首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PET hypoxia imaging can assess tissue viability in acute ischemic stroke (AIS). [18F]FMISO is an established tracer but requires substantial accumulation time, limiting its use in hyperacute AIS. [64Cu]CuATSM requires less accumulation time and has shown promise as a hypoxia tracer. We compared these tracers in a M2-occlusion model (M2CAO) with preserved collateral blood flow. Rats underwent M2CAO and [18F]FMISO (n = 12) or [64Cu]CuATSM (n = 6) examinations. [64Cu]CuATSM animals were also examined with MRI. Pimonidazole was used as a surrogate for [18F]FMISO in an immunofluorescence analysis employed to profile levels of hypoxia in neurons (NeuN) and astrocytes (GFAP). There was increased [18F]FMISO uptake in the M2CAO cortex. No increase in [64Cu]CuATSM activity was found. The pimonidazole intensity of neurons and astrocytes was increased in hypoxic regions. The pimonidazole intensity ratio was higher in neurons than in astrocytes. In the majority of animals, immunofluorescence revealed a loss of astrocytes within the core of regions with increased pimonidazole uptake. We conclude that [18F]FMISO is superior to [64Cu]CuATSM in detecting hypoxia in AIS, consistent with an earlier study. [18F]FMISO may provide efficient diagnostic imaging beyond the hyperacute phase. Results do not provide encouragement for the use of [64Cu]CuATSM in experimental AIS.  相似文献   

2.
There is little experimental in vivo data on how differences in seizure duration in experimental status epilepticus influence metabolic injury. This is of interest given that in humans, status duration is a factor that influences the probability of subsequent development of epilepsy. This question is studied using 7-T magnetic resonance (MR) spectroscopy, T2 relaxometry in the incremented kainate rodent model of temporal lobe epilepsy, using two durations of status epilepticus, 1.5 and 3 hours. Histologic evaluation was performed in a subset of animals. Three days after status, single-voxel (8 mm3) point resolved spectroscopy (PRESS) MR spectroscopic measurements were acquired at 7 T to assess the cerebral metabolites measured as a ratio to total creatine (tCr). The status injury resulted in decreased N-acetylaspartate NAA/tCr, increased myo-inositol/tCr and glutamine/tCr, increased T2, and significant declines in NeuN-stained neuronal counts in both status groups. Regressions were identified in the status groups that provide evidence for neuronal injury and astrocytic reaction after status in both the short and long status duration groups. The long status group displays changes in glutathione/tCr that are not identified in the short status group, this difference possibly representing a maturation of injury and antioxidant response that occurs in synchrony with glutamatergic injury and glial activation.  相似文献   

3.
Glial calcium (Ca2+) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca2+ waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O2 tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca2+ activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.  相似文献   

4.
Recent years have seen a surge in mathematical modeling of the various aspects of neuron–astrocyte interactions, and the field of brain energy metabolism is no exception in that regard. Despite the advent of biophysical models in the field, the long-lasting debate on the role of lactate in brain energy metabolism is still unresolved. Quite the contrary, it has been ported to the world of differential equations. Here, we summarize the present state of this discussion from the modeler''s point of view and bring some crucial points to the attention of the non-mathematically proficient reader.  相似文献   

5.
The rates of glucose oxidized at glycolysis and pentose–phosphate pathway (PPP) in neurons are controversial. Using [3-3H]-, [1-14C]-, and [6-14C]glucose to estimate fluxes through these pathways in resting, intact rat cortical primary neurons, we found that the rate of glucose oxidized through PPP was, apparently, ∼14% of total glucose metabolized. However, inhibition of PPP rate-limiting step, glucose-6-phosphate (G6P) dehydrogenase, increased approximately twofold the glycolytic rate; and, knockdown of phosphoglucose isomerase increased ∼1.8-fold the PPP rate. Thus, in neurons, a considerable fraction of fructose-6-phosphate returning from the PPP contributes to the G6P pool that re-enters PPP, largely underestimating its flux.  相似文献   

6.
For many years, a tenet of cerebral metabolism held that glucose was the obligate energy substrate of the mammalian brain and that neuronal oxidative metabolism represented the majority of this glucose utilization. In 1994, Pellerin and Magistretti formulated the astrocyte–neuron lactate shuttle (ANLS) hypothesis, in which astrocytes, not neurons, metabolized glucose, with subsequent transport of the glycolytically derived lactate to fuel the energy needs of the neuron during neurotransmission. By considering the concentrations and kinetic characteristics of the nutrient transporter proteins, Simpson et al later supported the opposite view, in which lactate flows from neurons to astrocytes, thus leading to the neuron–astrocyte lactate shuttle (NALS). Most recently, a commentary was published in this journal attempting to discredit the NALS. This challenge has stimulated the present response in which we detail the inaccuracies of the commentary and further model several different possibilities. Although our simulations continue to support the predominance of neuronal glucose utilization during activation and neuronal to astrocytic lactate flow, the most important result is that, regardless of the direction of the flow, the overall contribution of lactate to cerebral glucose metabolism is found to be so small as to make this ongoing debate ‘much ado about nothing''.  相似文献   

7.
Most forms of cerebral ischemia are characterized by damage to the entire neurovascular unit, which leads to an increase in the permeability of the blood–brain barrier (BBB). In response to permanent focal cerebral ischemia in mice, we detected an early concomitant increase in the expression of the vascular endothelial growth factor (VEGF), a key inducer of vascular leakage and pathological blood vessel growth, and of angiopoietin-2 (Ang2), which is closely associated with VEGF in vascular remodeling. Thus, the aim of this study was to evaluate the role of Ang2 alone, or in combination with VEGF, in the acute phase of cerebral ischemia. The effect of these angiogenic factors on the ischemic lesion volume was evaluated by magnetic resonance imaging. We observed that timely administration of VEGF exacerbates ischemic damage. In contrast, Ang2 decreases the ischemic volume and this beneficial effect is maintained in the presence of VEGF. This investigation reports, for the first time, a protective role of Ang2 following cerebral ischemia, an action associated with a reduced BBB permeability. We propose that Ang2 represents a pertinent molecular target for the treatment of cerebral ischemia since acute brain damage may be limited by a pharmacological protection of the vascular compartment.  相似文献   

8.
By using microdialysis extraction of (3)H-D-aspartate and concomitant recordings of extracellular direct current (DC) potentials, the effect of middle cerebral artery occlusion (MCAO) was studied continuously over a period of 100 min in the cerebral cortex of rats. From analysis of the DC potentials, rats subjected to MCAO could be divided into three groups, one in which the dialysis probe was located in the ischemic core, one in which the probe was in the penumbra, and one in which the probe was in nonischemic tissue. In general, extraction of (3)H-D-aspartate was positively correlated with the DC potential; i.e., changes in the extraction were concurrent with changes in the DC potential. Comparing the different animal groups by integration of all extraction values obtained during MCAO over time, (3)H-D-aspartate extraction was reduced by 40% in the penumbra, and by 58% in the ischemic core, compared with the sham-operated controls. No changes was found in the nonischemic group. In the penumbra group, extraction of (3)H-D-aspartate was reduced initially upon institution of MCAO but recovered to control-like levels over a period of 15-40 min, despite ongoing MCAO. In addition, extraction was reduced transiently during periinfarct depolarizations. A mean of all extraction values obtained during MCAO in the penumbra group was reduced by 47% compared with a mean of values obtained before institution of MCAO. Induction of death resulted in a reduction of (3)H-D-aspartate extraction by 86%. The present results provide direct evidence that uptake of Glu is reduced both in the ischemic core and in the penumbra of the cerebral cortex following MCAO in rats, possibly contributing to the initiation and spread of infarction. The results further indicate that uptake of Glu in the penumbra recovers to control-like levels, despite ongoing MCAO, providing evidence that Glu uptake by the Glu transporter proteins is reinstituted and/or up-regulated.  相似文献   

9.
Persistent neurochemical abnormalities in frontal brain structures are believed to result from methamphetamine use. We developed a localized 13C magnetic resonance spectroscopy (MRS) assay on a conventional MR scanner, to quantify selectively glial metabolic flux rate in frontal brain of normal subjects and a cohort of recovering abstinent methamphetamine abusers. Steady-state bicarbonate concentrations were similar, between 11 and 15 mmol/L in mixed gray-white matter of frontal brain of normal volunteers and recovering methamphetamine-abusing subjects (P>0.1). However, glial 13C-bicarbonate production rate from [1-13C]acetate, equating with glial tricarboxylic acid (TCA) cycle rate, was significantly reduced in frontal brain of abstinent methamphetamine-addicted women (methamphetamine 0.04 μmol/g per min (N=5) versus controls 0.11 μmol/g per min (N=5), P=0.001). This is equivalent to 36% of the normal glial TCA cycle rate. Severe reduction in glial TCA cycle rate that normally comprises 10% of total cerebral metabolic rate may impact operation of the neuronal glial glutamate cycle and result in accumulation of frontal brain glutamate, as observed in these recovering methamphetamine abusers. Although these are the first studies to define directly an abnormality in glial metabolism in human methamphetamine abuse, sequential studies using analogous 13C MRS methods may determine ‘cause and effect'' between glial failure and neuronal injury.  相似文献   

10.
The extent and severity of neuronal damage is different in ischemia with reperfusion compared to ischemia and no reperfusion. To investigate the role of glutamate in cerebral ischemia–reperfusion injury, in vivo microdialysis was performed to examine the dynamic profile of glutamate in the hippocampus in a transient (30 min) or permanent middle cerebral artery occlusion (MCAo) in Wistar rats. The extracellular concentration of glutamate in the cornu ammonis (CA)1 sector of the ipsilateral hippocampus showed a significant but transient elevation of glutamate for both groups immediately following ischemic insult. The initial high peak in glutamate levels in the transient MCAo group was followed by two secondary elevations in glutamate at 50 min and 90 min after initialization of reperfusion. The histopathological outcome was also different in the two groups. The observation that glutamate releases occurred in the early reperfusion phase provided an evidence of additional excitotoxicity of glutamate and thereby a therapeutic base for extended use of glutamate antagonist in the ischemia–reperfusion injury.  相似文献   

11.
In the present study the [3H]GABA release in the rat cerebral cortex primary cultures, kept at rest or electrically stimulated, was measured. In addition, the development of excitotoxic cell damage caused by pretreating the cells for 10 min with increasing glutamate concentrations (10–300 μM) was examined 2 and 24 h after the insult. Cellular injury was quantitatively assessed by measuring the electrically-evoked [3H]GABA release, the [3H]GABA uptake, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining. Trains of electrical pulses at different frequencies (2, 5, 10, and 20 Hz) applied to the cultures elicited a [3H]GABA release which was frequency related, Ca++-dependent, and tetrodotoxin sensitive. Either 2 or 24 h after glutamate exposure, the electrically evoked [3H]GABA release was reduced by glutamate in a concentration dependent manner, while [3H]GABA uptake and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining appeared less sensitive. The N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and metabotropic receptor antagonists were tested on 100 μM glutamate-exposed cells and a prominent N-methyl-D-aspartate receptor-mediated component was observed. The present findings indicate that the electrically-evoked [3H]GABA release from cerebral cortical cells could represent a useful approach not only to study the spike-triggered neurosecretion but also to the neuronal damage caused by glutamate, as well as to test potential neuroprotective compounds. Synapse 30:247–254, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
《Neurological research》2013,35(2):198-204
Abstract

Objectives: This study was carried out to observe the effect of electroacupuncture (EA) on neurological deficits, proliferation and differentiation of nerve stem cells (NSCs) in adult rats with middle cerebral artery occlusion (MCAO) and to study its possible role in the treatment of cerebral ischemic injury.

Methods: A rat model of MCAO was established and interfered with EA. On days 4, 7, 14 and 21 after ischemic injury, neurological deficits were scored. On days 4, 7, 14 and 21 after injury, effect of EA interference on the proliferation and differentiation of rat NSCs was observed with BrdU/NeuN and BrdU/GFAP immunofluorescence double labeling.

Results: A significant difference was found in the scores of rat neurological deficits between the EA and model groups 7, 14 and 21 days after cerebral ischemic injury (p<0·05). BrdU positive cells were found in the subventricular zone (SVZ) 4, 7, 14 and 21 days after ischemic injury. The number of positive BrdU cells in the SVZ reached its peak 7 days after injury and was greater in the EA group than in the model group 7 and 14 days after injury (p<0·05). The number of BrdU/GFAP doubly labeled positive cells in the SVZ was greater in the EA group than in the model group 7 and 14 days after ischemic injury (p = 0·012 and p = 0·025, respectively). There was no difference in the number of BrdU/NeuN doubly labeled positive cells 4, 7 and 14 days in the striatum, but a significant difference 21 days (p = 0·033) after ischemic injury between the two groups.

Discussion: Cerebral ischemic injury induces proliferation of NSCs, some of which will differentiate into both astroglia and neurons. EA may promote cells proliferation, stimulate the proliferating cells to differentiate into astroglia and mature into neurons, which may be one of the important reasons why EA can alleviate neurological deficits.  相似文献   

13.
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized 1H-[13C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron–astrocyte) metabolic model to the 13C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. -β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (∼70:30), and followed a pattern closely similar to the metabolism of [1-13C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-13C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.  相似文献   

14.
In a recent study of focal cerebral ischemia in rats, pre-ischemic administration of the synthetic allosteric hemoglobin modifier RSR13 (2-[4-[[3,5-dimethylanilino) carbonyl] methyl] phenoxy]-2-methylproprionic acid) reduced cerebral infarct size when combined with the NMDA receptor antagonist dizocilpine (MK-801) but not when given alone. We hypothesized that post-ischemic RSR13 administration would enhance neuroprotection afforded by NMDA receptor antagonism in a rat model of transient middle cerebral artery occlusion (MCAO). Fasted normothermic Wistar rats underwent 75 min of temporary MCAO. At onset of reperfusion, rats randomly received: (1) 0.9% NaCl (vehicle) i.v. alone (n=16); (2) 0.9% NaCl+dizocilpine (0.25 mg/kg) i.v. (n=16); or (3) RSR13 (150 mg/kg)+dizocilpine (0.25 mg/kg) i.v. (n=17). Seven days later, neurologic deficit and cerebral infarct size were determined. Dizocilpine alone compared to vehicle reduced mean+/-S.D. subcortical (52+/-24 mm(3) vs. 122+/-64 mm(3), P=0.003) and cortical (35+/-35 mm(3) vs. 125+/-72 mm(3), P=0.00074) infarct volumes. When compared to dizocilpine alone, the combination of RSR13+dizocilpine further reduced subcortical (37+/-14 mm(3) vs. 52+/-24 mm(3), P=0. 034) and cortical (8+/-19 mm(3) vs. 35+/-35 mm(3), P=0.018) infarct size. RSR13+dizocilpine improved neurologic scores vs. either dizocilpine alone (P=0.0014) or vehicle (P=10(-7)). The combination of NMDA receptor antagonism and a RSR13 mediated rightward shift of the oxy-hemoglobin dissociation curve improved outcome from MCAO. Because this occurred after reperfusion, our results suggest that the post-ischemic brain continues to suffer from hypoperfusion defects, which are amenable to therapy by enhanced O(2) delivery. The results also support the concept that neuroprotective strategies, which combine drugs with different mechanisms of action, may yield cumulative benefits.  相似文献   

15.
Stroke is the third leading cause of death in the USA. Antithrombotic therapy targeting platelet activation is one of the treatments for ischemic stroke. Here we investigate the role of one of the thrombin receptors, protease-activated receptor 4 (PAR4), in a mouse transient middle cerebral artery occlusion (MCAO) model. After a 60 min MCAO and 23 h reperfusion, leukocyte and platelet rolling and adhesion on cerebral venules, blood–brain barrier (BBB) permeability, and cerebral edema were compared in PAR4-deficient mice and wild-type mice. Cerebral infarction volume and neuronal death were also measured. PAR4−/− mice had more than an 80% reduction of infarct volume and significantly improved neurologic and motor function compared with wild-type mice after MCAO. Furthermore, deficiency of PAR4 significantly inhibits the rolling and adhesion of both platelets and leukocytes after MCAO. BBB disruption and cerebral edema were also attenuated in PAR4−/− mice compared with wild-type animals. The results of this investigation indicate that deficiency of PAR4 protects mice from cerebral ischemia/reperfusion (I/R) injury, partially through inhibition of platelet activation and attenuation of microvascular inflammation.  相似文献   

16.

Introduction

Microparticles (MP), presumably of platelet origin, are the most abundant microparticles in blood. To which extent such MP may also directly originate from megakaryocytes, however, is unknown. During hematopoietic stem cell transplantation, patients undergo total body irradiation which leads to an irreversible destruction of hematopoiesis.

Material and Methods

We studied the levels of “platelet-derived” MP (PMP) in 13 patients before and after total body irradiation with 12 Gy (4 Gy for 3 days, dose rate 4.5 cGy/min). PMP were isolated and double-stained with annexin V and anti-CD61. In 6 patients, we additionally analyzed MP exposing P-selectin or CD63.

Results

PMP rapidly declined upon total body irradiation, which was 2.4-fold faster than platelet disappearance. In contrast, the kinetics of MP exposing P-selectin or CD63 was comparable to platelets.

Conclusions

Since CD61-positive MP disappear faster than platelets or MP exposing P-selectin or CD63, our data indicate that MP exposing P-selectin or CD63 are likely to originate from platelets, whereas at least a major fraction of CD61-exposing MP is likely to originate from megakaryocytes in vivo.  相似文献   

17.
We employed a canine model to test the effects of global cerebral ischemia and reperfusion on binding to α-amino-3-hydroxy-5-methyl-4-isoxazole proprionate (AMPA), kainate (KA), and metabotropic glutamate receptors. Ischemia was induced by 10 min of cardiac arrest, followed by restoration of spontaneous circulation for periods of 0, 0.5, 2, 4, and 24 h. Frozen sections were prepared from parietal and temporal cortex, hippocampus, and striatum, and in vitro autoradiography was performed with one of three radioligands: [3H]AMPA, [3H]KA, or [3H]glutamate (using conditions allowing specific labeling of the metabotropic binding site). In striatum, metabotropic binding was unchanged, whereas AMPA and KA binding decreased by 20–30% at 30 min postischemia, remaining depressed through 24h. In cortex, AMPA and metabotropic binding were decreased at several timepoints after ischemia and recirculation, particularly in parietal cortex, whereas KA binding was unaffected in this tissue. Binding to hippocampal regions was largely unchanged, except for a decrease in KA binding at 2 and 4 h postischemia. These findings contrast with results from parallel studies showing increased striatal binding to NMDA receptors following ischemia. Decreased binding to non-NMDA glutamate receptors in striatum and parietal cortex may serve to protect against damage mediated through these receptors.  相似文献   

18.
Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia.  相似文献   

19.
20.
Using microdialysis in CA1 of the rat hippocampus, we studied the effect of transient cerebral ischemia on in vivo uptake and on extracellular levels of glutamate during, and at different time points after ischemia. (3)H-D-aspartate (test substance), and (14)C-mannitol (reference substance), were added to the dialysis perfusate, and the cellular extraction of (3)H-D-aspartate was calculated from scintillation analysis of fractionated dialysate samples. The extraction of (3)H-D-aspartate was studied both in a tracer like condition with a perfusate concentration of 0.2 microM, and in a condition of high saturation level, with 1.0 mM D-aspartate added to the perfusate. In between radioisotope perfusions, dialysate was sampled for analysis of amino acid content by HPLC. During ischemia, extraction of (3)H-D-aspartate (0.2 microM) declined to a maximum reduction of 68%. In the hours after ischemia, extraction of (3)H-D-aspartate (0.2 microM) was decreased by 32%. In the days after ischemia, there was a progressive decline in extraction of (3)H-D-aspartate (1.0 mM), reaching a reduction of 89% on Day 4 after ischemia. Extracellular glutamate remained at control levels at all time points after ischemia. The present study is the first to investigate uptake of glutamate in the intact rat brain in relation to cerebral ischemia. Evidence is provided that uptake of Glu is restrained during ischemia, and that in the hours after ischemia, the extracellular turnover of glutamate is decreased. In the course of the days after ischemia, degeneration of CA1 pyramidal cells occurs concomitantly with a progressive decline in glutamate transport ability, possibly of pathogenetic importance to CA1 pyramidal cell loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号