- 1.2 mg/dl, n = 9) or ketamine (4.6 +/- 1.2 mg/dl, n = 8). Among the volatile anesthetics, desflurane demonstrated the least reduction in plasma creatinine after 24 h (4.1 +/- 0.8 mg/dl, n = 12). Renal cortices from volatile anesthetic-treated rats demonstrated reduced expression of intercellular adhesion molecule 1 protein and messenger RNA as well as messenger RNAs encoding proinflammatory cytokines and chemokines. Volatile anesthetic treatment reduced renal cortex myeloperoxidase activity and reduced nuclear translocation of proinflammatory nuclear factor kappaB. Adenosine triphosphate-dependent potassium channels are not involved in sevoflurane-mediated renal protection because glibenclamide did not block renal protection (creatinine: 2.4 +/- 0.4 mg/dl, n = 3). CONCLUSION: Some volatile anesthetics confer profound protection against renal ischemia-reperfusion injury compared with pentobarbital or ketamine anesthesia by attenuating inflammation. These findings may have significant clinical implications for anesthesiologists regarding the choice of volatile anesthetic agents in patients subjected to perioperative renal ischemia.  相似文献   

15.
Using loss of the righting reflex, we determined the ED50 values for enflurane, isoflurane, sevoflurane and halothane in white-haired ddN mice and black-haired C57BL mice. The ED50s (Mean ± SEM) in ddN and C57BL mice for enflurane were 1.65 ± 0.01 and 1.19 ± 0.01% atm, for isoflurane 1.02 ± 0.01 and 0.74 ± 0.01% atm, for sevoflurane 2.29 ± 0.03 and 1.95 ± 0.03% atm, and for halothane 0.97 ± 0.01 and 0.97 ± 0.01% atm, respectively. The results indicate that the ddN strain is more resistant to enflurane, isoflurane and sevoflurane than the C57BL strain. The sensitivities to enflurane and isoflurane is F1 progeny of reciprocal crosses between ddN and C57BL mice revealed that in the ddN strain enflurane resistance is an incompletely dominant or polygenic character, isoflurane resistance in ddN strain is an autosomal recessive character and both are controlled by genes on the sex (X) chromosome. Enflurane and isoflurane resistances are controlled by at least 2 genes, one on the X chromosome, and each resistance is controlled by a different genetic mode.(Tanaka T, Ogli K, Komatsu H, et al.: Strain-differences of sensitivity to volatile anesthetics and their genetic character in mice. J Anesth 7: 75–81, 1993)  相似文献   

16.
Background: Ligand-gated ion channels are considered to be potential general anesthetic targets. Although most general anesthetics potentiate the function of [gamma]-aminobutyric acid receptor type A (GABAA), the gaseous anesthetics nitrous oxide and xenon are reported to have little effect on GABAA receptors but inhibit N-methyl-d-aspartate (NMDA) receptors. To define the spectrum of effects of nitrous oxide and xenon on receptors thought to be important in anesthesia, the authors tested these anesthetics on a variety of recombinant brain receptors.

Methods: The glycine, GABAA, GABA receptor type C (GABAC), NMDA, [alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, 5-hydroxytryptamine3 (5-HT3), and nicotinic acetylcholine (nACh) receptors were expressed in Xenopus oocytes and effects of nitrous oxide and xenon, and as equipotent concentrations of isoflurane and ethanol, were studied using the two-electrode voltage clamp.

Results: Nitrous oxide (0.58 atmosphere [atm]) and xenon (0.46 atm) exhibited similar effects on various receptors. Glycine and GABAA receptors were potentiated by gaseous anesthetics much less than by isoflurane, whereas nitrous oxide inhibited GABAC receptors. Glutamate receptors were inhibited by gaseous anesthetics more markedly than by isoflurane, but less than by ethanol. NMDA receptors were the most sensitive among glutamate receptors and were inhibited by nitrous oxide by 31%. 5-HT3 receptors were slightly inhibited by nitrous oxide. The nACh receptors were inhibited by gaseous and volatile anesthetics, but ethanol potentiated them. The sensitivity was different between [alpha]4[beta]2 and [alpha]4[beta]4 nACh receptors; [alpha]4[beta]2 receptors were inhibited by nitrous oxide by 39%, whereas [alpha]4[beta]4 receptors were inhibited by 7%. The inhibition of NMDA and nACh receptors by nitrous oxide was noncompetitive and was slightly different depending on membrane potentials for NMDA receptors, but not for nACh receptors.  相似文献   


17.
Background: Volatile anesthetics protect against cardiac ischemia-reperfusion injury via adenosine triphosphate-dependent potassium channel activation. The authors questioned whether volatile anesthetics can also protect against renal ischemia-reperfusion injury and, if so, whether cellular adenosine triphosphate-dependent potassium channels, antiinflammatory effects of volatile anesthetics, or both are involved.

Methods: Rats were anesthetized with equipotent doses of volatile anesthetics (desflurane, halothane, isoflurane, or sevoflurane) or injectable anesthetics (pentobarbital or ketamine) and subjected to 45 min of renal ischemia and 3 h of reperfusion during anesthesia.

Results: Rats treated with volatile anesthetics had lower plasma creatinine and reduced renal necrosis 24-72 h after injury compared with rats anesthetized with pentobarbital or ketamine. Twenty-four hours after injury, sevoflurane-, isoflurane-, or halothane-treated rats had creatinine (+/- SD) of 2.3 +/- 0.7 mg/dl (n = 12), 1.8 +/- 0.5 mg/dl (n = 6), and 2.4 +/- 1.2 mg/dl (n = 6), respectively, compared with rats treated with pentobarbital (5.8 +/- 1.2 mg/dl, n = 9) or ketamine (4.6 +/- 1.2 mg/dl, n = 8). Among the volatile anesthetics, desflurane demonstrated the least reduction in plasma creatinine after 24 h (4.1 +/- 0.8 mg/dl, n = 12). Renal cortices from volatile anesthetic-treated rats demonstrated reduced expression of intercellular adhesion molecule 1 protein and messenger RNA as well as messenger RNAs encoding proinflammatory cytokines and chemokines. Volatile anesthetic treatment reduced renal cortex myeloperoxidase activity and reduced nuclear translocation of proinflammatory nuclear factor [kappa]B. Adenosine triphosphate-dependent potassium channels are not involved in sevoflurane-mediated renal protection because glibenclamide did not block renal protection (creatinine: 2.4 +/- 0.4 mg/dl, n = 3).  相似文献   


18.
BACKGROUND: Purified allogeneic hepatocytes are highly antigenic and elicit immune responses that are not easily controlled. However, it is not clear whether hepatocytes are not capable of protective immune mechanisms or whether they are not to protection by immune mechanisms that permit long-term survival of other allografts. The purpose of the current study was to determine whether donor-matched allogeneic hepatocytes are protected from rejection in mice that have been induced to accept heart allografts. METHODS: Transient treatment with anti-CD4 monoclonal antibody (mAb) or gallium nitrate (GN) was used to induce acceptance of heterotopic FVB/N (H-2(q)) heart allografts by C57BL/6 (H-2(b)) mice. Transgenic hA1AT-FVB/N hepatocytes were sequentially transplanted into C57BL/6 mice that had accepted FVB/N heart allografts more than 60 days (heart acceptor mice), CD8 depleted C57BL/6 heart acceptor mice, or B-cell knockout (BCKO, H-2(b)) heart acceptor mice. Hepatocyte survival was determined by the detection of secreted transgenic product hA1AT by enzyme-linked immunosorbent assay (ELISA). RESULTS: FVB/N hepatocytes were rejected by day 10-14 posttransplant, while FVB/N heart allografts continued to function in C57BL/6, BCKO, and CD8 depleted heart acceptor mice. When FVB/N hepatocytes and heart allografts were transplanted into C57BL/6 or BCKO mice under short-term cover of anti-CD4 mAb or GN, hepatocyte rejection occurred by day 10 posttransplant, while most heart allografts survived for more than 60 days. CONCLUSIONS: Hepatocyte rejection does not appear to interfere with the of mechanisms that permit heart allograft acceptance. However, immune responses to allogeneic hepatocytes are not to regulation by mechanisms induced in heart acceptor mice. The simultaneous rejection of FVB/N allogeneic hepatocytes and continued acceptance of FVB/N-matched heart allografts is independent of host CD8+ T cells and humoral immunity.  相似文献   

19.
NMDA receptor antagonist neurotoxicity and psychotomimetic activity   总被引:1,自引:0,他引:1  
Non-competitive NMDA receptor antagonists, in spite of their neuroprotective effects against neuronal ischemia, brain trauma, etc., cause neuronal damage in the rodent posterior cingulate and retrosplenial cortices (PC/RS), which are thought to be responsible brain regions for their psychotomimetic activity in humans. A number of anesthetics have not only GABAA receptor activating properties but also NMDA receptor antagonist properties. On the other hand, ketamine and nitrous oxide, both of which are potent non-competitive NMDA receptor antagonists and have little GABAA activating properties, are demonstrated to induce neuronal damage in the rat PC/RS. Furthermore, ketamine potentiates the neuronal damage by nitrous oxide. Although many anesthetics, such as halothane, isoflurane, barbiturates and benzodiazepines, inhibit the neuronal damage in the PC/RS by NMDA receptor antagonists, probably through GABAA receptor activation, we anesthesiologists should be aware of the risk of ketamine or nitrous oxide anesthesia, not to speak of the combined use of them, without using GABAA receptor activating agents.  相似文献   

20.
Background: After tracheal intubation, lung resistance and therefore respiratory system resistance (Rrs) routinely increase, sometimes to the point of clinical bronchospasm. Volatile anesthetics generally have been considered to be effective bronchodilators, although there are few human data comparing the efficacy of available agents. This study compared the bronchodilating efficacy of four anesthetic maintenance regimens: 1.1 minimum alveolar concentration (MAC) end-tidal sevoflurane, isoflurane or halothane, and thiopental/nitrous oxide.

Methods: Sixty-six patients underwent tracheal intubation after administration of 2 micro gram/kg fentanyl, 5 mg/kg thiopental, and 1 mg/kg succinylcholine. Vecuronium or pancuronium (0.1 mg/kg) was then given to ensure paralysis during the rest of the study. Postintubation R sub rs was measured using the isovolume technique. Maintenance anesthesia was then randomized to thiopental 0.25 mg [center dot] kg sup -1 [center dot] min sup -1 plus 50% nitrous oxide, or 1.1 MAC end-tidal isoflurane, halothane, or sevoflurane. The Rrs was measured after 5 and 10 min of maintenance anesthesia. Data were expressed as means +/- SD.

Results: Maintenance with thiopental/nitrous oxide failed to decrease Rrs, whereas all three volatile anesthetics significantly decreased Rrs at 5 min with little further improvement at 10 min. Sevoflurane decreased Rrs more than either halothane or isoflurane (P < 0.05; 58 +/- 14% of the postintubation Rrs vs. 69 +/- 20% and 75 +/- 13%, respectively).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号