首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efferent projections from nucleus caudalis of the spinal trigeminal complex in cats were studied with retrograde and anterograde axonal transport techniques combined with localization of recording sites in the thalamus and marginal zone of nucleus caudalis to innocuous skin cooling. Results showed brainstem projections from nucleus caudalis to rostral levels of the spinal trigeminal complex, to the ventral division of the principal trigeminal nucleus, the parabrachial nucleus, cranial motor nuclei 7 and 12, solitary complex, contralateral dorsal inferior olivary nucleus, portions of the lateral reticular formation, upper cervical spinal dorsal horn and, lateral cervical nucleus. Projections to the thalamus included: a dorsomedial region of VPM (bilaterally) and to the main part of VPM and PO contralaterally. Neuronal activity was recorded in the dorsomedial region of VPM to cooling the ipsilateral tongue. HRP injections in this thalamic region retrogradely labeled marginal neurons in nucleus caudalis. These results show that marginal neurons of nucleus caudalis provide a trigeminal equivalent of spinothalamic projections to the ventroposterior nucleus in cats.  相似文献   

2.
To determine the effects of nerve injury on Fos expression, temporal and spatial distributions of Fos-positive neurons in the trigeminal nucleus caudalis were examined after tissue injury for isolation of the infraorbital nerve as controls and transection of this nerve as well as noxious chemical stimulation by formalin injection in adult rats. Fos immunoreactivity was markedly elevated in laminae I and II of the only ipsilateral nucleus caudalis 2 h after these surgical procedures and noxious chemical stimulation. The distributions of Fos-positive neurons were restricted rostro-caudally following formalin injection and tissue injury compared to transection of the infraorbital nerve. One day after tissue injury and nerve transection, however, Fos-positive neurons were distributed bilaterally in laminae III and IV extending rostro-caudally and medio-laterally in this nucleus, and this persisted over the 2-week study period. The number of Fos-positive neurons in the side ipsilateral to nerve transection was markedly less than that in the contralateral side whereas positive neurons in the tissue injured rats were distributed symmetrically along the rostro-caudal axis. There was no difference in the contralateral sides between nerve transection and tissue injury groups. The rostro-caudal level showing reduction in Fos expression corresponded roughly to the sites of central termination of the injured nerve in this nucleus, suggesting a role for the primary afferents in the reduction of Fos expression in laminae III and IV neurons of the ipsilateral nucleus caudalis.  相似文献   

3.
The distribution of neurons in the rostral nucleus of the solitary tract (rNST) that respond to gustatory input from the anterior tongue was visualized by Fos protein immunohistochemistry following electrical stimulation of the chorda tympani (CT) nerve in rats. Maps of Fos-immunoreactive (Fos-ir) neurons were compared with the distribution of CT afferent terminal fields labeled by transganglionic transport of rhodamine-dextran in a separate group of animals. The primary concentration of Fos-ir neurons localized in register with the major terminal fields of CT afferent fibers, in the central third of the rostral 1.0 mm of the NST ipsilateral to the stimulated nerve. A similar correspondence in location and degree of labeling of Fos-ir neurons and afferent terminals was observed in the ipsilateral dorsal spinal trigeminal complex (Sp5) pars caudalis, near the obex, and the Sp5 pars oralis near the rostral pole of the rNST. Thus, the magnitude of Fos upregulation in brainstem targets of the CT nerve having chemosensory or nociceptive function, was proportional to the relative density of the CT afferent input. This correspondence, and the absence of labeling in neurons known to be one additional synapse away from the afferent input within gustatory or oral reflex pathways, suggests that the cell map obtained represents mainly neurons that are directly activated via primary afferent synapses from CT fibers. The availability of a method to histochemically identify a population of putative second-order taste neurons will facilitate analysis of the cellular/molecular properties of these neurons and of synaptic circuitry in the rNST.  相似文献   

4.
Methods involving the anterograde and retrograde transport of wheat-germ agglutinin conjugated horseradish peroxidase and the retrograde transport of Fluoro-Gold were used in rats to examine the distribution within the spinal trigeminal nucleus of trigeminal neurons projecting to the nucleus submedius (Sm) of the thalamus, as well as the distribution of axon terminals within the Sm. Following injections into the trigeminal nucleus, axon terminals were seen in the dorsal part of the anterior Sm; the terminals occurred bilaterally but had an obvious contralateral dominance. To help determine the precise location of the Sm-petal neurons, the border between trigeminal subnuclei interpolaris and caudalis was examined by the use of immunohistochemical procedures for calcitonin gene-related peptide (CGRP). The Sm-petal neurons that were labeled retrogradely occurred only at the caudal interpolaris and rostral caudalis levels; the number of labeled neurons on the contralateral side was approximately six times that on the ipsilateral side. Most of these neurons were located in the ventral part of the caudal interpolaris and rostral caudalis and spinal trigeminal tract; in caudalis, the neurons were almost exclusively localized to its superficial layers. There were approximately three times more labeled neurons in interpolaris than in caudalis. In the experiments combined with immunohistochemistry for CGRP, many neurons (34%) were seen in proximity to CGRP-like immunopositive fibers. These results suggest that the Sm of the rat receives its orofacial afferent inputs from brainstem neurons that are localized to the caudal interpolaris and rostral caudalis. In view of previous studies that have implicated these three structures in somatosensory function, and in particular nociception, our data point to a role for this direct projection from interpolaris and caudalis to Sm in the central processing of pain.  相似文献   

5.
Transganglionic transport of horseradish peroxidase (HRP) or horseradish peroxidase-wheat germ agglutinin conjugate (HRP-WGA) was used to map in detail the central projections of trigeminal primary afferent neurons that innervate the dental pulp organ of the rat. In each of ten animals, 0.5-2.0 microliters of enzyme solution was injected into the pulp chamber of the first maxillary molar tooth. Postmortem examination of the decalcified teeth in all cases showed that the HRP/HRP-WGA remained confined to the pulp chamber and pulp roots, with no spread of enzyme into periapical tissues. HRP-labeled tooth pulp afferent fibers projected to all four rostrocaudal subdivisions of the ipsilateral trigeminal brainstem nuclear complex (TBNC) and to the upper cervical spinal cord. The labeled terminal fields formed a column that stretched relatively uninterrupted from just caudal to the rostromedial tip of the trigeminal principal sensory nucleus to at least the C2 segment of the spinal cord. The density of the afferent projection varied markedly from one rostrocaudal level of the TBNC to the next but was heaviest in an area encompassing the caudal one-half of the principal sensory nucleus and the rostral two-thirds of pars oralis. Fibers projected only lightly to pars caudalis, where they terminated preferentially in laminae I, IIa, and the junctional zone between laminae IV and V. HRP-labeled terminals in C1 and C2 were located almost exclusively in laminae I. In the dorsoventral axis, the terminal fields in the TBNC were located in a surprisingly dorsal part of the complex, well within what has been shown by others to be largely an area of termination for mandibular division fibers. Most fibers ended in medial parts of the TBNC, with the exception of two modestly labeled terminal fields located in the lateral aspects of rostral pars oralis and rostral pars caudalis. No labeled fibers terminated in the contralateral TBNC or contralateral cervical spinal cord.  相似文献   

6.
Antibodies against the c-fos protein product Fos were used to map the first- and higher-order neurons in the rabbit medulla oblongata after electrical stimulation of the vagus nerve. Fos immunoreactivity appeared bilaterally except in the nucleus tractus solitarii. Seven areas were labeled: the nucleus tractus solitarii, the area postrema, the subnucleus lateralis caudalis magnocellularis medullar oblongata, the lateral reticular nucleus, the ambiguus nucleus, the dorsal part of the spinal trigeminal nucleus, the nucleus reticularis lateralis, the lateral border of the external cuneatus nucleus, the medial part of the inferior olivary nucleus (subnucleus β). The last two areas have never been visualized with conventional tracing techniques and may represent higher-order neurons connected to visceral vagal pathways. No labeling was observed in the nodose ganglion.  相似文献   

7.
C-fos containing neurons were investigated in the trigeminal sensory nuclear complex and in the dorsal horns of the cervical spinal cord (C1-C2) of the rat after a chemical noxious stimulus was applied to the lower lip mucosa. Numerous labelled neuronal nuclei were detected in the dorsolateral area of the caudal half of the trigeminal nucleus interpolaris, and in Rexed's laminae I-IIo of the dorsomedial area of the trigeminal nucleus caudalis and rostral C1. A few c-fos-labelled neurons were observed in laminae IIi and V. No Fos expression was detected in the trigeminal oral and principal nuclei.  相似文献   

8.
To understand the functional significance of orofacial injury-induced neuronal activation, this study examined the rostral projection of caudal brainstem neurons that were activated by masseteric inflammation. Rats were injected with a retrograde tracer, Fluorogold, into the nucleus submedius of the thalamus (Sm), parabrachial nucleus (PB), lateral hypothalamus (LH), or medial ventroposterior thalamic nucleus (VPM) 7 days before injection of an inflammatory agent, complete Freund's adjuvant (CFA), into the masseter muscle. Rats were perfused at 2 hours after inflammation, and brainstem tissues were processed for Fos-Fluorogold double immunocytochemistry. Although there was no difference in Fos expression among the four groups (n=4 per site), the rostral projection of Fos-positive neurons showed dramatic differences. In the ventral portion of the trigeminal subnuclei interpolaris/caudalis (Vi/Vc) transition zone, the percentage of Fos-positive neurons projecting to the Sm (39.7%) was significantly higher than that projecting to the LH (5.4%) or VPM (5.6%; P<.001). The anesthesia alone also induced Fos expression in ventral Vi/Vc neurons, but these neurons did not project to Sm. In the caudal laminated Vc and dorsal Vi/Vc, the PB was the major site of rostral projection of Fos-positive neurons. In the caudal ventrolateral medulla and nucleus tractus solitarius, Fos-positive neurons projected to the Sm, PB, and LH. Most VPM-projecting neurons examined did not show Fos-like immunoreactivity after masseter inflammation. These findings emphasize the importance of the trigeminal Vi/Vc transition zone in response to orofacial deep tissue injury. Furthermore, the results differentiate the ventral and dorsal portions of the Vi/Vc transition zone, in that the Sm received projection mainly from activated neurons in the ventral Vi/Vc. The activation of Vi/Vc neurons and associated ascending pathways may facilitate somatoautonomic and somatovisceral integration and descending pain modulation after orofacial deep tissue injury.  相似文献   

9.
Cholecystokinin (CCK) stimulates gastrointestinal vagal afferent neurones that signal visceral sensations. We wished to determine whether neurones of the nucleus of the solitary tract (NTS) or ventrolateral medulla (VLM) convey visceral afferent information to the central nucleus of the amygdala (CeA) or periaqueductal grey region (PAG), structures that play a key role in adaptive autonomic responses triggered by stress or fear. Male Sprague-Dawley rats received a unilateral microinjection of the tracer cholera toxin subunit B (CTB, 1%) into the CeA or PAG followed, 7 days later, by an injection of CCK (100 microg/kg, i.p.) or saline. Brains were processed for detection of Fos protein (Fos-IR) and CTB. CCK induced increased expression of Fos-IR in the NTS and the VLM, relative to control. When CTB was injected into the CeA, CTB-immunoreactive (CTB-IR) neurones were more numerous in the rostral NTS ipsilateral to the injection site, whereas they were homogeneously distributed throughout the VLM. Double-labelled neurones (Fos-IR+CTB-IR) were most numerous in the ipsilateral NTS and caudal VLM. The NTS contained the higher percentage of CTB-IR neurones activated by CCK. When CTB was injected into the PAG, CTB-IR neurones were more numerous in the ipsilateral NTS whereas they were distributed relatively evenly bilaterally in the rostral VLM. Double-labelled neurones were not differentially distributed along the rostrocaudal axis of the NTS but were more numerous in this structure when compared with the VLM. NTS and VLM neurones may convey visceral afferent information to the CeA and the PAG.  相似文献   

10.
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity and the central terminal fields of branches of the mandibular and chorda tympani nerves were visualized histochemically at the same time using transganglionic transport of wheat germ agglutinin conjugated with horseradish peroxidase. The blue NADPH-d-positive neurons comprised a sparse network in the dorsomedial spinal trigeminal subnucleus oralis and a dense one in the rostral lateral division of the nucleus of the solitary tract. In the subnucleus caudalis, most labeled neurons were in the superficial zone, and smaller numbers were in the magnocellular zone. The NADPH-d-positive neurons in the subnucleus oralis and the nucleus of the solitary tract overlapped mostly with the transganglionically labeled terminal field from the lingual nerve, partly with the terminal field from the inferior alveolar and chorda tympani nerves, and rarely with the terminal field from the mental nerve. The NADPH-d-positive neurons in the dorsomedial paratrigeminal nucleus and subnucleus caudalis overlapped mostly with the terminal field from the lingual nerve, partly with the terminal field from the inferior alveolar and mental nerves and never with the terminal field from the chorda tympani. A statistically significant reduction in the number of NADPH-d-positive neurons was seen bilaterally in subnucleus oralis and the nucleus of the solitary tract when the lingual nerve was transected. Inflammatory insults to the lingual nerve or tooth pulps significantly increased the number of NADPH-d-positive neurons in subnucleus oralis, the nucleus of the solitary tract, and subnucleus caudalis. These results show that the NO/cyclic GMP system in the trigeminal and solitary nuclei is differentially regulated trans-synaptically by trigeminal afferents depending on the nucleus and sensory modality.  相似文献   

11.
Li L  Ding J  Ren Z  Han Q  Hu G  Xiao M 《Brain research》2006,1114(1):41-52
To investigate whether neural nitric oxide synthase (nNOS) in the parabrachial nucleus (PB) is involved in processing visceral noxious stimulation, we mapped the distribution of histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), a marker for nNOS, and immunohistochemical staining for Fos, a neuronal activity marker, in the subnuclei of the PB following 2% formalin injection into the stomach of rats. NADPH-d and noxious-stimuli induced Fos staining were also examined in tissue containing PB cells labeled by the retrograde transport of fluogold (FG) injected into the central nucleus of the amygdala (CeA). We found that the number of Fos immunoreactive (Fos-IR) neurons was significantly increased in the dorsal lateral (dl), external lateral (el) and K?lliker-Fuse (KF) subnuclei of the PB. We observed that intensely labeled (type 1) NADPH-d positive neurons were mainly located in the rostral part of the PB; they extended long processes adjacent Fos-IR neurons, but no Fos/type 1 NADPH-d double-labeled neurons were seen. In contrast, lightly labeled (type 2) NADPH-d positive neurons were principally localized in the dl of the PB, in which a few Fos/type 2 NADPH-d double-labeled neurons were detected. Additionally, a large number of FG/Fos double-labeled neurons were observed to be surrounded closely by the intensive NADPH-d staining in the el of the PB. These results suggest that neurons in the el of the PB that project to the CeA are activated by visceral noxious stimulation and could be indirectly influenced by nitric oxide in the PB.  相似文献   

12.
The sensory modalities of taste and touch, for the anterior tongue, are relegated to separate cranial nerves. The lingual branch of the trigeminal nerve mediates touch: the chorda tympani branch of the facial nerve mediates taste. The chorda tympani also contains efferent axons which originate in the superior salivatory nucleus. The central projections of these two nerves have been visualized in the hamster by anterograde labelling with horseradish peroxidase (HRP). Afferent fibers of the chorda tympani distribute to all rostral-caudal levels of the solitary nucleus. They synapse heavily in the dorsal half of the nucleus at its rostral extreme; synaptic endings are sparser and located laterally in caudal regions. These taste afferents travel caudally in the solitary tract and reach different levels by a series of collateral branches which extend medially in the the solitary nucleus, where they exhibit preterminal and terminal swellings. Taste afferent axons range in diameter from 0.2 micrometer to 1.5 micrometers. The thickest axons project exclusively to the rostral and intermediate subdivisions of the solitary nucleus; the find ones may distribute predominantly to the caudal subdivision. Afferent fibers of the lingual nerve terminate heavily in the dorsal one-third of the spinal nucleus of the trigeminal nerve and also as a dense patch in the lateral solitary nucleus at the midpoint between its rostral and caudal poles. This latter projection overlaps that of the chorda tympani. Thus the two sensory nerves which subserve taste and touch from coincident peripheral fields on the tongue converge centrally on the intermediate subdivision of the solitary nucleus. Efferent neurons of the superior salivatory nucleus were labelled retrogradely following application of HRP to the chorda tympani. These cells are located ipsilaterally in the medullary reticular formation ventral to the rostral pole of the solitary nucleus; their dendrites are oriented dorsoventrally. The efferent axons course dorsally, form a genu lateral to the facial somatomotor genu, and course ventrolaterally through the spinal nucleus of the trigeminal nerve to exit the brain ventral to the entering facial afferents.  相似文献   

13.
Transganglionic transport of horseradish peroxidase (HRP) was used to investigate contralateral projections of trigeminal mandibular fibers in the guinea pig. After application of HRP to the buccal, lingual, auriculotemporal, mylohyoid, mental and inferior alveolar nerves, crossing fibers and contralateral endings were found in the caudal region of the nucleus of the solitary tract (most of these belonging to the buccal and lingual nerves), the dorsomedial region of the subnucleus caudalis of the trigeminal sensory nuclear complex (TSNC), and the dorsal horns of the first 5 cervical spinal cord segments (C1-C5). The greatest numbers of crossing fibers in the medullary and cervical dorsal horn segments belonged to the mental and mylohyoid nerves, though these nerves did not project contralaterally to C4-C5. Contralateral buccal and lingual endings were scattered sparsely from the subnucleus caudalis to C5, and only very few contralateral auriculotemporal terminals were observed. Though laminae I-V of the dorsomedial region of the medullary and cervical dorsal horns all exhibited contralateral endings of the mental and mylohyoid nerves, most such endings were found in laminae IIi-III, followed by lamina IV, which suggests their involvement in the reception of mechanical stimuli and in the sensory motor reflexes of the orofacial region. The contralateral buccal and lingual terminals were distributed somatotopically in the first 5 cervical cord segments, with the lingual endings rostral to the buccal terminals within each segment. In C4 and C5 lingual endings appeared exclusively in laminae I and IIo, suggesting that like the ipsilateral lingual projections at this level, which also terminate in these laminae, they may be involved in pain and temperature sensation.  相似文献   

14.
We studied afferents to the parabrachial nucleus (PB) from the spinal cord and the spinal trigeminal nucleus pars caudalis (SNVc) in the rat by using the anterograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Injections of WGA-HRP into medial PB retrogradely labeled neurons in the promontorium and in lamina I of the dorsal rostral SNVc, while injections into lateral PB and the K?lliker-Fuse nucleus retrogradely labeled neurons in these areas as well as in lamina I throughout the caudal SNVc and spinal dorsal horn. Injections of WGA-HRP into the caudal SNVc and dorsal horn of the spinal cord resulted in terminal labeling in the dorsal, central, and external lateral subnuclei of PB and the K?lliker-Fuse nucleus, all of which are known to receive cardiovascular and respiratory afferent information. Injections of WGA-HRP into the promontorium and dorsal rostral SNVc resulted in terminal labeling in the same PB subnuclei, as well as in the medial and the ventral lateral PB subnuclei, which are sites of relay for gustatory information ascending from the medulla to the forebrain. The spinal and trigeminal projection to PB may mediate the convergence of pain, chemosensory, and temperature sensibilities with gustatory and cardiorespiratory systems in PB.  相似文献   

15.
Corneal sensory pathway in the rat: a horseradish peroxidase tracing study   总被引:4,自引:0,他引:4  
The methods of transganglionic transport of horseradish peroxidase (HRP) and horseradish peroxidase--wheat germ agglutinin (HRP-WGA) were used to determine the location within the trigeminal ganglion of the primary afferent neurons that innervate the rat central cornea, and the brainstem and spinal cord termination sites of these cells. In each of 18 animals, solutions of HRP or HRP-WGA were applied to the scarified corneal surface and allowed to infiltrate into the corneal epithelium and stroma for 15 minutes. Postmortem examination of the corneal whole mounts from the experimental animals, and of corneas and neural tissues from several control animals, showed that the HRP/HRP-WGA remained confined to the central cornea with no spread into adjacent intra- or extraorbital tissues. HRP-labeled corneal afferent somata were located in the dorsal part of the ophthalmic region of the ipsilateral trigeminal ganglion. The central fibers of the corneal afferent neurons projected very heavily to interstitial nuclei of Cajal in the spinal tract of V at the level of caudal pars interpolaris and rostral pars caudalis, lightly to the pars caudalis/C1 transition zone, and sparsely to the dorsal horn of spinal cord segments C1-C3. The trigeminal main sensory nucleus, pars oralis, the rostral three-fourths of pars interpolaris, and an extensive midregion of pars caudalis were totally devoid of reaction product. Terminal fields in caudal pars caudalis and in the spinal cord dorsal horn were concentrated largely in the outer half of lamina II, with lesser accumulations in lamina I, the deeper half of lamina II, and in lamina III. The present study demonstrates for the first time by means of an anatomical tracing procedure the brainstem termination sites of corneal afferent neurons in the rat. The patchy, discontinuous nature of the corneal afferent projection to the caudal trigeminal brainstem nuclear complex (TBNC), and the total lack of corneal projections to rostral subdivisions of the TBNC, provide an exception to the general rule of trigeminal organization in which most areas of the head and face are represented as continuous columns throughout the rostrocaudal extent of the ipsilateral TBNC.  相似文献   

16.
Postimulus time histogram analysis of second-order neuron responses in rostral trigeminal relay nuclei of cat demonstrated characteristic firing patterns after noxious (tooth pulp) and non-noxious (tooth tap) stimuli. The response to noxious stimulation was prolonged and frequently bimodal while the response to non-noxious stimulation was brief. The same neurons were fired by electrical stimuli applied directly to nucleus caudalis but with longer latencies suggesting a contributory role of nucleus caudalis to the characteristic prolonged bimodal response pattern to noxious stimuli. Interacting noxious and non-noxious stimuli using condition-test sequences demonstrated further stimulus mode-related changes in firing patterns. Electrical conditioning stimuli in nucleus caudalis reduced some responses while strychnine sulfate applied into nucleus caudalis augmented the responses evoked in rostral nuclei by both noxious and non-noxious peripheral stimuli. Nucleus caudalis appeared to contain elements which may modulate activity in rostral trigeminal nuclei by either augmenting or reducing specific firing patterns of second-order neurons in rostral relay nuclei.  相似文献   

17.
The central projections of the ethmoidal, glossopharyngeal, and superior laryngeal nerves were determined in the muskrat by use of the transganglionic transport of a mixture of horseradish peroxidase (HRP) and wheat germ agglutinin (WGA)-HRP. The ethmoidal nerve projected to discrete areas in all subdivisions of the ipsilateral trigeminal sensory complex. Reaction product was focused in ventromedial portions of the principal nucleus, subnucleus oralis, and subnucleus interpolaris. The subnucleus oralis also contained sparse reaction product in its dorsomedial part. Projections were dense to ventrolateral parts of laminae I and II of the rostral medullary dorsal horn, with sparser projections to lamina V. Label in laminae I and V extended into the cervical dorsal horn. A few labeled fibers were followed to the contralateral dorsal horn. The interstitial neuropil of the ventral paratrigeminal nucleus was densely labeled. Extratrigeminal primary afferent projections in ethmoidal nerve cases involved the K?lliker-Fuse nucleus and ventrolateral part of the parabrachial nucleus, the reticular formation surrounding the rostral ambiguous complex, and the dorsal reticular formation of the closed medulla. Retrograde labeling in the brain was observed in only the mesencephalic trigeminal nucleus in these cases. The cervical trunk of the glossopharyngeal and superior laryngeal nerves also projected to the trigeminal sensory complex, but almost exclusively to its caudal parts. These nerves terminated in the dorsal and ventral paratrigeminal nuclei as well as lamina I of the medullary and cervical dorsal horns. Lamina V received sparse projections. The glossopharyngeal and superior laryngeal nerves projected to the ipsilateral solitary complex at all levels extending from the caudal facial nucleus to the cervical spinal cord. At the level of the obex, these nerves projected densely to ipsilateral areas ventral and ventromedial to the solitary tract. Additional ipsilateral projections were observed along the dorsolateral border of the solitary complex. Near the obex and caudally, the commissural area was labeled bilaterally. Labeled fibers from the solitary tract projected into the caudal reticular formation bilaterally, especially when the cervical trunk of the glossopharyngeal nerve received tracer. Labeled fibers descending further in the solitary tract gradually shifted toward the base of the cervical dorsal horn. The labeled fibers left the solitary tract and entered the spinal trigeminal tract at these levels. Retrogradely labeled cells were observed in the ambiguous complex, especially rostrally, and in the rostral dorsal vagal nucleus after application of HRP and WGA-HRP to either the glossopharyngeal or superior laryngeal nerves. In glossopharyngeal nerve cases, retrogradely labeled neurons also were seen in the inferior salivatory nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The rostral nucleus of the solitary tract (NST) is the first central site of taste information processing. Specific anatomical subdivisions of the NST receive taste afferent input and contain interneurons and projection neurons that engage ascending or premotor taste pathways. The forebrain projects to the NST and can influence taste responses, but the anatomical relationship between forebrain inputs and the subdivisions of the NST and their cellular elements is not understood. To evaluate this, in this study, we used cholera toxin B (CTb) as a retrograde and anterograde marker. CTb was injected into the rostral NST to label, by retrograde transport, the sources of forebrain inputs. Cells were labeled bilaterally in the lateral and paraventricular hypothalamic nuclei, bed nucleus of the stria terminalis, central nuclei of the amygdala, and the agranular and dysgranular divisions of insular cortex. Within the medulla, labeled cells were located in the parvicellular reticular formation and spinal trigeminal nuclei. In addition, labeled cells and anterograde axonal labeling were present in the rostral NST contralateral to the injections. Injections of CTb centered in the dysgranular insular cortex, the site of most forebrain-NST cells, labeled axon endings confined to the rostral NST. These endings were concentrated in the rostral central and ventral subdivisions. Corticofugal endings in the rostral central subdivision are positioned to influence microcircuits that include taste afferent synapses, presumed inhibitory interneurons, and neurons that project to the parabrachial nucleus. The many corticofugal endings in the ventral subdivision synapse among premotor neurons that ultimately influence salivatory and oromotor outflow. Intramedullary CTb labeling after NST injection indicates that the rostral central subdivision also receives projections from the contralateral rostral NST.  相似文献   

19.
The temporal and spatial expression pattern of Fos protein in spinal dorsal horn neurons was examined by immunohistochemistry in rats with chronic constriction injury (CCI) to the sciatic nerve. In normal animals, a few Fos-immunoreactive (-IR) neurons were detected in the dorsal horn of the lumbar spinal cord. Following induction of CCI, a very large number of Fos-IR neurons appeared in the spinal dorsal horn, but a significant number of Fos-IR neurons were also observed in the contralateral dorsal horn where primary afferents of the injured sciatic nerve rarely project. Sham-operated animals also had a significant number of Fos-IR neurons in the dorsal horn bilaterally. The number of Fos-IR neurons reached its maximal level 1 day following placement of the ligatures (PO 1d). The ratio of the number of Fos-IR neurons in the ipsilateral dorsal horn to the contralateral dorsal horn, however, had its peak level 3 days following CCI (3.1-fold increase compared to the contralateral dorsal horn). The number of Fos-IR neurons in the dorsal horn gradually decreased, but increased again around PO 15d. On PO 30d, the number of Fos-IR neurons decreased and became comparable to that in normal animals. The present results indicate that the induction of Fos-IR neurons in the dorsal horn caused by CCI is biphasic and reaches its maximal level on PO 3d, near the time of hyperalgesia onset.  相似文献   

20.
To obtain a comprehensive map of the brainstem and spinal cord areas that project to the mesencephalic central gray small injections of hors-radish peroxidase were made into various regions of the periaqueductal gray in a series of monkeys. Despite the fact that different regions of the central gray were injected in separate animals, the majority of the brainstem areas containing retrogradely filled neurons remained the same. Labeled neurons were observed in the superior colliculus, periaqueductal gray, lateral parabrachial, locus coeruleus, nucleus raphe magnus and pallidus, and a variety of brainstem reticular nuclei. In contrast to labeled brainstem areas, where labeled neurons were present predominantly ipsilateral to the injection site, the spinal trigeminal nucleus pars caudalis and the spinal cord displayed labeled cells chiefly on the side contralateral to the injection. Also in contrast to the labeled brainstem sites, where medial and lateral injection sites produced a similar pattern of labeling, medial injections in the PAG labeled almost exclusively neurons in the deep laminae (V-X) in the spinal trigeminal nucleus pars caudalis and spinal cord while more lateral injections labeled neurons in both the deep (V-X) and superficial (I) laminae. No consistent differences were noted in the location of labeled neurons in either brainstem or spinal sites after dorsal vs. ventral injections or caudal vs. rostral injection sites. The present study has demonstrated that the central gray receives afferent projections from a number of brainstem and spinal areas which are known to be involved in the modulation andor conduction of nociception, while other inputs are probably involved in the regulation of visceral functions. These data support the hypothesis that the mesencephalic periaqueductal gray functions as a visceral, nociceptive, and cognitive integrator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号