首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: This study was designed to characterize the role of the human cathelicidin LL-37 in fungal skin infections such as dermatophytosis and tinea versicolor. METHODS: The in vitro antimicrobial activity of synthetic antimicrobial peptides including the human cathelicidin LL-37 against Malassezia furfur and several dermatophytes was determined. Immunostaining was performed to determine expression of cathelicidin in skin biopsies from patients with tinea pedis, tinea corporis and tinea versicolor. Cathelicidin peptide expression was evaluated by western blotting and mRNA expression was studied in keratinocytes exposed to M. furfur or Trichophyton rubrum. RESULTS: LL-37 inhibits the growth of fungi with an MIC of 20-30 microM for M. furfur and 12.5 microM for Trichophyton mentagrophytes and T. rubrum. LL-37 also shows fungicidal activity with a minimum fungicidal concentration (MFC) of 12.5 and 25 microM for T. mentagrophytes and T. rubrum, respectively. An increase in cathelicidin expression was observed in human skin tissue infected with fungi compared with healthy skin. Western blotting of skin scrapings demonstrated that human cathelicidin is processed from its precursor into an active peptide in both healthy and infected plantar skin. CONCLUSIONS: These findings support a hypothesis that antimicrobial peptides such as cathelicidins can play a role in skin defence against dermatophytes and M. furfur.  相似文献   

2.
An angiogenic role for the human peptide antibiotic LL-37/hCAP-18   总被引:28,自引:0,他引:28       下载免费PDF全文
Antimicrobial peptides are effector molecules of the innate immune system and contribute to host defense and regulation of inflammation. The human cathelicidin antimicrobial peptide LL-37/hCAP-18 is expressed in leukocytes and epithelial cells and secreted into wound and airway surface fluid. Here we show that LL-37 induces angiogenesis mediated by formyl peptide receptor-like 1 expressed on endothelial cells. Application of LL-37 resulted in neovascularization in the chorioallantoic membrane assay and in a rabbit model of hind-limb ischemia. The peptide directly activates endothelial cells, resulting in increased proliferation and formation of vessel-like structures in cultivated endothelial cells. Decreased vascularization during wound repair in mice deficient for CRAMP, the murine homologue of LL-37/hCAP-18, shows that cathelicidin-mediated angiogenesis is important for cutaneous wound neovascularization in vivo. Taken together, these findings demonstrate that LL-37/hCAP-18 is a multifunctional antimicrobial peptide with a central role in innate immunity by linking host defense and inflammation with angiogenesis and arteriogenesis.  相似文献   

3.
RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey   总被引:15,自引:0,他引:15  
Rhesus monkey bone marrow expresses a cathelicidin whose C-terminal domain comprises a 37-residue alpha-helical peptide (RL-37) that resembles human LL-37. Like its human counterpart, RL-37 rapidly permeabilized the membranes of Escherichia coli ML-35p and lysed liposomes that simulated bacterial membranes. When tested in media whose NaCl concentrations approximated those of extracellular fluids, RL-37 was considerably more active than LL-37 against staphylococci. Whereas human LL-37 contains five acidic residues and has a net charge of +6, rhesus RL-37 has only two acidic residues and a net charge of +8. Speculating that the multiple acidic residues of human LL-37 reduced its efficacy against staphylococci, we made a peptide (LL-37 pentamide) in which each aspartic acid of LL-37 was replaced by an asparagine and each glutamic acid was replaced by a glutamine. LL-37 pentamide's antistaphylococcal activity was substantially greater than that of LL-37. Thus, although the precursor of LL-37 is induced in human skin keratinocytes by injury or inflammation, its insufficiently cationic antimicrobial domain may contribute to the success of staphylococci in colonizing and infecting human skin.  相似文献   

4.
Immunomodulatory activities of small host defense peptides   总被引:7,自引:0,他引:7       下载免费PDF全文
Recent studies have demonstrated that in addition to their antimicrobial activity, cationic host defense peptides, like the human cathelicidin LL-37, perform many activities relating to innate immunity, including the induction or modulation of chemokine and cytokine production, alteration of gene expression in host cells, and inhibition of proinflammatory responses of host cells to bacterial components such as lipopolysaccharide (LPS) in vitro and in vivo. To investigate if these properties are shared by smaller peptides, two cathelicidin peptides derived from bovine neutrophils, the 13-mer indolicidin and Bac2A, a linear 12-amino-acid derivative of bactenecin, were compared to the 37-amino-acid peptide LL-37. Indolicidin, like LL-37, inhibited LPS-induced tumor necrosis factor alpha (TNF-alpha) secretion, even when added up to an hour after the addition of Escherichia coli O111:B4 LPS to the human macrophage/monocyte-like THP-1 cell line. In contrast, Bac2A demonstrated no significant antiendotoxin activity. At low concentrations, indolicidin and LL-37 acted synergistically to suppress LPS-induced production of TNF-alpha. Indolicidin was analogous to LL-37 in its ability to induce the production of the chemokine interleukin-8 (IL-8) in a human bronchial cell line, 16HBE14o(-), but it was unable to induce production of IL-8 in THP-1 cells. In contrast, Bac2A was unable to induce IL-8 in either cell type. Conversely, Bac2A was chemotactic for THP-1 cells at concentrations between 10 and 100 mug/ml, while indolicidin and LL-37 were not chemotactic at these concentrations for THP-1 cells. This indicates that in addition to the potential for direct microbicidal activity, cationic host defense peptides may have diverse and complementary abilities to modulate the innate immune response.  相似文献   

5.
Antimicrobial peptides have been evaluated in vitro and in vivo as alternatives to conventional antibiotics. Apart from being antimicrobial, the native human cathelicidin-derived peptide LL-37 (amino acids [aa] 104 to 140 of the human cathelicidin antimicrobial peptide) also binds and neutralizes bacterial lipopolysaccharide (LPS) and might therefore have beneficial effects in the treatment of septic shock. However, clinical trials have been hampered by indications of toxic effects of LL-37 on mammalian cells and evidence that its antimicrobial effects are inhibited by serum. For the present study, LL-37 was compared to two less hydrophobic fragments obtained by N-terminal truncation, named 106 (aa 106 to 140) and 110 (aa 110 to 140), and to a previously described more hydrophobic variant, the 18-mer LLKKK, concerning antimicrobial properties, lipopolysaccharide neutralization, toxicity against human erythrocytes and cultured vascular smooth muscle cells, chemotactic activity, and inhibition by serum. LL-37, fragments 106 and 110, and the 18-mer LLKKK inhibited the growth of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans in a radial diffusion assay, inhibited lipopolysaccharide-induced vascular nitric oxide production, and attracted neutrophil granulocytes similarly. While fragments 106 and 110 caused less hemolysis and DNA fragmentation in cultured cells than did LL-37, the 18-mer LLKKK induced severe hemolysis. The antibacterial effect of fragments 106 and 110 was not affected by serum, while the effect of LL-37 was reduced. We concluded that the removal of N-terminal hydrophobic amino acids from LL-37 decreases its cytotoxicity as well as its inhibition by serum without negatively affecting its antimicrobial or LPS-neutralizing action. Such LL-37-derived peptides may thus be beneficial for the treatment of patients with sepsis.  相似文献   

6.
Pseudomonas aeruginosa Liverpool epidemic strain (LES) infections in cystic fibrosis (CF) patients are associated with transmissibility and increased patient morbidity. This study was designed to assess the in vitro activities of cathelicidin LL-37 peptide (LL-37) and select cationic lipids against Pseudomonas aeruginosa LESB58 in CF sputum and in a setting mimicking the CF airway. We found that LL-37 naturally present in airway surface fluid and some nonpeptide cationic lipid molecules such as CSA-13, CSA-90, CSA-131, and D2S have significant, but broadly differing, bactericidal activities against P. aeruginosa LESB58. We observed strong inhibition of LL-37 bactericidal activity in the presence of purified bacteriophage Pf1, which is highly expressed by P. aeruginosa LES, but the activities of the cationic lipids CSA-13 and CSA-131 were not affected by this polyanionic virus. Additionally, CSA-13 and CSA-131 effectively prevent LESB58 biofilm formation, which is stimulated by Pf1 bacteriophage, DNA, or F-actin. CSA-13 and CSA-131 display strong antibacterial activities against different clinical strains of P. aeruginosa, and their activities against P. aeruginosa LESB58 and Xen5 strains were maintained in CF sputum. These data indicate that synthetic cationic lipids (mimics of natural antimicrobial peptides) are suitable for developing an effective treatment against CF lung P. aeruginosa infections, including those caused by LES strains.  相似文献   

7.
Persistent Pseudomonas aeruginosa infections are a major cause of morbidity and mortality in cystic fibrosis (CF) patients and are linked to the formation of a biofilm. The development of new biofilm inhibition strategies is thus a major challenge. LL-37 is the only human antimicrobial peptide derived from cathelicidin. The effects on the P. aeruginosa PAO1 strain of synthetic truncated fragments of this peptide were compared with the effects of the original peptide. Fragments of LL-37 composed of 19 residues (LL-19, LL13-31, and LL7-25) inhibited biofilm formation. The strongest antibiofilm activity was observed with the peptides LL7-37 and LL-31, which decreased the percentage of biomass formation at a very low concentration. Some peptides were also active on the bacteria within an established biofilm. LL7-31, LL-31, and LL7-37 increased the uptake of propidium iodide (PI) by sessile bacteria. The peptide LL7-37 decreased the height of the biofilm and partly disrupted it. The peptides active within the biofilm had an infrared spectrum compatible with an α-helix. LL-37, but not the peptides LL7-31 and LL7-37, showed cellular toxicity by permeabilizing the eukaryotic plasma membrane (uptake of ethidium bromide and release of lactate dehydrogenase [LDH]). None of the tested peptides affected mitochondrial activity in eukaryotic cells. In conclusion, a 25-amino-acid peptide (LL7-31) displayed both strong antimicrobial and antibiofilm activities. The peptide was even active on cells within a preformed biofilm and had reduced toxicity toward eukaryotic cells. Our results also suggest the contribution of secondary structures (α-helix) to the activity of the peptides on biofilms.  相似文献   

8.
Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.  相似文献   

9.
A promising therapeutic strategy for the management of severe Pseudomonas infection in neutropenic patients may result from the coadministration of colony-stimulating factors (CSFs) that help maintain immune competence and antimicrobial peptides, a novel generation of adjunctive therapeutic agents with antimicrobial and anti-inflammatory properties. A promising peptide with these properties is LL-37, the only member of the cathelicidin family of antimicrobial peptides found in humans. BALB/c male mice were rendered neutropenic by intraperitoneal administration of cyclophosphamide on days -4 and -2 preinfection. Septic shock was induced at time 0 by intraperitoneal injection of 2x10 colony-forming units of P. aeruginosa American Type Culture Collection (ATCC) 27853. All animals were randomized to receive intravenously isotonic sodium chloride solution, 1 mg/kg of LL-37, 20 mg/kg of imipenem, 0.1 mg/kg of granulocyte CSF (G-CSF), 1 mg/kg of LL-37+0.1 mg/kg of G-CSF, or 20 mg/kg of imipenem+0.1 mg/kg of G-CSF. Lethality and bacterial growth in blood, peritoneum, spleen, liver, and kidney were evaluated. All regimens were significantly superior to controls at reducing the mouse lethality rate and bacterial burden in organs. Particularly, the combination between LL-37 and G-CSF was the most effective in protecting neutropenic mice from the onset of sepsis and in vitro significantly reduced the apoptosis of neutrophils. Combination therapy between LL-37 and G-CSF is a promising therapeutic strategy for the management of severe Pseudomonas infection complicated by neutropenia.  相似文献   

10.
LL-37 is a human cationic host defense peptide (antimicrobial peptide) belonging to the cathelicidin family of peptides. In this study, LL-37 was shown to kill stimulated and nonstimulated CD4(+)CD25(+)FoxP3(+) T cells (regulatory T cells; Tregs) through apoptosis, while having no cytotoxic effect on CD4(+)CD25(-) T cells at the same LL-37 concentrations. Of interest, Tregs were much more sensitive to LL-37 than many other cells, dying at 10-fold lower concentrations than other cell types tested. LL-37 exposure resulted in DNA fragmentation, chromatin condensation, and apoptotic body formation, all indicative of an apoptotic form of cell death. The importance of granzyme family members in the apoptosis of Tregs after LL-37 treatment was analyzed by using C57Bl/6 lymphocytes obtained from mice that were homozygous for null mutations in the granzyme B gene, and both the granzyme A and B genes. Granzyme A and granzyme B were both shown to play a role in LL-37-induced apoptosis of Tregs. Further analysis showed that apoptosis occurred primarily through caspase-dependent apoptosis at high LL-37 concentrations. However, grA-dependent/caspase-independent cell death was also observed. This suggests that LL-37 induces apoptosis in Tregs through multiple different mechanisms, initiated by the LL-37-induced leakage of granzymes from cytolytic granules. Our results imply that LL-37 administered at the site of a tumor could influence the adaptive antitumor immune response by killing Tregs and thus inhibiting their suppressor activity.  相似文献   

11.
From among 15 human cathelicidin LL-37-derived peptides, FK-13 was identified as the smallest peptide active against human immunodeficiency virus (HIV) and GI-20 had the highest therapeutic index, which was twice that of LL-37. BMAP-18, which is derived from bovine cathelicidin BMAP-27, possessed a therapeutic index similar to that of GI-20. Peptide sequence order, helical structures, and aromatic residues are important in HIV inhibition.  相似文献   

12.
We investigated the efficacy of LL-37, the C-terminal part of the only cathelicidin in humans identified to date (termed human cationic antimicrobial protein), in three experimental rat models of gram-negative sepsis. Adult male Wistar rats (i) were given an intraperitoneal injection of 1 mg Escherichia coli 0111:B4 LPS, (ii) were given 2 x 10(10) CFU of Escherichia coli ATCC 25922, or (iii) had intra-abdominal sepsis induced via cecal ligation and puncture. For each model, all animals were randomized to receive intravenously isotonic sodium chloride solution, 1-mg/kg LL-37, 1-mg/kg polymyxin B, 20-mg/kg imipenem, or 60-mg/kg piperacillin. Lethality; growth of bacteria in blood, peritoneum, spleen, liver, and mesenteric lymph nodes; and endotoxin and tumor necrosis factor alpha (TNF-alpha) concentrations in plasma were evaluated. All compounds reduced lethality compared to levels in controls. Endotoxin and TNF-alpha plasma levels were significantly higher in conventional antibiotic-treated rats than in LL-37- and polymyxin B-treated animals. All drugs tested significantly reduced bacterial growth compared to saline treatment. No statistically significant differences between LL-37 and polymyxin B were noted for antimicrobial and antiendotoxin activities. LL-37 and imipenem proved to be the most effective treatments in reducing all variables measured. Due to its multifunctional properties, LL-37 may become an important future consideration for the treatment of sepsis.  相似文献   

13.
Host defense peptides (HDP) are naturally occurring effector molecules of the innate immune system, which might be an alternative to currently used antibiotics. The objective of this study was to investigate the efficiency of transient cutaneous adenoviral transfection with human cathelicidin hCAP-18/LL-37 in infected burn wounds. Specific transgene expression was analyzed in vitro on mRNA and protein level using real-time PCR and Western-blot. Male Sprague-Dawley rats (n=40) received a second degree scald burn on both flanks (5% BSA), which were inoculated with 10(8) colony-forming units (CFU) Pseudomonas aeruginosa. Two days later, rats were randomized into the following groups: (1) adenoviral delivery of LL-37 (Ad5-hCAP-18, n=10), (2) synthetic host defense peptide LL-37 (1 mg; n=10), (3) carrier control (PBS, n=10) and (4) empty-virus control (Ad5-LacZ, n=10). Agents were injected intradermally and subcutaneously into both flanks. After either 2 or 7 days, skin samples were harvested and homogenized. CFU per gram tissue were determined. The hCAP-18/LL-37 expression was confirmed by real-time PCR and localized using in situ hybridization. In vitro transfection of cutaneous cells delivered a specific response on mRNA production. Western blot analysis revealed protein expression of hCAP-18/LL-37 in conditioned medium and cell pellet. The host defense peptide LL-37 was detectable after cleavage of the inactive pro-form hCAP-18/LL-37 with human elastase. Ad5-hCAP-18 showed a significant bacterial inhibition of approximately 10 000 fold compared to the control group (P<0.001) and 1000-fold (P<0.001) compared to the synthetic HDP LL-37 7 post-transfection. No inhibition was observed for the carrier or empty-virus control. Real-time PCR and in situ hybridization confirmed expression of hCAP-18/LL-37. In conclusion, transient cutaneous adenoviral delivery of the host defense peptide hCAP-18/LL-37 is significantly more effective than administration of synthetic host defense peptides and might be a potential adjunct for wound treatment in the near future.  相似文献   

14.
Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria.  相似文献   

15.
We have previously shown that antimicrobial peptides like defensins have the capacity to mobilize leukocytes in host defense. LL-37 is the cleaved antimicrobial 37-residue, COOH-terminal peptide of hCAP18 (human cationic antimicrobial protein with a molecular size of 18 kD), the only identified member in humans of a family of proteins called cathelicidins. LL-37/hCAP18 is produced by neutrophils and various epithelial cells. Here we report that LL-37 is chemotactic for, and can induce Ca(2+) mobilization in, human monocytes and formyl peptide receptor-like 1 (FPRL1)-transfected human embryonic kidney 293 cells. LL-37-induced Ca(2+) mobilization in monocytes can also be cross-desensitized by an FPRL1-specific agonist. Furthermore, LL-37 is also chemotactic for human neutrophils and T lymphocytes that are known to express FPRL1. Our results suggest that, in addition to its microbicidal activity, LL-37 may contribute to innate and adaptive immunity by recruiting neutrophils, monocytes, and T cells to sites of microbial invasion by interacting with FPRL1.  相似文献   

16.
17.
OBJECTIVES: The antibacterial activity of antimicrobial peptides is influenced by various factors such as salt content, pH and the presence of proteins. In this study, we explored the antibacterial action of the human cathelicidin LL-37 in physiologically relevant conditions, i.e. various human wound fluids, human plasma fractions and serum. METHODS: Radial diffusion assays using Staphylococcus aureus and Escherichia coli were employed for the study of antibacterial effects of LL-37 in the presence of 12 different wound fluids, citrate-, heparin- or EDTA-plasma, or human serum. Glycosaminoglycan content of wound fluids was determined by an Alcian Blue-binding assay. Protein content of wound fluids was measured by the Bradford method. A slot-binding assay was used to study the effects of inhibitors on the interaction between LL-37 and glycosaminoglycans. RESULTS: Five of twelve wound fluids derived from acute wounds showed marked inhibitory effects on the antibacterial action of LL-37. The inhibition was significantly correlated with high glycosaminoglycan content in wound fluid. Analogous to these findings, heparin-plasma strongly inhibited the antibacterial effect of LL-37. The interaction between LL-37 and glycosaminoglycans was abrogated by the cationic polymers DEAE-dextran and chitosan, yielding increased activity of LL-37. CONCLUSIONS: Glycosaminoglycan-rich biological fluids inhibit the antibacterial effects of LL-37. Furthermore, polycations that bind to glycosaminoglycans increase the antibacterial activities of endogenous antimicrobial peptides in glycosaminoglycan-containing biological fluids.  相似文献   

18.
In this paper we report on the susceptibilities of a range of Bacillus species to the human antimicrobial peptide LL-37. B. subtilis showed a low level of resistance to killing by LL-37 (50% growth-inhibitory concentration [GI50], 1 microg/ml). B. cereus and B. thuringiensis showed intermediate levels of resistance to killing (GI50s, 33 microg/ml and 37 microg/ml, respectively). B. anthracis showed the highest level of resistance (GI50s, 40 to 66 microg/ml). The degradation of LL-37 by B. anthracis culture supernatant was blocked by the metalloprotease inhibitors EDTA and 1,10-phenanthroline, and the gene encoding the protease responsible for LL-37 degradation was not plasmid borne. Our findings suggest that alongside the classical plasmid-based virulence determinants, extracellular metalloproteases of B. anthracis may play a role in survival in the host.  相似文献   

19.
Bacterial lipopolysaccharides (LPS) are important triggers of the widespread inflammatory response, which contributes to the development of multiple organ failure during sepsis. The helical 37-amino-acid-long human antimicrobial peptide LL-37 not only possesses a broad-spectrum antimicrobial activity but also binds and neutralizes LPS. However, the use of LL-37 in sepsis treatment is hampered by the fact that it is also cytotoxic. To find a less toxic analog of LL-37, we used in silico analysis to identify amphipathic helical regions of LL-37. A 21-amino-acid fragment (GKE) was synthesized, the biological actions of which were compared to those of two equally long peptides derived from the N and C termini of LL-37 as well as native LL-37. GKE displayed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Candida parapsilosis that was similar to or even stronger than LL-37. GKE, as well as the equally long control peptides, attracted granulocytes in a fashion similar to that of LL-37, while only GKE was as potent as LL-37 in inhibiting LPS-induced vascular nitric oxide production. GKE caused less hemolysis and apoptosis in human cultured smooth muscle cells than LL-37. In summary, we have identified an active domain of LL-37, GKE, which displays antimicrobial activity in vitro and LPS-binding activity similar to those of LL-37 but is less toxic. GKE therefore holds promise as a template for the development of peptide antibiotics for the treatment of sepsis.  相似文献   

20.
Beta-lactam antibiotics sensitize Enterococcus faecium to killing by endogenous antimicrobial peptides (AMPs) of the innate immune system and daptomycin through mechanisms yet to be elucidated. It has been speculated that beta-lactam inactivation of select E. faecium penicillin binding proteins (PBPs) may play a pivotal role in this sensitization process. To characterize the specific PBP inactivation that may be responsible for these phenotypes, we utilized a previously characterized set of E. faecium PBP knockout mutants to determine the effects of such mutations on the activity of daptomycin and the AMP human cathelicidin (LL-37). Enhanced susceptibility to daptomycin was dependent more on a cumulative effect of multiple PBP deletions than on inactivation of any single specific PBP. Selective knockout of PBPZ rendered E. faecium more vulnerable to killing by both recombinant LL-37 and human neutrophils, which produce the antimicrobial peptide in high quantities. Pharmacotherapy targeting multiple PBPs may be used as adjunctive therapy with daptomycin to treat difficult E. faecium infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号