共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown the enantioselectivity of chiral pesticides in environmental fate, aquatic toxicity, endocrine disruption and cytotoxicity. Thus it is of significance to investigate the molecular mechanisms of chiral pesticides enantioselectivity in cytotoxicity. In the present study, we used Hep G2 cells as in vitro model to assay cytotoxicity of enantiomers of isocarbophos (ICP), a widely used chiral organophosphorus pesticide. The results of cell viability assay and cytoflow assay indicated an obvious enantioselective hepatocyte toxicity of ICP: (−)-ICP was about two times more toxic than (+)-ICP in Hep G2 cells. We found that (−)-ICP, but not (+)-ICP, up-regulated Bax protein expression and down-regulated Bcl-2 expression levels, which resulted in an increase in Bax/Bcl-2 ratio with the apoptosis co-ordination. Although (−)-ICP enantioselectively activated both ERK and JNK, only the specific inhibitor for JNK could completely reverse (−)-ICP-induced apoptosis of Hep G2 cells. It suggests that (−)-ICP-induced hepatocyte toxicity was more dominantly through the sustained activation of JNK pathway, but only partially via ERK cascade. Furthermore, (−)-ICP induced ROS production, while (+)-ICP had no effect on ROS generation. The antioxidant MnTBAP attenuated (–)-ICP-induced activation of JNK and ERK, indicating that the outcome from challenge with (−)-ICP enantiomer depends on the oxidative stress-induced activation of a series of signaling cascades that promote hepatocyte apoptosis. In conclusion, (−)-ICP enantioselectively causes the change of Bax/Bcl-2 ratio, triggers the generation of intracellular ROS and sequentially induces sustainable activation of JNK, which in turn, results in a decrease in cell viability and an increase in cell apoptosis. Our observations provide further insight into enantiomers toxicity pathway which is able to differentiate between enantiomer activities at molecular level. 相似文献
2.
Vinci MC Visentin B Cusinato F Nardelli GB Trevisi L Luciani S 《Biochemical pharmacology》2004,67(2):277-284
To study the effect of growth factors on iatrogenic apoptosis, we examined the influence of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) on staurosporine-induced apoptosis in primary cultures of human umbilical vein endothelial cells (HUVEC). Apoptosis was evaluated by a cell viability test, the TUNEL-POD assay and the activation of the pro-apoptotic caspase-3. Staurosporine (10-100nM) caused the activation of caspase-3. This effect was manifest after 2hr of incubation and reached its maximum after 5hr. Severe loss of viability followed within 18hr. VEGF or EGF (10-100ng/mL) added together with staurosporine decreased the activation of caspase-3. The loss of viability was 24hr delayed. The action of growth factors was observed at 1% serum concentration but also at concentration optimal for HUVEC survival (10%, v/v). Furthermore, the inhibition of PI-3 kinase (PI-3K) by wortmannin or LY294002 as well as the inhibition of MEK by PD098059 or U0126 prevented the protective effect of VEGF and EGF. Western blotting analysis showed that after 3hr of incubation with staurosporine the level of the anti-apoptotic protein Mcl-1 decreased and this effect was reverted by VEGF. It is concluded that VEGF and EGF antagonize the pro-apoptotic action of staurosporine by the combined signalling of PI-3K and ERKs pathways. 相似文献
3.
The dual specificity protein phosphatase Cdc25B regulates of the mitotic cell cycle checkpoint and is over expressed in human tumors. Given the importance of growth factors in initiating and sustaining cell proliferation, we examined their effects on Cdc25B protein expression in human cancer cells. Within 1h after epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) treatment, Cdc25B protein levels increased in growth factor responsive A549 and SCC25 cells, but not in non-responsive MDA-MB-231 cells. A functional consequence of elevated Cdc25B was implied by the concomitant decrease in phosphorylated cyclin dependent kinase, a known Cdc25B substrate, after growth factor treatment of A549 and SCC25 cells. The EGF-mediated induction of Cdc25B required a functional EGF receptor (ErbB1), as mouse embryonic fibroblasts lacking ErbB1 did not have increased Cdc25B levels after EGF treatment. Moreover, the EGFR receptor-selective tyrosine kinase inhibitor AG1478 and mitogen activated kinase kinase inhibitor U0126 blocked growth factor-mediated Cdc25B induction. Thus, EGF and TGF-alpha appear to induce cellular Cdc25B through the mitogen-activated protein kinase pathway. 相似文献
4.
Brantley-Finley C Lyle CS Du L Goodwin ME Hall T Szwedo D Kaushal GP Chambers TC 《Biochemical pharmacology》2003,66(3):459-469
Assessment of specific apoptosis and survival pathways implicated in anticancer drug action is important for understanding drug mechanisms and modes of resistance in order to improve the benefits of chemotherapy. In order to better examine the role of mitogen-activated protein kinases, including JNK and ERK, as well as the tumor suppressor p53, in the response of tumor cells to chemotherapy, we compared the effects on these pathways of three structurally and functionally distinct antitumor agents. Drug concentrations equal to 50 times the concentration required to reduce cell proliferation by 50% were used. Vinblastine, doxorubicin, or etoposide (VP-16) induced apoptotic cell death in KB-3 carcinoma cells, with similar kinetic profiles of PARP cleavage, caspase 3 activation, and mitochondrial cytochrome c release. All three drugs strongly activated JNK, but only vinblastine induced c-Jun phosphorylation and AP-1 activation. Inhibition of JNK by SP600125 protected cells from drug-induced cytotoxicity. Vinblastine caused inactivation of ERK whereas ERK was unaffected in cells exposed to doxorubicin or VP-16. Inhibition of ERK signaling by the MEK inhibitor, U0126, potentiated the cytotoxic effects of vinblastine and doxorubicin, but not that of VP-16. Vinblastine induced p53 downregulation, and chemical inhibition of p53 potentiated vinblastine-induced cell death, suggesting a protective effect of p53. In contrast, doxorubicin and VP-16 induced p53, and inhibition of p53 decreased drug-induced cell death, suggesting a pro-apoptotic role for p53. These results highlight the differential roles played by several key signal transduction pathways in the mechanisms of action of key antitumor agents, and suggest ways to specifically potentiate their effects in a context-dependent manner. In addition, the novel finding that JNK activation can occur without c-Jun phosphorylation or AP-1 activation has important implications for our understanding of JNK function. 相似文献
5.
Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells 总被引:4,自引:0,他引:4
Caffeic acid phenethyl ester (CAPE), an active component of propolis, has many biological and pharmacological activities including antioxidant, anti-inflammation, antiviral action, and anticancer effect. Our previous studies showed that CAPE exhibited significant cytotoxicity in oral cancer cells. Herein we further investigated the cytotoxicity potential of CAPE and the mechanism of its action in C6 glioma cells. The data exhibited that C6 glioma cells underwent internucleosomal DNA fragmentation 24 hr after the treatment of CAPE (50 microM). The proportion of C6 glioma cells with hypodiploid nuclei was increased to 24% at 36 hr after the exposure. Further results showed that CAPE induced the release of cytochrome c from mitochondria into cytosol, and the activation of CPP32. CAPE application also enhanced the expression of p53, Bax, and Bak. Finally, the potential signaling components underlying CAPE induction of apoptosis were elucidated. We found that CAPE activated extracellular signal-regulated kinase (ERKs) and p38 mitogen-activated protein kinase (p38 MAPK) in C6 glioma cells. More importantly, p38 kinase formed a complex with p53 after the treatment of CAPE for 0.5 hr. The expression of p53, phospho-serine 15 of p53, and Bax, and inactivate form of CPP32 was suppressed by a pretreatment of a specific p38 MAPK inhibitor, SB203580. The resultant data suggest that p38 MAPK mediated the CAPE-induced p53-dependent apoptosis in C6 glioma cells. 相似文献
6.
Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK 总被引:6,自引:0,他引:6
Lee HJ Wang CJ Kuo HC Chou FP Jean LF Tseng TH 《Toxicology and applied pharmacology》2005,203(2):124-131
Since hepatocellular carcinoma remains a major challenging clinical problem in many parts of the world including Eastern Asia and Southern Africa, it is imperative to develop more effective chemopreventive and chemotherapy agents. Herein, we present an investigation regarding the anticancer potential of luteolin, a natural flavonoid, and the mechanism of its action in human hepatoma HepG2 cells. Using DNA fragmentation assay and nuclear staining assay, it showed that luteolin induced apoptosis of HepG2 cells. Luteolin induced the cytosolic release of cytochrome c and activated CPP32. We found that Bax and Bak translocated to mitochondria apparently, whereas Fas ligand (FasL) was unchanged after a treatment with luteolin for 3 h. In addition, it showed that c-Jun NH2-terminal kinase (JNK) was activated after the treatment of luteolin for 3-12 h. Further investigation showed that a specific JNK inhibitor, SP600125, reduced the activation of CPP 32, the mitochondrial translocation of Bax, as well as the cytosolic release of cytochrome c that induced by luteolin. Finally, the apoptosis induced by luteolin was suppressed by a pretreatment with SP600125 via evaluating annexin V-FITC binding assay. These data suggest that luteolin induced apoptosis via mechanisms involving mitochondria translocation of Bax/Bak and activation of JNK. 相似文献
7.
Combination of cyclooxygenase-2 inhibitors and oxaliplatin increases the growth inhibition and death in human colon cancer cells 总被引:14,自引:0,他引:14
The cyclooxygenase-2 (COX-2) protein is highly expressed in a variety of human cancers and has been reported to promote tumor growth. Non-steroidal anti-inflammatory drugs such as etodolac and celecoxib have been shown to inhibit COX-2 activity and may play a role in the chemoprevention of cancer. Oxaliplatin is a third-generation platinum compound that exhibits a different spectrum of activity compared with cisplatin. Other cisplatin-resistant tumors can still respond to oxaliplatin. However, the anticancer ability of the combination of COX-2 inhibitors and oxaliplatin is still unknown. In this study, we investigated the effects of combination of COX-2 inhibitors and oxaliplatin on the cell growth and survival in human colon cancer cells. Treatments with etodolac (0.3-0.5 mM) or celecoxib (20-80 microM) for 24 h concentration-dependently induced the cytotoxicity in the RKO colon carcinoma cells. Etodolac and celecoxib did not alter the COX-2 protein levels but inhibited its enzyme activity to reduce prostaglandin E2 production. Furthermore, the cell survival was concentration-dependently decreased following oxaliplatin (1-100 microM, 24 h) treatment. Combination of oxaliplatin and etodolac additively increased the death and growth inhibition of RKO cells. Survivin, an inhibitor protein of apoptosis, mediates anti-apoptosis and promotes cell division in cancer cells. Oxaliplatin or COX-2 inhibitors significantly decreased the levels of survivin proteins. Moreover, survivin proteins were markedly diminished following co-treatment with oxaliplatin and etodolac. Together, this is the first report that combination of COX-2 inhibitors and oxaliplatin can increase the reduction of survivin protein expression, growth inhibition, and death in human colon cancer cells. 相似文献
8.
Role of nerve growth factor in the regulation of parotid cell differentiation induced by rat serum 总被引:2,自引:0,他引:2
The present study was undertaken to examine the factors that regulate rat serum (RS)- and nerve growth factor (NGF)-induced differentiation in a rat parotid acinar cell line. RS elicited extracellular signal-regulated kinase (ERK1/ERK2) activation within 5min, while cyclic AMP (cAMP) levels transiently rose after 6hr. RS also elicited a rise in amylase mRNA levels within 30min, which preceded the rise in amylase protein levels. A possible role for NGF was suggested by the findings that parotid cells express both TrkA and p75 receptors. The immunoreactivity of these NGF receptors was reduced during exposure to RS. Following prolonged incubation in RS when ERK activity subsided to near basal levels, NGF restored ERK1/ERK2 activity to the elevated level initially observed in RS. NGF was ineffective when cells were incubated in fetal bovine serum. NGF, when incubated in combination with the cAMP-generating neuropeptides, calcitonin gene-related peptide and vasoactive intestinal peptide, markedly enhanced the cellular amylase content produced by RS. We conclude that parotid cell differentiation arises from an activation of cell surface receptors by humoral factors in combination with NGF and cAMP-generating neuropeptides. 相似文献
9.
Qi F Li A Inagaki Y Xu H Wang D Cui X Zhang L Kokudo N Du G Tang W 《Food and chemical toxicology》2012,50(2):295-302
Cinobufacini (Huachansu), an aqueous extract from the skins of Bufo bufo gargarizans Cantor, is a well-known traditional Chinese medicine widely used in clinical cancer therapy in China. However, the precise mechanisms induced by cinobufacini in human hepatocellular carcinoma (HCC) cells are still not very clear. The aim of present study was to investigate possible apoptotic mechanisms induced by cinobufacini in HCC cell lines HepG(2) and Bel-7402. We found that cinobufacini treatment resulted in a significant decrease in cell proliferation and induced apoptotic cell death with the increase of treatment time. It indicated that cinobufacini-induced apoptosis was associated with mitochondria-mediated pathway including the loss of mitochondrial membrane potential (Δψm), the increase of Bax/Bcl-2 ratio, cytochrome c release, caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) degradation. Additionally, cinobufacini also activated Fas-mediated apoptosis pathway obviously as evident by an increase in Fas expression, and caspase-8 and caspase-10 activation. Moreover, the BH3-only protein Bid was cleaved into a truncated Bid (tBid) after cinobufacini treatment. Taken together, these data suggested cinobufacini could induce apoptosis of HCC cells through mitochondria- and Fas-mediated caspase-dependent pathways with the increase of treatment time, which might provide an experimental evidence for cinobufacini treatment of HCC. 相似文献
10.
Zchong-Zcho Wu 《Biochemical pharmacology》2010,80(2):262-1872
The efficacy of cisplatin during cancer chemotherapy is often impaired by the emergence of cancer cells which become resistant to chemotherapeutic agents. While various mechanisms have been proposed to explain resistance to cisplatin, the genes involved in this process still remain unclear. By using DNA microarrays, we performed a genome-wide analysis of cisplatin-resistant HeLa cells in order to identify genes involved in resistance. We identified nine genes (NAPA, CITED2, CABIN1, ADM, HIST1H1A, EHD1, MARK2, PTPN21, and MVD), which were consistently upregulated in two cisplatin-resistant HeLa cell lines. The upregulated genes, here referred to as cisplatin resistance genes (CPR), were further analyzed for their ability to modify the response of HEK293 cells to cisplatin. Short-hairpin RNA (shRNA) knockdown of CPR genes, individually or in combination, was shown to sensitize HEK293 cells to cisplatin, but not to vincristine or taxol, suggesting that CPR genes may be involved specifically in cisplatin resistance. Among the treatments performed, shRNA knockdown of NAPA was the most efficient treatment able to sensitize cells to cisplatin. Furthermore, shRNA knockdown of a single CPR gene was sufficient to partially reverse acquired cisplatin resistance in HeLa cells. Sensitization to cisplatin following knockdown of CPR genes was also observed in the tumorigenic cell lines Sk-ov-3, H1155, and CG-1. Based on these results, we propose that the CPR genes identified here may represent potential candidates for novel target therapies aimed at preventing resistance to cisplatin during chemotherapy. 相似文献
11.
Jung-Hoon Cho Jong-Gyu Lee Yeong-In Yang Ji-Hyun Kim Ji-Hye Ahn Nam-In BaekKyung-Tae Lee Jung-Hye Choi 《Food and chemical toxicology》2011,49(8):1737-1744
This study is the first to investigate the antiproliferative effect of eupatilin in human endometrial cancer cells. Eupatilin, a naturally occurring flavonoid isolated from Artemisia princeps, has anti-inflammatory, anti-oxidative, and anti-tumor activities. In the present study, we investigated the potential effect of eupatilin on cell growth and its molecular mechanism of action in human endometrial cancer cells. Eupatilin was more potent than cisplatin in inhibiting cell viability in the human endometrial cancer cell lines Hec1A and KLE. Eupatilin showed relatively low cytotoxicity in normal human endometrial cells HES and HESC cells when compared to cisplatin. Eupatilin induced G2/M phase cell cycle arrest in a time- and dose-dependent manner, as indicated by flow cytometry analysis. In addition, treatment of Hec1A cells with eupatilin resulted in a significant increase in the expression of p21WAF1/CIP1 and in the phosphorylation of Cdc25C and Cdc2. Knockdown of p21 using specific siRNAs significantly compromised eupatilin-induced cell growth inhibition. Interestingly, levels of mutant p53 in Hec1A cells decreased markedly upon treatment with eupatilin, and p53 siRNA significantly increased p21 expression. Moreover, eupatilin modulated the phosphorylation of protein kinases ERK1/2, Akt, ATM, and Chk2. These results suggest that eupatilin inhibits the growth of human endometrial cancer cells via G2/M phase cell cycle arrest through the up-regulation of p21 by the inhibition of mutant p53 and the activation of the ATM/Chk2/Cdc25C/Cdc2 checkpoint pathway. 相似文献
12.
Eun-Jeon Park Yu-Zhe Zhao Youn-Chul Kim Dong Hwan Sohn 《Food and chemical toxicology》2007,45(10):1891-1898
Bile acid-induced hepatocyte apoptosis plays an important role in cholestatic liver disease, and the role of apoptosis may be of therapeutic interest in preventing liver disease. The dried root of Salvia miltiorrhiza Bunge (Labiatae) has been used traditionally to treat liver diseases. We investigated the antiapoptotic effects of a standardized fraction of S. miltiorrhiza (PF2401-SF) and its components, tanshinone I, tanshinone IIA, and cryptotanshinone, in primary cultured rat hepatocytes. PF2401-SF was enriched with tanshinone I (11.5%), tanshinone IIA (41.0%), and cryptotanshinone (19.1%). Glycochenodeoxycholic acid (GCDC)-induced apoptosis, as shown by DNA fragmentation, poly(ADP-ribose) polymerase cleavage, and activation of caspases-8, -9, and -3. PF2401-SF and its components, tanshinone I, tanshinone IIA, and cryptotanshinone showed antiapoptotic activity. Treatment with PF2401-SF or with its components significantly inhibited the generation of intracellular reactive oxygen species. Hydrophobic bile acids activate c-Jun-NH(2)-terminal kinase (JNK), p38 mitogen-activated protein kinases (MAPK), and extracellular signal-regulated kinase 1/2, and PF2401-SF inhibited the phosphorylation of JNK and p38. All three components of PF2401-SF inhibited JNK phosphorylation. Addition of inhibitors of MAPK showed that inhibition of JNK decreased apoptosis. These data indicate that PF2401-SF and its components protect hepatocytes from GCDC-induced apoptosis in vitro by inhibiting JNK. 相似文献
13.
Phloroglucinol derivatives, dioxinodehydroeckol (1) and 1-(3′,5′-dihydroxyphenoxy)-7-(2′′,4′′,6-trihydroxyphenoxy)-2,4,9-trihydroxydibenzo-1,4-dioxin (2), were isolated from Ecklonia Cava. Their ability to inhibit the proliferation of human breast cancer cells were evaluated by measuring cell death via induction of apoptosis. Compound 1 exerted a higher anti-proliferative activity in human breast cancer cells compared with compound 2. Furthermore, compound 1 induced a significant proliferative inhibition and apoptosis in a dose-dependent manner on MCF-7 human cancer cells. Treatment with compound 1 also induced the increase in caspase (-3 and -9) activity, DNA repair enzyme poly-(ADP-ribose) polymerase (PARP) cleavage, and pro-apoptotic gene and the decrease in anti-apoptotic gene. In addition, NF-κB family and -dependent activated genes were down-regulated by compound 1. These results indicated that the potential inhibitory effect of compound 1 against growth of MCF-7 human breast cancer cells might be associated with induction of apoptosis through NF-κB family and NF-κB dependent pathway. The present results suggest that compound 1 has a promising potential to be used as a valuable chemopreventive agent. 相似文献
14.
Lee LT Huang YT Hwang JJ Lee AY Ke FC Huang CJ Kandaswami C Lee PP Lee MT 《Biochemical pharmacology》2004,67(11):2103-2114
Focal adhesion kinase (FAK), a member of a growing family of structurally distinct protein tyrosine kinases (PTK), has been linked to specific phosphorylation events, and the elevation of FAK activity in human carcinoma cells correlated with increased invasive potential. Transactivation of the epidermal growth factor receptor (EGFR) tyrosine kinase activity is proposed to stimulate cell migration and the subsequent activation of downstream signaling pathways. Quercetin (Qu) and luteolin (Lu), are potent PTK inhibitors as well as putative chemopreventive agents. The present work, we demonstrate that Qu and Lu at concentration of 20 microM transinactivated EGFR tyrosine kinase activity with marked reduction in phosphotyrosyl level of 170, 125, 65, 60 and 42 kDa cellular proteins, and induced apoptosis in MiaPaCa-2 cells. The 125 kDa protein was further identified as a FAK by immunoprecipitation and immunoblotting analyses. Tumor cells treated with Lu or Qu dampened the phosphorylation of FAK. In addition, our data clearly demonstrated that tumor cells responded to Qu and Lu by parallel reductions in the levels of phosphorylated FAK and the secreted matrix metalloproteinase (MMP) that may lead to the suppression of invasive potential and cell migration in vitro. While the molecular mechanism of FAK regulation of MMP secretion in tumor cells remains unclear, our results suggested that blockade of the EGFR-signaling pathway may contributed to the net effect. As suggested in the current study, targeting EGFR and FAK with the objective of modulating their regulatory pathways could offer prospects for the treatment of EGFR-responsive cancers in the future. 相似文献
15.
Ecological studies in Taiwan, Chile, Argentina, Bangladesh, and Mexico have confirmed significant dose-dependent associations between ingestion of arsenic-contaminated drinking water and the risk of various human malignancies. The FHIT and WWOX genes are active in common fragile sites FRA3B and FRA16D, respectively. Reduced expression of FHIT or WWOX is known to be an early indicator of carcinogen-induced cancers. However, the effect of arsenite on the expressions and molecular mechanisms of these markers is still unclear. The aims of this study were (i) to observe the expression of ATR, WWOX and FHIT proteins in urothelial carcinoma (UC) between endemic and non-endemic areas of blackfoot disease (BFD) by immunohistochemical analyses; (ii) to compare expression of these genes between arsenite-treated SV-HUC-1 human epithelial cells and rat uroepithelial cells; and (iii) to determine the role of DNMT and MEK inhibitors on expressions of WWOX and FHIT in response to arsenite in SV-HUC-1. The experiments revealed that expressions of ATR, WWOX and FHIT in UC significantly differed between BFD areas and non-BFD areas (p = 0.003, 0.009 and 0.021, respectively). In fact, the results for the arsenite-treated groups showed that ATR, WWOX and FHIT are downregulated by arsenite in SV-HUC-1. However, the inhibitors suppressed the effects of arsenite on WWOX and FHIT proteins and mRNA expression. In conclusion, arsenite decreased expressions of ATR, WWOX and FHIT via ERK1/2 activation in SV-HUC-1 cells. These findings confirm that dysregulations of these markers may contribute to arsenite-induced carcinogenesis. 相似文献
16.
Molecular mechanisms of deguelin-induced apoptosis in transformed human bronchial epithelial cells 总被引:3,自引:0,他引:3
Lee HY 《Biochemical pharmacology》2004,68(6):1119-1124
Increasing evidence has demonstrated that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway plays an important role in cell proliferation, apoptosis, angiogenesis, adhesion, invasion, and migration, functions that are critical to cancer cell survival and metastasis. Increased expression of activated Akt has been observed in the early stages of tobacco-induced lung carcinogenesis. Moreover, blocking the PI3K/Akt pathway specifically inhibits the proliferation of non-small cell lung cancer (NSCLC) cells, indicating that the PI3K/Akt pathway is a potential target for chemoprevention and therapy in lung cancer. The aim of this work is to study the lung cancer chemopreventive potential of PI3K/Akt inhibitors using an in vitro lung carcinogenesis model. We found that genetic or pharmacologic approaches targeting the PI3K/Akt pathway inhibited the proliferation of premalignant and malignant human bronchial epithelial (HBE) cells. After screening several natural products to identify a potential lung cancer chemopreventive agent, we have found that deguelin, a rotenoid isolated from Mundulea sericea (Leguminosae), specifically inhibits the growth of transformed HBE and NSCLC cells by inducing cell-cycle arrest in the G2/M phase and apoptosis, with no detectable toxic effects on normal HBE cells, most likely due to the agent's ability to inhibit PI3K/Akt-mediated signaling pathways. The specific sensitivity of premalignant and malignant HBE and NSCLC cells to deguelin suggests that this drug could be clinically useful for chemoprevention in early-stage lung carcinogenesis and for therapy in confirmed lung cancer. 相似文献
17.
18.
19.
Yolanda Sánchez 《Biochemical pharmacology》2009,77(3):384-396
While it has been reported that genistein induces differentiation in multiple tumour cell models, the signalling and regulation of isoflavone-provoked differentiation are poorly known. We here demonstrate that genistein causes G2/M cycle arrest and expression of differentiation markers in human acute myeloid leukaemia cells (HL60, NB4), and cooperates with all-trans retinoic acid (ATRA) in inducing differentiation, while ATRA attenuates the isoflavone-provoked toxicity. Genistein rapidly stimulates Raf-1, MEK1/2 and ERK1/2 phosphorylation/activation, but does not stimulate and instead causes a late decrease in Akt phosphorylation/activation which is attenuated by ATRA. Both differentiation and G2/M arrest are attenuated by MEK/ERK inhibitors (PD98059, U0126) and ERK1-/ERK2-directed small interfering RNAs (siRNAs), and by the PI3K inhibitor LY294002, but not by the p38-MAPK inhibitor SB203580. Genistein stimulates p21waf1/cip1 and cyclin B1 expression, phosphorylation/activation of ATM and Chk2 kinases, and Tyr15-phosphorylation/inactivation of Cdc2 (Cdk1) kinase, and these effects are attenuated by MEK/ERK inhibitors, while LY294002 also attenuates ERK and ATM phosphorylation. Caffeine abrogates the genistein-provoked G2/M blockade and alterations in cell cycle regulatory proteins, and also suppresses differentiation. Finally, genistein causes reactive oxygen species (ROS) over-accumulation, but the antioxidant N-acetyl-l-cysteine fails to prevent ERK activation, G2/M arrest, and differentiation induction. By contrast, N-acetyl-l-cysteine and p38-MAPK inhibitor attenuate the apoptosis-sensitizing (pro-apoptotic) action of genistein when combined with the antileukaemic agent arsenic trioxide. In summary, genistein-induced differentiation in acute myeloid leukaemia cells is a ROS-independent, Raf-1/MEK/ERK-mediated and PI3K-dependent response, which is coupled and co-regulated with G2/M arrest, but uncoupled to the pro-apoptotic action of the drug. 相似文献
20.
Lu CH Lin SC Yang SY Pan MY Lin YW Hsu CY Wei YH Chang JS Chang CC 《Toxicology letters》2012,212(1):83-89
RAD51 is essential for homologous recombination (HR)-mediated repair of DNA double-strand breaks (DSBs) in mammalian cells. RAD51 is an attractive target for anticancer drugs, given high RAD51 levels are frequently observed in many human tumors and associated with increased resistance to DSBs-inducing chemotherapeutics. Prodigiosin is a bacterial tripyrrole pigment with potent anticancer activity and also provokes DSBs. We hereby aimed to elucidate the role of RAD51 in prodigiosin-induced cytotoxicity. Prodigiosin was found to down-regulate RAD51 in multiple human breast carcinoma cell lines irrespective of p53 status. Mechanistically, prodigiosin lowered RAD51 mRNA expression, whereas blockade of proteasome-mediated degradation failed to restore RAD51 levels following prodigiosin treatment. In addition, prodigiosin triggered phosphorylation of JNK and p38 MAPK, while pharmacological inhibition of JNK or p38 MAPK attenuated prodigiosin-mediated inhibition of RAD51 mRNA expression. Lastly, cells with enforced RAD51 expression showed increased resistance to prodigiosin-induced cytotoxicity as well as inhibition of colony formation. Collectively, we conclude that RAD51 down-regulation represents one of the modes of prodigiosin's cytotoxic action, ostensibly by augmenting the genotoxic effect of prodigiosin through suppression of RAD51-mediated HR repair. Our findings further implicate the use of prodigiosin to potentiate the cytotoxicity of DSB-inducing chemotherapeutics through RAD51 down-regulation. 相似文献