首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Polymer-infiltrated ceramic network materials (PICNs) have high mechanical compatibility with human enamel. However, the wear properties of PICN against natural human enamel have not yet been clarified. We investigated the in vitro two-body wear behaviors of PICNs and an enamel antagonist. Two PICNs were used: Experimental PICN (EXP) prepared via the infiltration of methacrylate-based resin into the porous silica ceramic network and commercial Vita Enamic (ENA). Two commercial dental ceramics, lithium disilicate glass (LDS) and zirconia (ZIR), were also characterized, and their wear performance was compared to PICNs. The samples were subjected to Vickers hardness tests and two-body wear tests that involve the samples being cyclically impacted by enamel antagonists underwater at 37 °C. The results reveal that the Vickers hardness of EXP (301 ± 36) was closest to that of enamel (317 ± 17). The volumetric wear losses of EXP and ENA were similar to those of LDS but higher than that of zirconia. The volumetric wear loss of the enamel antagonist impacted against EXP was moderate among the examined samples. These results suggest that EXP has wear behavior similar to that of enamel. Therefore, PICNs are mechanically comparable to enamel in terms of hardness and wear and are excellent tooth-restoration materials.  相似文献   

2.
The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.  相似文献   

3.
The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.  相似文献   

4.
The prevention of root fractures of pulpless teeth is an important clinical issue to maintain healthy teeth through lifetime. The aim of this study was to examine a clinically effective treatment method for strengthening vulnerable pulpless teeth using CAD/CAM (computer-aided design/computer-aided manufacturing) fiber-reinforced post-core by conducting a fracture resistance test. A post-core made with a fiber-reinforced resin disk TRINIA (TR, SHOFU, Kyoto, Japan) was fabricated using a CAD/CAM system. The fiber-layer orientation of the CAD/CAM post-core was parallel to the axis of the restored tooth. A post-core using a conventional composite and a fiber post (CF) was also prepared. A fracture resistance test of teeth restored with the post-cores and zirconia crowns was conducted using a universal testing machine, and fracture patterns were identified by micro-CT observation. The fracture load of the roots restored with TR was 1555.9 ± 231.8 N, whereas that of CF was 1082.1 ± 226.7 N. The fracture load of TR was 43.8% that was significantly higher than that of CF (Student’s t-test, p < 0.05). The restored teeth with CAD/CAM resin post-core were found to be repairable even after fracture. These results suggest that the CAD/CAM indirect fiber post-core has the potential to strengthen the vulnerable pulpless teeth.  相似文献   

5.
Currently available direct restoration materials have been developed to have improved optical properties to interact with light in the same manner as the natural tooth. The objective of this study was to investigate the fluorescence of different enamel resin composites. In the present study, nine brands of enamel composites were tested in vitro, some of which are cited by manufacturers as having color adjustment potential. Fluorescence spectra of the composite specimens and the human natural enamel were measured with a fluorescence spectrophotometer immediately after preparation and after 6 months. Qualitative data of the specimens were also collected. Statistical analyses were conducted by Kruskal–Wallis and Mann–Whitney U nonparametric tests (p < 0.05). Almost all tested resin composites presented a significant decrease in the fluorescence values after a period of 6 months. There was no significant decrease in fluorescence in the case of Harmonize™ resin composite samples, which presented the lowest initial fluorescence values. The highest value in the reduction of the initial fluorescence intensity after 6 months (22.95%) was observed for the Charisma® specimens. Composites with a color adjustment did not perform significantly better than other composites in terms of reduction in fluorescence intensity.  相似文献   

6.
The aim of this study was to evaluate the effect of modification with liquid rubber on the adhesion to tooth tissues (enamel, dentin), wettability and ability to inhibit bacterial biofilm formation of resin-based dental composites. Two commercial composites (Flow-Art–flow type with 60% ceramic filler and Boston–packable type with 78% ceramic filler; both from Arkona Laboratorium Farmakologii Stomatologicznej, Nasutów, Poland) were modified by addition of 5% by weight (of resin) of a liquid methacrylate-terminated polybutadiene. Results showed that modification of the flow type composite significantly (p < 0.05) increased the shear bond strength values by 17% for enamel and by 33% for dentine. Addition of liquid rubber significantly (p < 0.05) reduced also hydrophilicity of the dental materials since the water contact angle was increased from 81–83° to 87–89°. Interestingly, modified packable type material showed improved antibiofilm activity against Steptococcus mutans and Streptococcus sanguinis (quantitative assay with crystal violet), but also cytotoxicity against eukaryotic cells since cell viability was reduced to 37% as proven in a direct-contact WST-8 test. Introduction of the same modification to the flow type material significantly improved its antibiofilm properties (biofilm reduction by approximately 6% compared to the unmodified material, p < 0.05) without cytotoxic effects against human fibroblasts (cell viability near 100%). Thus, modified flow type composite may be considered as a candidate to be used as restorative material since it exhibits both nontoxicity and antibiofilm properties.  相似文献   

7.
Recent advances in three-dimensional (3D) printing have introduced new materials that can be utilized for dental restorations. Nonetheless, there are limited studies on the color stability of restorations using 3D-printed crowns and bridge resins. Herein, the color stability of conventional computer-aided design/computer-aided manufacturing (CAD/CAM) blocks and 3D-printing resins was evaluated and assessed for their degrees of discoloration based on material type, colorant types (grape juice, coffee, curry, and distilled water (control group)), and storage duration (2, 7, and 30 days) in the colorants. Water sorption, solubility, and scanning electron microscope (SEM) analyses were conducted. A three-way ANOVA analysis showed that all three factors significantly affected the color change of the materials. Notably, the discoloration (ΔE00) was significantly higher in all 3D printing resins (4.74–22.85 over the 30 days) than in CAD/CAM blocks (0.64–4.12 over the 30 days) following immersion in all colorants. 3D-printing resins showed color differences above the clinical limit (2.25) following storage for 7 days or longer in all experimental groups. Curry was the most prominent colorant, and discoloration increased in almost all groups as the storage duration increased. This study suggests that discoloration must be considered when using 3D printing resins for restorations.  相似文献   

8.
Purpose: This study aims to evaluate the effectiveness of two ceramic and two composite polishing systems for a novel chairside computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramic with three-dimensional and two-dimensional microscopy images. This ceramic material can be used for implant-supported or tooth-borne single-unit prostheses. Materials and Methods: Sixty flat samples of novel chairside CAD/CAM reinforced lithium disilicate ceramic (Amber Mill, Hass Bio) were divided into five groups (n = 15/group) and treated as follows: Group 1 (NoP), no polished treatment; group 2 (CeDi), polished with ceramic Dialite LD (Brasseler USA); group 3, (CeOp) polished with ceramic OptraFine (Ivoclar Vivadent); group 4, (CoDi) polished with composite DiaComp (Brasseler USA), and group 5 (CoAs), polished with composite Astropol (Ivoclar Vivadent). The polished ceramic surface topography was observed and measured with three-dimensional and two-dimensional images. Results: All polishing systems significantly reduced the surface roughness compared with the non-polished control group (Sa 1.15 μm). Group 2 (CeDi) provided the smoothest surface arithmetical mean eight with 0.32 μm, followed by group 3 (CeOp) with 0.34 μm. Group 5 (CoAs) with 0.52 μm provided the smoothest surface among the composite polishing kits. Group 4 (CoDi) with 0.66 μm provided the least smooth surface among all polishing systems tested. Conclusions: Despite the effectiveness of ceramic polishing systems being superior to composite polishing systems of the CAD/CAM lithium disilicate restorative material, both polishing systems significantly improved the smoothness.  相似文献   

9.
This study aims to compare the shear bond strength (SBS) of a direct resin composite to CAD-CAM resin composite blocks treated with different surface treatments: micromechanical, chemical or a combination of both. Eight CAD-CAM resin composite blocks, namely Brilliant Crios, Cerasmart 270, Vita Enamic, Grandio block, Katana Avencia, Lava Ultimate, Tetric CAD and Shofu Block HC were chosen. The micromechanical surface treatment protocols tested were hydrofluoric acid, polyacrylic acid or sandblasting, and the chemical one was a universal primer. These treated CAD-CAM blocks were tested to determine the SBS of a light-curing composite resin Z100 bonded to their surface. Two-way ANOVA followed by Tukey’s post hoc test was used to investigate the difference in SBS. Failures were analyzed by Fisher’s exact test. Bonding interfaces were examined by scanning electron microscopy. The micromechanical surface treatments give the highest SBS values: sandblasting appears to be the most efficient procedure for dispersed filler composite blocks, while hydrofluoric acid etching is preferable for polymer-infiltrated ceramic network (PICN) blocks. The use of universal primer does not improve SBS values on dispersed filler composite blocks. For PICN blocks, the use of universal primer significantly increases SBS values when combined with hydrofluoric acid etching.  相似文献   

10.
The aim of this in vitro study was to investigate the fracture resistance, fracture failure pattern, and fractography of four types of chairside computer-aided design/computer-aided manufacturing (CAD/CAM) restoration materials in teeth and titanium abutments fabricated using a standardization method. An artificial mandibular left first premolar prepared for all-ceramic crown restoration was scanned. Forty extracted mandibular molars and cylindrical titanium specimens were milled into a standardized shape. A total of eighty CAD/CAM restoration blocks were milled into a crown and twenty pieces of each lithium disilicate (LS), polymer-infiltrated-ceramic-network (PICN), resin nano ceramic (RNC), and zirconia-reinforced lithium silicate (ZLS) materials were used. Crowns were bonded to abutments, and all specimens underwent thermal cycling treatment for 10,000 cycles. Fracture resistance was measured using a universal testing machine and fracture failure patterns were analyzed using optical microscopy and scanning electron microscopy. Statistical differences were analyzed using appropriate ANOVA, Tukey HSD post hoc tests, and independent sample t-tests (α = 0.05). The results indicated that, in both teeth abutments and titanium abutments, the fracture resistances showed significantly the highest values in LS and the second highest in ZLS (p < 0.05). The fracture resistances based on teeth abutments and titanium abutments were significantly different in all the CAD/CAM restoration materials (p < 0.05). There are statistically significant correlations between the types of materials and the types of abutments (p < 0.05). Each of the different materials showed different fracture failure patterns, and there was no noticeable difference in fractographic analysis. Lithium disilicates and zirconia-reinforced lithium silicates exhibited statistically high fracture resistance, indicating their suitability as restoration materials for natural teeth or implant abutments. There were no distinct differences in the fracture pattern based on the restoration and abutment materials showed that the fracture initiated at the groove where the ball indenter was toughed and propagated toward the axial wall.  相似文献   

11.
The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.  相似文献   

12.
The aim of this study was to compare the clinical properties of tooth-colored computer-aided design/computer-aided manufacturing (CAD/CAM) materials for the fabrication of a 3-unit fixed dental prostheses (FDPs) in the same clinical scenario. A 53-year-old female patient was supplied with a 3-unit FDP to replace a second premolar in the upper jaw. Restorations were fabricated from 3 mol%, 4 mol%, and 5 mol% yttrium oxide zirconia, zirconia with translucency gradient, indirect composite resin, polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). Milling time, weight, and radiopacity were investigated. Esthetics were examined following the US Public Health Service criteria (USPHS). The milling time for zirconia was twice as high as for the indirect composite resin, PEEK, or PEKK. The latter materials had a weight of 2 g each, while zirconia restorations yielded 5 g. Zirconia presented intense radiopacity. PEEK and PEKK required veneering and an opaquer was applied to the PEKK framework. All FDPs showed acceptable esthetics. PEEK and PEKK restorations were featured by a grayish shimmering. A variety of CAD/CAM materials are available to fabricate 3-unit FDPs with esthetically acceptable results. In the esthetic zone, PEEK and PEKK require veneering and an opaquer might be applied. Milling time, weight, and radiopacity were relatively high for zirconia FDPs.  相似文献   

13.
Computer-aided design and computer-aided manufacturing (CAD–CAM) enable subtractive or additive fabrication of temporary fixed dental prostheses (FDPs). The present in-vitro study aimed to compare the fracture resistance of both milled and additive manufactured three-unit FDPs and bar-shaped, ISO-conform specimens. Polymethylmethacrylate was used for subtractive manufacturing and a light-curing resin for additive manufacturing. Three (bars) and four (FDPs) different printing orientations were evaluated. All bars (n = 32) were subjected to a three-point bending test after 24 h of water storage. Half of the 80 FDPs were dynamically loaded (250,000 cycles, 98 N) with simultaneous hydrothermal cycling. Non-aged (n = 40) and surviving FDPs (n = 11) were subjected to static loading until fracture. Regarding the bar-shaped specimens, the milled group showed the highest flexural strength (114 ± 10 MPa, p = 0.001), followed by the vertically printed group (97 ± 10 MPa, p < 0.007). Subtractive manufactured FDPs revealed the highest fracture strength (1060 ± 89 N) with all specimens surviving dynamic loading. During artificial aging, 29 of 32 printed specimens failed. The present findings indicate that both printing orientation and aging affect the strength of additive manufactured specimens. The used resin and settings cannot be recommended for additive manufacturing of long-term temporary three-unit FDPs.  相似文献   

14.
The aim of this study was to evaluate the effect of CAD/CAM composite thickness on micro-tensile bond strength (µTBS), microhardness (HV), and film thickness (FT) of different luting composites. Composite blocks (6.8 mm × 6.8 mm) were divided into 12 groups according to: CAD/CAM thickness and luting composite. For each group, 21 rods (1 mm × 1 mm) were tested in tension at crosshead speed of 1 mm/min. Fracture modes were categorized as adhesive, mixed, and cohesive. Microhardness (n = 5/group) was assessed using microhardness tester. Film thickness (12-rods/group) was evaluated using a stereomicroscope (×40). Data were analyzed using the two-way ANOVA/Tukey’s HSD test (p = 0.05). Parameters “thickness”, “cement”, and “thickness x cement” showed significant difference on µTBS and HV (p < 0.05). At 2 mm, heated x-tra fil composite showed the highest µTBS (45.0 ± 8.5 MPa), while at 4 mm thickness, Grandio Flow revealed the lowest µTBS (33.3 ± 6.3 MPa). Adhesive, mixed, and cohesive failures were reported. The HV of all composites decreased when photo-polymerized through 4 mm thickness (p < 0.05). Regardless of CAD/CAM thickness, photo-polymerized composites can be successfully used for luting CAD/CAM composite.  相似文献   

15.
CAD/CAM technology is gaining popularity and replacing archaic conventional procedures for fabricating dentures. CAD/CAM supports using a digital workflow reduce the number of visits, chair time, and laboratory time, making it attractive to patients. This study aimed to provide a comparative review of complete dentures manufactured using CAD/CAM and conventional methods. The PubMed/Medline, Science Direct, Cochrane, and Google Scholar databases were searched for studies published in English within the last 11 years (from 2011 to 2021). The keywords used were “computer-engineered complete dentures”, “CAD/CAM complete dentures”, “computer-aided engineering complete dentures”, and “digital complete dentures”. The search yielded 102 articles. Eighteen relevant articles were included in this review. Overall, computer-engineered complete dentures have several advantages over conventional dentures. Patients reported greater satisfaction with computer-engineered complete dentures (CECDs) due to better fit, reduced chair time, shorter appointments, and fewer post-insertion visits. CAD/CAM allows for precision and reproducibility with fewer procedures compared to conventional dentures. Polymethyl methacrylate is used as the denture base material for conventional dentures. For CECDs, the resin can be modified and cross-linked to improve its mechanical properties. The advantages of CECDs include a reduced number of appointments, saving chairside time, a digital workflow allowing easy reproducibility and greater patient satisfaction with a better fit.  相似文献   

16.
Over the last decade, zirconia (ZrO2)-based ceramic materials have become more applicable to modern dental medicine due to the sustained development of diverse computer-aided design/computer-aided manufacturing (CAD/CAM) systems. However, before the cementation and clinical application, the freshly prepared zirconia material (e.g., crowns) has to be processed by sandblasting in the dental laboratory. In this work, the impact of the sandblasting on the zirconia is monitored as changes in morphology (i.e., grains and cracks), and the presence of impurities might result in a poor adhesive bonding with cement. The sandblasting is conducted by using Al2O3 powder (25, 50, 110 and 125 µm) under various amounts of air-abrasion pressure (0.1, 0.2, 0.4 and 0.6 MPa). There has been much interest in both the determination of the impact of the sandblasting on the zirconia phase transformations and conductivity. Morphology changes are observed by using Scanning Electron Microscope (SEM), the conductivity is measured by Impedance Spectroscopy (IS), and the phase transformation is observed by using Powder X-Ray Diffraction (PXRD). The results imply that even the application of the lowest amount of air-abrasion pressure and the smallest Al2O3 powder size yields a morphology change, a phase transformation and a material contamination.  相似文献   

17.
The aim of this study was to assess and compare the stress–strain pattern of zygomatic dental implants supporting different superstructures using 3D finite element analysis (FEA). A model of a tridimensional edentulous maxilla with four dental implants was designed using the computer-aided design (CAD) software. Two standard and two zygomatic implants were positioned to support the U-shaped bar superstructure. In the computer-aided engineering (CAE) software, different materials have been simulated for the superstructure: cobalt–chrome (CoCr) alloy, titanium alloy (Ti), zirconia (Zr), carbon-fiber polymers (CF) and polyetheretherketone (PEEK). An axial load of 500 N was applied in the posterior regions near the zygomatic implants. Considering the mechanical response of the bone tissue, all superstructure materials resulted in homogeneous strain and thus could reconstruct the edentulous maxilla. However, with the aim to reduce the stress in the zygomatic implants and prosthetic screws, stiffer materials, such Zr, CoCr and Ti, appeared to be a preferable option.  相似文献   

18.
The aim of this study was to evaluate and compare the resistance to fracture of interim restorations obtained through additive techniques (3D impressions) and subtractive techniques (milling) using a computer-aided design and manufacture (CAD/CAM) system of a three-unit fixed dental prosthesis (FDP) to ascertain its clinical importance. (1) Materials and methods: In total, 40 samples were manufactured and divided into two groups (n = 20) using: (1) light-curing micro hybrid resin for temporary crowns and bridges (PriZma 3D Bio Prov, MarketechLabs, São Paulo, Brazil) for the rapid prototyping group (RP) and (2) a polymethylmethacrylate (PMMA) CAD/CAM disc (Vipiblock Trilux, VIPI, São Paulo, Brazil) for the computer-assisted milling (CC). The resistance to fracture was determined with a universal testing machine. (2) Results: The strength and the standard deviation for the computer-assisted milling group were higher (1663.57 ± 130.25 N) than the rapid prototyping (RP) group, which had lower values of (1437.74 ± 73.41 N). (3) Conclusions: The provisional restorations from the computer-assisted milling group showed a greater resistance to fracture than the provisional restorations obtained from the rapid prototyping group.  相似文献   

19.
The aim of this in vitro study was to investigate the microgaps at the implant–abutment interface when zirconia (Zr) and CAD/CAM or cast Co–Cr abutments were used. Methods: Sixty-four conical connection implants and their abutments were divided into four groups (Co–Cr (milled, laser-sintered and castable) and Zirconia (milled)). After chewing simulation (300,000 cycles, under 200 N loads at 2 Hz at a 30° angle) and thermocycling (10,000 cycles, 5 to 50 °C, dwelling time 55 s), the implant–abutment microgap was measured 14 times at each of the four anatomical aspects on each specimen by using a scanning electron microscope (SEM). Kruskal–Wallis and pair-wise comparison were used to analyze the data (α = 0.05). Results: The SEM analysis revealed smaller microgaps with Co–Cr milled abutments (0.69–8.39 μm) followed by Zr abutments (0.12–6.57 μm), Co–Cr sintered (7.31–25.7 μm) and cast Co–Cr (1.68–85.97 μm). Statistically significant differences were found between milled and cast Co–Cr, milled and laser-sintered Co–Cr, and between Zr and cast and laser-sintered Co–Cr (p < 0.05). Conclusions: The material and the abutment fabrication technique affected the implant–abutment microgap magnitude. The Zr and the milled Co–Cr presented smaller microgaps. Although the CAD/CAM abutments presented the most favorable values, all tested groups had microgaps within a range of 10 to 150 μm.  相似文献   

20.
Experimental dental resin composites incorporating copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were designed to impart antibacterial and remineralizing properties. The study evaluated the influence of Cu-MBGN on the mechanical properties and photopolymerization of resin composites. Cu-MBGN were synthesized using a microemulsion-assisted sol–gel method. Increasing amounts of Cu-MBGN (0, 1, 5, and 10 wt %) were added to the organic polymer matrix with inert glass micro- and nanofillers while maintaining a constant resin/filler ratio. Six tests were performed: X-ray diffraction, scanning electron microscopy, flexural strength (FS), flexural modulus (FM), Vickers microhardness (MH), and degree of conversion (DC). FS and MH of Cu-MBGN composites with silica fillers showed no deterioration with aging, with statistically similar results at 1 and 28 days. FM was not influenced by the addition of Cu-MBGN but was reduced for all tested materials after 28 days. The specimens with 1 and 5% Cu-MBGN had the highest FS, FM, MH, and DC values at 28 days, while controls with 45S5 bioactive glass had the lowest FM, FS, and MH. DC was high for all materials (83.7–93.0%). Cu-MBGN composites with silica have a potential for clinical implementation due to high DC and good mechanical properties with adequate resistance to aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号