首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study has examined excitatory amino acid transmitter binding sites as measured autoradiographically in cryostat sections prepared from developing rat cerebella during the period of granule cell neuritogenesis. The external germinal layer (EGL) and molecular layer (ML), which during development contain granule cells at early stages of axon growth, contained only low levels of NMDA-displaceable L-[3H]glutamate binding sites. Similarly, [3H]glycine binding to the NMDA receptor linked binding site was not enriched in the EGL. Radioligand binding to the NMDA receptor was always greater in the granular layer (GL) than in the ML. The developmental increases in NMDA-displaceable L-[3H]glutamate and in [3H]glycine binding to the GL were similar but NMDA displaceable L-[3H]glutamate binding density increased before [3H]glycine binding sites. Glycine increased NMDA-displaceable L-[3H]glutamate binding only in the adult cerebellum. These results suggest that NMDA stimulation of neuritogenesis in granule cell cultures may reflect stimulation of dendritogenesis in the developing glomerulus rather than a stimulation of axon growth in the EGL. Also, NMDA receptors may be present in an immature form during cerebellar development and have different properties to the adult receptor. Binding sites for [3H]kainate and [3H]AMPA were present in both the GL and ML and increased during development. At all times the amount of binding sites for [3H]kainate were highest in the GL whereas those for [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate were highest in the ML.  相似文献   

2.
The anatomical distribution of L-[3H]glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding of L-[3H]glutamate is accounted for by the presence of 3 distinct binding sites when measured in the absence of Ca2+, Cl- and Na+ ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labelled by D-[3H]2-amino-5-phosphonopentanoate (D-[3H]AP5), [3H]kainate ([3H]KA) and [3H] alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) which are thought to be selective ligands for the N-methyl-D-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively.  相似文献   

3.
We examined NMDA-sensitive [3H]glutamate, [3H]AMPA, [3H]kainate and metabotropic-sensitive [3H]glutamate binding sites in neostriatum and substantia nigra pars reticulata (SNr) in rats after unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. One week after the lesion, NMDA, AMPA, kainate and metabotropic receptors were decreased in the ipsilateral neostriatum, whereas at three months NMDA receptors were increased while AMPA, kainate and metabotropic receptors were not changed. In the SNr at one week, only AMPA and metabotropic receptors were significantly decreased whereas three months after the lesion NMDA, AMPA and kainate binding sites were decreased. The early decrease of excitatory amino acid receptors in the striatum is likely to reflect degeneration of dopaminergic fibers, suggesting that specific subpopulations of excitatory amino acid binding sites are located on dopaminergic terminals.  相似文献   

4.
The anatomical localization of glutamate receptor subtype-selective ligand binding sites was investigated in 1-day-old chick brain using quantitative autoradiography. Under the conditions used, the regional distributions of [3H]glutamate, [3H]AMPA (a selective quisqualate receptor ligand) and [3H]kainate binding sites are manifestly different. [3H]l-glutamate binding is densely localized in the telencephalon, particularly in the neostriatum (2.8 pmol/mg protein). In addition, [3H]l-glutamate labels the thalamus, the nucleus mesencephalicus lateralis pars dorsalis, the superficial layers of the optic tectum and the molecular layer of the cerebellum. [3H]AMPA binding sites are most densely localized in the hippocampus (0.90 pmol/mg protein), with an otherwise relatively uniform distribution of binding within the telencephalon. [3H]AMPA also labels the striatum griseum et fibrosum superficiale of the optic tectum and the molecular layer of the cerebellum. [3H]Kainate binding sites are extremely densely packed in the molecular layer of the cerebellum (10 pmol/mg protein). Other regions of [3H]kainate binding include the hyperstriatum and the thalamus. The binding of the NMDA receptor channel blocker [3H]MK-801 is increased in the presence of 1 mM l-glutamate. [3H]MK-801 binding is generally widespread in the telencephalon but is notably absent from the ectostriatum. No evidence of [3H]MK-801 binding sites was detected in the cerebellum, even in the presence of 1 mM l-glutamate. The relatively high densities and the well-defined localizations of the glutamate receptor subtype binding sites suggest that chick brain provides a useful system for the further study of excitatory amino acid receptors.  相似文献   

5.
A new compound, 3-((±)-2-car☐ypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), has been evaluated as an excitatory amino acid receptor antagonist using electrophysiological assays and radioligand binding. In autoradiographic preparations, CPP reduces l-[3H]glutama binding in regions of the hippocampus rich in N-methyl-d-aspartate (NMDA) receptors, but not in regions richin kainate sites. In isolated membrane fraction preparations, CPP displaces l-[3H]glutamate binding to NMDA sites, but does not compete with the binding of selective kainate or quisqualate site ligands. CPP potently reduces depolarizations produced by application of NMDA but not depolarizations produced by quisqualate or kainate. Its order of potency against excitatory amino acid-induced responses in the hippocampus is NMDA > homocysteate > aspartate > glutamate > quisqualate. CPP has no efect on lateral perforant path responses or on inhibition of these responses by 2-amino-4-phosphonobutyrate. Finally, at doses that do not affect Schaffer collateral synpatic transmission, CPP reversibly blocks the induction of long-term potentiation of Schaffer synaptic responses. This new compounds is, therefore, a higly selective brain NMDA receptor blocker, and the most potent such by nearly an order of magnitude.  相似文献   

6.
In temporal lobe epilepsy, excitatory amino acid receptors in the hippocampus and temporal lobe may contribute to both increased excitability and vulnerability to excitotoxic damage. We used receptor autoradiography to examine the density of N-methyl-D-aspartate (NMDA) and kainic acid (KA) receptors in the hippocampus and parahippocampal gyrus obtained from five patients who had undergone anterior temporal lobectomy for the treatment of intractable seizures and from six control individuals, in which the hippocampus was obtained postmortem. Within the hippocampal formation, loss of [3H]KA and NMDA-sensitive L-[3H]glutamate binding was apparent in the sclerotic regions CA3, hilus, and CA1. In the subiculum and molecular layer of the denate gyrus, binding densities were maintained or even increased in some of the epileptic patients. A two-fold increase in L-[3H]glutamate binding, along with an increase in [3H]KA binding, was observed in the parahippocampal gyrus obtained from the epileptic patients. The results suggest that the vulnerability of the hippocampus in temporal lobe epilepsy may result, at least in part, from the presence of aberrant excitatory circuits in the parahippocampal gyrus.  相似文献   

7.
Receptor binding and synaptosomal uptake of L-[3H]glutamate and L-[3H]aspartate were measured in hippocampus derived from rats maintained on zinc restricted diets from weaning. Despite near lethal zinc deficiency, these markers of excitatory amino acid neurotransmission were unaffected compared to zinc-supplemented controls. However, addition of zinc in vitro markedly inhibited binding of glutamate and aspartate to hippocampal membranes. These data suggest that zinc can modulate the receptor affinities for glutamate and aspartate and may function as a tonic inhibitor of excitatory synapses in vivo.  相似文献   

8.
N-methyl-D-aspartate (NMDA) is an acidic amino acid which depolarizes neurons by selectively interacting with a distinct class of excitatory amino acid receptor. Recent evidence has indicated that this receptor is a neurotransmitter receptor in the spinal cord, cerebral cortex, and hippocampus for which the endogenous ligand is likely to be L-glutamate or a structurally related compound. Using quantitative autoradiography, we have studied the anatomical distribution of the class of L-[3H]glutamate-binding sites displaced by NMDA, which appear to correspond to NMDA receptors. The CA1 region of the hippocampus contains the highest density of sites. In general, telencephalic regions have high levels of binding sites. The cerebral cortex shows significant density variations among the differing layers and regions, with the highest levels found in the frontal cortex layers I to III. Within the basal ganglia, the highest levels are found in the nucleus accumbens, intermediate levels are found in the caudate/putamen, and very low levels are found in the globus pallidus. Thalamic regions have moderate levels with variations among differing regions. Midbrain and brainstem have low levels of binding sites, but within these regions there are structures exhibiting higher levels, e.g., the nucleus of the solitary tract and the inferior olive. The distribution of NMDA sites is consistent with most, but not all, of the regions previously proposed to use glutamate as an excitatory transmitter. Thus, the distribution of NMDA-sensitive L-[3H]glutamate-binding sites suggests that the NMDA receptor represents a major, distinct subset of excitatory amino acid receptors and indicates regions in which neurotransmission may be mediated or modulated by this receptor.  相似文献   

9.
We examined the distribution and density of N-methyl-D-aspartate (NMDA) displaceable L-[3H]glutamate binding sites in human hippocampal samples obtained postmortem from Alzheimer's disease (AD) patients and from age-matched controls. Binding to NMDA receptors was stable for at least 72 h postmortem, and the pharmacological profile corresponded to that described using electrophysiology. NMDA receptors were concentrated in the terminal fields of major hippocampal pathways including the perforant path, Schaffer collaterals and the hippocampal output to the subiculum, all of which are proposed to use an excitatory amino acid transmitter. Little if any change in hippocampal receptor density was observed in AD patients compared to age-matched controls except in one case where major hippocampal cell loss occurred. The distribution of NMDA receptors did, however, correspond to the predilection for neuritic plaques and neurofibrillary tangles in hippocampal subfields.  相似文献   

10.
These studies were conducted to determine whether amygdaloid kindling results in the long-term alteration of NMDA receptors which could explain the persistent reduction in seizure threshold seen in this phenomenon. NMDA-induced [3H]norepinephrine (NE) release, NMDA-sensitive L-[3H]glutamate binding, and NMDA and glycine-enhanced [3H]TCP binding were measured in brain tissue from kindled rats and nonstimulated control rats 3 to 6 weeks after the last seizure. There was no difference in the ability of NMDA to induce [3H]NE release from kindled or control slices of amygdala or hippocampus. There was also no difference in the ability of phencyclidine (PCP) or Mg2+ to inhibit [3H]NE release induced by 100 microM NMDA. Equilibrium saturation experiments of NMDA-sensitive L-[3H]glutamate binding revealed no differences in KD or Bmax values between control and kindled cortex, amygdala, and hippocampus. The Ki values for NMDA displacement of L-[3H]glutamate binding also did not differ in kindled tissue. NMDA-enhanced [3H]TCP binding was similar in cortex, amygdala, and hippocampus of kindled and control tissues. Finally, glycine-enhanced [3H]TCP binding was not different in control or kindled tissues. These studies suggest that the NMDA recognition site and the modulation of the NMDA receptor/ion channel complex by magnesium, PCP, and glycine are not altered several weeks after the last seizure. Even though NMDA-mediated electrophysiological responses are reportedly enhanced in kindled tissue at that time, the mechanism(s) underlying the enhancement remains to be determined.  相似文献   

11.
The characterization of specific acidic amino acid binding sites to snail, Helix aspersa, ganglia membranes has been assayed using tritiated glutamate (L-[3H]Glu), aspartate (L-[3H]Asp), cysteine sulfinate (L-[3H]CSA) and kainate. At 2 degrees C, only L-[3H]Glu and [3H]kainate specific binding could be measured using a filtration procedure to separate bound from free ligand. The analysis of L-[3H]Glu specific binding reveals the presence of one class of high-affinity binding sites with Kd = 0.12 microM and Bmax = 30 pmol/mg protein. This L-[3H]Glu binding was specific, reversible and saturable. The order of potency of different substances, agonists or antagonists of the rat brain excitatory amino acid receptors, has been determined. Kainate was the best displacing agent, followed by ibotenate = L-Glu greater than L-alpha-aminoadipate (L-alpha-AA) greater than homocysteate (HCA). Using 10 nM [3H]kainate, a single class of binding site was detected. Its pharmacological properties indicate that it is likely identical to the L-[3H]Glu binding site. This L-Glu-kainate site possesses most of the properties expected for a specific receptor. However, whereas L-[3H]Glu binding could be detected on purified neuronal membranes, the major component of specifically bound L-[3H]Glu appeared to be located on the sheaths surrounding neuronal cell bodies. These findings suggest that Glu or another endogenous acidic amino acid may function as a transmitter at neuromuscular junctions in Helix periesophagic ring, acting at a receptor distinct from those on nerve cells.  相似文献   

12.
The influence of short-term adrenalectomy or corticosterone treatment on the binding of glutamate receptor subtypes in the rat hippocampus was explored using the technique of in vitro autoradiography. Analysis of NMDA, kainate and AMPA binding in the hippocampus was conducted on the brains of control, adrenalectomized, and adrenalectomized animals given corticosterone treatment. In addition, serum corticosterone levels were determined by RIA. No striking effects of acute adrenalectomy on the distribution or density of any glutamate receptor subtype were observed in the hippocampus. Adrenalectomy had a small but significant effect on kainate binding in the stratum lucidum and stratum radiatum of CA3 in the first experiment, but no effect in follow-up experiments. Short-term treatment with stress levels of corticosterone had no effect on the binding of NMDA or kainate in any hippocampal subfield. However, a small effect of high doses of corticosterone (CORT) was observed on AMPA binding in one subregion. Although the hippocampus is a target for glucocorticoids and uses excitatory amino acids as a primary neurotransmitter, transient manipulation of adrenal hormone levels did not directly modulate excitatory amino acid receptor binding.  相似文献   

13.
It has been hypothesized that changes in the excitatory amino acid receptor biosynthesis may be involved in the mechanism of kindling—an animal model of epileptogenesis. In order to test this hypothesis, we investigated the effects of pentylenetetrazol kindling on the expression of genes coding for NMDAR1 and GluR2 in the rat hippocampal formation. Pentylenetetrazol kindling decreased the hippocampal NMDAR1 mRNA level after 3 and 24 h; lowered the GluR2 flip level and elevated the flop mRNA one in the CA1 field and dentate gyrus after 3 and 24 h, respectively. A receptor autoradiography showed an increase in the [3H]MK-801 binding density in the hippocampus following both acute and repeated pentylenetetrazol administration. We conclude that an early occurrence of downregulation of the glutamate receptor gene expression may be an adaptive response of glutamate receptors to an oversupply of excitatory amino acids during repeated seizures.  相似文献   

14.
The subthalamic nucleus plays a pivotal role in the regulation of basal ganglia output. Recent electrophysiologic, lesion and immunocytochemical studies suggest that the subthalamic nucleus uses an excitatory amino acid as a neurotransmitter. After complete ablation of the subthalamic nucleus, we have examined the NMDA, AMPA, kainate and metabotropic subtypes of excitatory amino acid receptors in two major subthalamic projection areas (globus pallidus and substantia nigra pars reticulata) with quantitative autoradiography. Two weeks after ablation, binding sites for [3H]AMPA and [3H]kainate increased in substantia nigra pars reticulata ipsilateral to the lesion. In globus pallidus on the lesioned side, [3H]glutamate binding to the NMDA recognition site decreased. The results suggest that glutamate receptors regulate after interruption of subthalamic nucleus output.  相似文献   

15.
The neurodegenerative action of the excitatory amino acid neurotransmitter (glutamate) and its exogenous (N-methyl-D-aspartate, kainate) or endogenous (quinolinate) analogues were studied on cultures of dissociated nerve cells from the embryonal mouse hippocampus. The exposure of primary cultures for 3-6 h to these excitotoxins showed that neurons were vulnerable to both glutamate and all tested agonists which induced the swelling and vacuolization of neuronal bodies accompanied by degeneration of their dendrites. This process terminated by complete cell destruction. The neurotoxic effect of glutamate (1 mM) was not suppressed by a competitive NMDA receptor antagonist (D, L-2-amino-5-phosphonovalerate, 0.3 mM) and was only slightly prevented by gamma-D-glutamylglycine (3mM). The protective action of the latter was more evident in the presence of lower glutamate concentration (0.5 mM). The excitotoxic effect of N-methyl-D-aspartate (0.1 mM) or quinolinate (0.5mM) was almost completely blocked by both antagonists. In contrast, D, L-2-amino-5-phosphonovalerate failed to protect hippocampal neurons from damage induced by kainate while partial antagonism of kainate neurotoxicity was observed with gamma-D-glutamylglycine. These finding suggest that glutamate neurotoxicity may be derived, mainly, from the non-NMDA type(s) of glutamate receptor present on hippocampal cell membranes with a low effectiveness to suppress this effect by selective competitive NMDA antagonist. Possible involvement of glutamate receptor(s) in the early dendritic outgrowth of hippocampal neurons and in the process of neuronal "cell death" is discussed.  相似文献   

16.
We investigated the effect of 10 months ovariectomy and a correction therapy, 2 weeks before the rats were killed, of oestradiol, progesterone or their combination on NMDA and AMPA receptor binding in the hippocampus, dentate gyrus, striatum, nucleus accumbens and frontal cortex of the rat brain as well as on amino acid levels in frontal cortex. NMDA and AMPA binding densities were assayed by autoradiography using, respectively, L-[3H]glutamate and [3H]AMPA; amino acid concentrations were measured by high performance liquid chromatograhy (HPLC) coupled with UV detection. Ovariectomy was without effect on NMDA and AMPA binding density in all brain regions assayed except in the hippocampal CA1 region and dentate gyrus where it decreased NMDA binding density compared to intact rats values. Oestradiol restored and increased NMDA binding density in the CA1 subfield and the dentate gyrus of ovariectomized rats but, by contrast, it decreased binding density in the striatum and in the frontal cortex while having no effect in the CA2/3 subfield of the hippocampus and in the nucleus accumbens. Oestradiol was without effect on AMPA binding density in the hippocampus and the dentate gyrus but it reduced AMPA binding density in the striatum, the frontal cortex and the nucleus accumbens. Progesterone, and oestradiol combined with progesterone, decreased NMDA but not AMPA binding density in the frontal cortex of ovariectomized rats, and they were without effect on these receptors in the other brain regions assayed. Amino acid concentrations in the frontal cortex were unchanged after ovariectomy or steroid treatments. The effect of oestradiol in the hippocampus confirmed in the present study and our novel findings in the frontal cortex, striatum and nucleus accumbens may have functional significance for schizophrenia and neurodegenerative diseases.  相似文献   

17.
As we have recently reported that Cl(-)-dependent glutamate (GLU) binding reflects GLU accumulation into membrane vesicles, the characteristics, kinetics and pharmacological specificities of L-[3H]glutamate (L-[3H]GLU) binding to crude rat brain synaptic membranes, were investigated in Cl(-)-free medium. L-[3H]GLU binding was systematically compared to that of L-[3H]cysteine sulfinate (L-[3H]CSA) and L-[3H]ASP), two other putative excitatory amino acids. A high affinity site was determined for each of these radioactive ligands (L-[3H]GLU: Kd = 0.14 microM, Bm = 3.4 pmol/mg protein; L-[3H]CSA: Kd = 0.07 microM, Bm = 2.2 pmol/mg protein; L-[3H]ASP: Kd = 5.8 microM, Bm = 31.2 pmol/mg protein). The pharmacological specificity of these Cl(-)-independent binding sites indicate the existence of at least 3 distinct high affinity sites, all different from the Cl(-)-dependent GLU binding 'site': one having a similar affinity for GLU and CSA, a second one preferring CSA, and a third one preferring ASP. Among the large quantity of structural analogs of the neuroexcitatory amino acids tested, only endogenous compounds (GLU, ASP and CSA) (except hydroxylamine-o-sulfate) were able to interact efficiently. No inhibition by classical agonists and antagonists (such as N-methyl-D-aspartate, quisqualate, kainate, 2-amino-4-phosphonobutyrate, or 2-amino-5-phosphonovalerate) was found. In addition to their high specificity, these Cl(-)-independent sites possess most other biochemical characteristics of receptor proteins.  相似文献   

18.
A C Foster  G E Fagg 《Brain research》1984,319(2):103-164
This review summarizes studies designed to label and characterize mammalian synaptic receptors for glutamate, aspartate and related acidic amino acids using in vitro ligand binding techniques. The binding properties of the 3 major ligands employed--L-[3H]glutamate, L-[3H]aspartate and [3H]kainate--are described in terms of their kinetics, the influence of ions, pharmacology, molecular nature, localization and physiological/pharmacological function. In addition, the binding characteristics are described of some new radioligands--[3H]AMPA, L-[3H]cysteine sulphinate, L-[35S]cysteate, D-[3H]aspartate, D,L-[3H]APB, D-[3H]APV and D,L-[3H]APH. Special emphasis is placed on recent findings which allow a unification of the existing binding data, and detailed comparisons are made between binding site characteristics and the known properties of the physiological/pharmacological receptors for acidic amino acids. Through these considerations, a binding site classification is suggested which differentiates 5 different sites. Four of the binding site subtypes are proposed to correspond to the individual receptor classes identified in electrophysiological experiments; thus, A1 = NMDA receptors; A2 = quisqualate receptors; A3 = kainate receptors; A4 = L-APB receptors; the fifth site is proposed to be the recognition site for a Na+-dependent acidic amino acid membrane transport process. An evaluation of investigations designed to elucidate regulatory mechanisms at acidic amino acid binding sites is made; hypotheses such as the Ca2+-activated protease hypothesis of long-term potentiation are assessed in terms of the new binding site/receptor classification scheme, and experiments are suggested which will clarify and expand this exciting area in the future.  相似文献   

19.
The postnatal development of excitatory amino acid receptor types including kainate, N-methyl-D-aspartate (NMDA), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) was assessed in the hippocampus, entorhinal cortex, and adjacent neocortex in normal and prenatally protein malnourished rats ages 15, 30, 90, and 220 postnatal days by quantitative autoradiography. Tritiated ligands used to measure binding site density were (3)[H]kainate, (3)[H]MK-801, and (3)[H]AMPA, respectively. Kainate receptors showed statistically significant increases in binding density in stratum lucidum of CA3 (hippocampal mossy fiber zone) in 90- and 220-day-old malnourished rats compared with age- and sex-matched controls but not in 15- or 30-day-old malnourished rats. Compared with previous anatomic studies, these results are mostly in agreement with a significantly decreased hippocampal mossy fiber plexus in 15-, 90-, and 220-day-old rats but not in 30-day-old rats. These results suggested that the increased density of postsynaptic kainate receptors located mainly on proximal apical dendrites of CA3 pyramidal cells may be compensatory to decreased glutamate release due to the reduction in mossy fiber plexus. In contrast, the density of putative NMDA and AMPA receptors quantified in prenatally malnourished rats was comparable to the density quantified in age- and sex-matched control rats, as were all three receptor types in entorhinal cortex and adjacent neocortex. Thus, the selectivity of the compensation of (3)[H]kainate-labeled mossy fiber plexus in adult but not in early postnatal developing malnourished rats may help ensure continued breeding and survival of the species under otherwise adverse environmental conditions.  相似文献   

20.
We investigated the release of gamma-[2,3-3H(N)]aminobutyric acid ([3H]GABA) from hippocampal neurons in primary cell culture. [3H]GABA release was stimulated by the excitatory amino acid neurotransmitter glutamate as well as by N-methyl-D-aspartate (NMDA) and kainate. Cell depolarization induced by raising [K+]o or by veratridine also stimulated [3H]GABA release. NMDA-induced release was completely blocked by 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP+), Mg2+ and Zn2+ whereas the release induced by glutamate and kainate was much less susceptible to inhibition by these substances. Furthermore, removal of external Ca2+ inhibited NMDA-induced release, but not that induced by glutamate, kainate, veratridine or 50 mM K+. Removal of external Na+ reduced [3H]GABA release evoked by all stimuli, but to different extents. All of the excitatory amino acids tested increased [Ca2+]i within hippocampal neurons as assessed by fura-2 based microspectrofluorimetry. This increase in [Ca2+]i was completely dependent on the presence of external Ca2+. These results suggest that Ca2+-dependent and -independent forms of GABA release from hippocampal interneurons may occur. [3H]GABA release evoked by glutamate, kainate, veratridine or 50 mM K+, appeared to be mediated by the reversal of electrogenic, Na+-coupled GABA uptake. Release was inhibited by nipecotic acid, an inhibitor of the Na+-coupled GABA uptake system. However, release induced by NMDA may also include a Ca2+-dependent component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号