首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that different pyramidal cell inputs vary in the short-term plasticity expressed when they are subjected to repetition of use. Here, we describe short-term plasticity at synapses that mediate long-range input to neocortical layer 1 and compare it with that which normally occurs in the hippocampal Schaffer collateral pathway, which also involves projection by remote inputs onto apical dendrites. We isolated tangential inputs to layer 1 in neocortical slices, stimulated these with brief 40-Hz trains, and examined postsynaptic responses by recording extracellularly from layer 1 in somatosensory, prefrontal, and visual neocortex, and intracellularly from visually identified pyramidal cell somata in layer 2/3 in somatosensory and prefrontal neocortex. Train response amplitudes were characterized by calculating paired-pulse ratios, fifth-versus-first amplitude ratios (5th/1st ratios), and a center-of-mass index "M". As expected, the hippocampal train responses facilitated strongly. In contrast, layer-1 responses displayed strong synaptic depression in all regions examined. This depression was reflected in 5th/lst ratios and M scores, but not paired-pulse ratios because it did not consistently begin until the third responses in trains. It persisted unchanged in the presence of partially blocking levels of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but was converted to strong facilitation when slices were bathed in low-Ca++ media. Intracellularly, we observed response-train depression very similar to that recorded extracellularly. These findings show that long-range inputs to neocortical layer 1 display short-term plasticity markedly different from that which normally occurs at hippocampal Schaffer collateral synapses, but similar to that which has been described previously for excitatory inputs to pyramidal cells in deeper neocortical layers.  相似文献   

2.
Schaffer collateral axons form excitatory synapses that are distributed across much of the dendritic arborization of hippocampal CA1 pyramidal neurons. Remarkably, AMPA-receptor-mediated miniature EPSP amplitudes at the soma are relatively independent of synapse location, despite widely different degrees of dendritic filtering. A progressive increase with distance in synaptic conductance is thought to produce this amplitude normalization. In this study we examined the mechanism(s) responsible for spatial scaling by making whole-cell recordings from the apical dendrites of CA1 pyramidal neurons. We found no evidence to suggest that there is any location dependence to the range of cleft glutamate concentrations found at Schaffer collateral synapses. Furthermore, we observed that release probability ( P r), paired-pulse facilitation and the size of the readily releasable vesicular pool are not dependent on synapse location. Thus, there do not appear to be any changes in the fundamental presynaptic properties of Schaffer collateral synapses that could account for distance-dependent scaling. On the other hand, two-photon uncaging of 4-methoxy-7-nitroindolinyl-caged l -glutamate onto isolated dendritic spines shows that the number of postsynaptic AMPA receptors per spine increases with distance from the soma. We conclude, therefore, that the main synaptic mechanism involved in the production of distance-dependent scaling of Schaffer collateral synapses is an elevated postsynaptic AMPA receptor density.  相似文献   

3.
The mammalian hippocampus, together with subcortical and cortical areas, is responsible for some forms of learning and memory. Proper hippocampal function depends on the highly dynamic nature of its circuitry, including the ability of synapses to change their strength for brief to long periods of time. In this study, we focused on a transient depression of glutamatergic synaptic transmission at Schaffer collateral synapses in acute hippocampal slices. The depression of evoked excitatory postsynaptic current (EPSC) amplitudes, herein called transient depression, follows brief trains of synaptic stimulation in stratum radiatum of CA1 and lasts for 2-3 min. Depression results from a decrease in presynaptic glutamate release, as NMDA-receptor-mediated EPSCs and composite EPSCs are depressed similarly and depression is accompanied by an increase in the paired-pulse ratio. Transient depression is prevented by blockade of metabotropic glutamate and acetylcholine receptors, presumably located presynaptically. These two receptor types--acting together--cause depression. Blockade of a single receptor type necessitates significantly stronger conditioning trains for triggering depression. Addition of an acetylcholinesterase inhibitor enables depression from previously insufficient conditioning trains. Furthermore, a strong coincident, but not causal, relationship existed between presynaptic depression and postsynaptic internal Ca(2+) release, emphasizing the potential importance of functional interactions between presynaptic and postsynaptic effects of convergent cholinergic and glutamatergic inputs to CA1. These convergent afferents, one intrinsic to the hippocampus and the other likely originating in the medial septum, may regulate CA1 network activity, the induction of long-term synaptic plasticity, and ultimately hippocampal function.  相似文献   

4.
Hippocampal synaptic plasticity between Schaffer collaterals and CA1 pyramidal neurons can be induced by activation of N-methyl-d-aspartate receptors (NMDARs) or of metabotropic glutamate receptors (mGluRs). Inhibitory GABAergic interneurons in this region abundantly terminate on pyramidal neurons and may thus influence synaptic plasticity. Although NMDAR-dependent synaptic plasticity is known to be influenced by inhibitory interneurons, little is known about the role of GABA on mGluR-dependent plasticity. Here, we used field potential recordings of the Schaffer collateral-CA1 synapses in rat hippocampal slices in order to study the effect of GABAA receptor (GABAAR) inhibition on mGluR-dependent long-term depression (LTD). Without GABAAR blockade, mGluR-dependent LTD was induced pharmacologically by the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG, 100 μM, 10 min) as well as electrically by paired-pulse low-frequency stimulation (PP-LFS, 900 paired pulses at 1 Hz) resulting in a stable depression of the field response lasting at least 80 min after LTD induction. The GABAAR antagonist gabazine (5 μM) itself caused an increase of field responses suggesting an endogenous GABA release inhibiting CA1 field potentials. However, when either DHPG or PP-LFS was applied during GABAAR inhibition, the field responses were significantly reduced. Moreover, normalizing these responses to experiments without GABAAR blockade, there was no significant effect of gabazine on both DHPG- and PP-LFS-induced LTD. Thus, our results show that mGluR-dependent LTD at Schaffer collateral-CA1 synapses is unaffected by GABAAR mediated synaptic transmission.  相似文献   

5.
Adenosine protects neurons during hypoxia by inhibiting excitatory synaptic transmission and preventing NMDA receptor activation. Using an adeno-associated viral (AAV) vector containing Cre recombinase, we have focally deleted adenosine A(1) receptors in specific hippocampal regions of adult mice. Recently, we found that deletion of A(1) receptors in the CA1 area blocks the postsynaptic responses to adenosine in CA1 pyramidal neurons, and deletion of A(1) receptors in CA3 neurons abolishes the presynaptic effects of adenosine on the Schaffer collateral input [J Neurosci 23 (2003) 5762]. In the current study, we used this technique to delete A(1) receptors focally from CA3 neurons to investigate whether presynaptic A(1) receptors protect synaptic transmission from hypoxia. We studied the effects of prolonged (1 h) hypoxia on the evoked field excitatory postsynaptic potentials (fEPSPs) in the CA1 region using in vitro slices. Focal deletion of the presynaptic A(1) receptors on the Schaffer collateral input slowed the depression of the fEPSPs in response to hypoxia and impaired the recovery of the fEPSPs after hypoxia. Delayed responses to hypoxia linearly correlated with impaired recovery. These findings provide direct evidence that the neuroprotective role of adenosine during hypoxia depends on the rapid inhibition of synaptic transmission by the activation of presynaptic A(1) receptors.  相似文献   

6.
Early in development, network activity in the hippocampus is characterized by giant depolarizing potentials (GDPs). These potentials consist of recurrent membrane depolarizations with superimposed fast action potentials separated by quiescent intervals. They are generated by the interplay of glutamate and gamma-aminobutyric acid (GABA) that, in the immediate postnatal period, is depolarizing and excitatory. Here, we review some recent data concerning the functional role of GDPs in shaping synaptic currents at low-probability mossy-fiber (MF)-CA3 synapses. A pairing procedure was used to correlate GDPs-associated calcium increase in the postsynaptic cell with stimulation of afferent inputs. The pairing protocol caused the appearance of synaptic responses or persistently enhanced the number of successes in "presynaptically" silent or low-probability synapses, respectively. In double-pulses experiments, this effect was associated with a significant reduction in the paired-pulse ratio and a significant increase in the inverse squared value of the coefficient of variation of response amplitude, suggesting that long-term potentiation (LTP) expression was due to the increased probability of transmitter released. In the absence of pairing, no significant changes in synaptic efficacy could be detected. When the interval between GDPs and MF stimulation was increased, the potentiating effect progressively declined and reached the control level in less than 4 s. Mossy-fiber responses were identified on the basis of their paired-pulse facilitation, short-term frequency facilitation, and sensitivity to the group III metabotropic glutamate receptor (mGluR) agonist, 2-amino-4-phosphonobutyric acid (L-AP4). Using these criteria, we found that MFs release mainly GAB A onto CA3 pyramidal cells or GABAergic interneurons. In line with their GABAergic nature, MF responses were blocked by the GABAA receptor antagonists bicuculline or gabazine and were potentiated by NO-711, a blocker of the GABA transporter GAT-1, and by flurazepam, an allosteric modulator of GABAA receptors. In addition, chemical stimulation of granule cell dendrites with glutamate in the presence of 6,7-dinitroquinoxaline-2,3-dione (DNQX) induced into target neurons barrages of L-AP4-sensitive GABAA-mediated postsynaptic currents, further supporting the GABAergic phenotype of granule cells. As in MF, pairing GDPs with Schaffer collateral stimulation induced a persistent potentiation of spontaneous and evoked alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-mediated responses at poorly developed CA3-CA1 synapses. This effect was mediated by an increase in calcium in the postsynaptic cell via voltage-dependent calcium channels activated by the depolarizing action of GABA during GDPs. We provide evidence also that, at these connections, cyclic AMP-dependent protein kinase A (PKA) is the signaling molecule necessary for enhancing synaptic efficacy, since GDPs-induced potentiation was prevented by the membrane permeable PKA inhibitor (PKI 14-22) applied in the bath or by the membrane impermeable form of PKI (PKI 6-22) applied via the patch pipette. In conclusion, it is suggested that GDPs translate specific patterns of pre- and postsynaptic activity into long-lasting changes in synaptic strength and stabilize synaptic connections, thus contributing to the structural refinement of the hippocampal circuit.  相似文献   

7.
Environmental enrichment (EE) is a well-established paradigm for studying naturally occurring changes in synaptic efficacy in the hippocampus that underlie experience-induced modulation of learning and memory in rodents. Earlier research on the effects of EE on hippocampal plasticity focused on long-term potentiation (LTP). Whereas many of these studies investigated changes in synaptic weight, little is known about potential contributions of neuronal excitability to EE-induced plasticity. Here, using whole-cell recordings in hippocampal slices, we address this gap by analyzing the impact of EE on both synaptic plasticity and intrinsic excitability of hippocampal CA1 pyramidal neurons. Consistent with earlier reports, EE increased contextual fear memory and dendritic spine density on CA1 cells. Furthermore, EE facilitated LTP at Schaffer collateral inputs to CA1 pyramidal neurons. Analysis of the underlying causes for enhanced LTP shows EE to increase the frequency but not amplitude of miniature excitatory postsynaptic currents. However, presynaptic release probability, assayed using paired-pulse ratios and use-dependent block of N-methyl-d-aspartate receptor currents, was not affected. Furthermore, CA1 neurons fired more action potentials (APs) in response to somatic depolarization, as well as during the induction of LTP. EE also reduced spiking threshold and after-hyperpolarization amplitude. Strikingly, this EE-induced increase in excitability caused the same-sized excitatory postsynaptic potential to fire more APs. Together, these findings suggest that EE may enhance the capacity for plasticity in CA1 neurons, not only by strengthening synapses but also by enhancing their efficacy to fire spikes-and the two combine to act as an effective substrate for amplifying LTP.  相似文献   

8.
Bilobalide, a unique constituent of Ginkgo biloba, has been reported to potentiate population spikes in hippocampal CA1 pyramidal cells and to protect the brain against cell death. In this study, the effects of bilobalide on synaptic transmission and its plasticity in rat hippocampal subfields were electrophysiologically investigated. Bilobalide (50 μM) significantly potentiated the input–output relationship at Schaffer collateral (SC)-CA1 synapses but not at medial perforant path (MPP)-dentate gyrus (DG), lateral perforant path (LPP)-DG, or mossy fiber (MF)-CA3 synapses. Facilitative effects of bilobalide on synaptic plasticity were only observed at MPP-DG synapses, in which the induction of long-term depression was blocked in the presence of bilobalide. However, no effect on synaptic plasticity was observed at SC-CA1 synapses. These results suggest that bilobalide has differential effects on synaptic efficacy in each hippocampal subfield.  相似文献   

9.
The hippocampus contains one very strong recurrent excitatory network formed by associational connections between CA3 pyramidal cells and another that depends largely on a disynaptic excitatory pathway between dentate granule cells. The recurrent excitatory network in CA3 has long been considered a possible location of autoassociative memory storage, whereas changes in the level and arrangement of recurrent excitation between granule cells are strongly implicated in epileptogenesis. Hilar mossy cells are likely to receive collateral input from CA3 pyramidal cells and they are key intermediaries (by mossy fiber inputs) in the recurrent excitatory network between granule cells. The current study uses minimal stimulation techniques in an in vitro preparation of the rat dentate gyrus to examine presynaptic modulation of both mossy fiber and non-mossy fiber inputs to hilar mossy cells. We report that both mossy fiber and non-mossy fiber inputs to hilar mossy cells express presynaptic gamma-aminobutyric acid type B (GABA(B)) receptors that are subject to tonic inhibition by ambient GABA. We further find that only non-mossy fiber inputs express presynaptic muscarinic acetylcholine receptors, but that bath application of cholinergic agonists produces action potential-dependent increases in ambient GABA that can indirectly inhibit mossy fiber inputs. Finally, we demonstrate that mossy cells express high-affinity postsynaptic GABA(A) receptors that are also capable of detecting changes in ambient GABA produced by cholinergic agonists. Our results are among the first to directly characterize these important collateral inputs to hilar mossy cells and may help facilitate informed comparison between primary and collateral projections in two major excitatory pathways.  相似文献   

10.
Effects of temperature increase on the neuronal activity of hippocampal CA2-CA1 regions were examined by using optical and electrophysiological recording techniques. Stimulation of the Schaffer collaterals at the CA2 region evoked depolarizing optical signals that spread toward the CA1 region at 32 degrees C. The optical signal recorded by 49 pixels was characterized by fast and slow components that were closely related to presynaptic action potentials and excitatory postsynaptic responses, respectively. The optical signal was depressed by temperature increase to 38-40 degrees C. The temperature increase to 38 degrees C produced a hyperpolarization and a depression of the excitatory postsynaptic potential (EPSP) in single hippocampal CA1 pyramidal neurons. The depression of the neuronal activity induced by temperature increase was attenuated by application of glucose (22 mM) or pyruvate (22 mM). Adenosine (200 microM) did not block the presynaptic action potential but strongly depressed the excitatory postsynaptic response. 8-Cyclopentyl-1,3-dimethylxanthine (8-CPT) (10 microM), an antagonist for adenosine A(1) receptors, attenuated the depression of the excitatory postsynaptic response but not the inhibition of the presynaptic action potential at 38 degrees C. These results suggest that adenosine mediates the high-temperature-induced depression of the excitatory synaptic transmission but not that of action potential propagation in rat CA1 neurons.  相似文献   

11.
Repetitive stimulation of Schaffer collaterals induces activity-dependent changes in the strength of polysynaptic inhibitory postsynaptic potentials (IPSPs) in hippocampal CA1 pyramidal neurons that are dependent on stimulation parameters. In the present study, we investigated the effects of two stimulation patterns, theta-burst stimulation (TBS) and 100 Hz tetani, on pharmacologically isolated monosynaptic GABAergic responses in adult CA1 pyramidal cells. Tetanization with 100 Hz trains transiently depressed both early and late IPSPs, whereas TBS induced long-term potentiation (LTP) of early IPSPs that lasted at least 30 min. Mechanisms mediating this TBS-induced potentiation were examined using whole-cell recordings. The paired-pulse ratio of monosynaptic inhibitory postsynaptic currents (IPSCs) was not affected during LTP, suggesting that presynaptic changes in GABA release are not involved in the potentiation. Bath application of the GABAB receptor antagonist CGP55845 or the group I/II metabotropic glutamate receptor antagonist E4-CPG inhibited IPSC potentiation. Preventing postsynaptic G-protein activation or Ca2+ rise by postsynaptic injection of GDP-β-S or BAPTA, respectively, abolished LTP, indicating a G-protein- and Ca2+-dependent induction in this LTP. Finally during paired-recordings, activation of individual interneurons by intracellular TBS elicited solely short-term increases in average unitary IPSCs in pyramidal cells. These results indicate that a stimulation paradigm mimicking the endogenous theta rhythm activates cooperative postsynaptic mechanisms dependent on GABABR, mGluR, G-proteins and intracellular Ca2+, which lead to a sustained potentiation of GABAA synaptic transmission in pyramidal cells. GABAergic synapses may therefore contribute to functional synaptic plasticity in adult hippocampus.  相似文献   

12.
Tetraethylammonium (TEA), a K(+)-channel blocker, reportedly induces long-term potentiation (LTP) of hippocampal CA1 synaptic responses, but at CA3 and the dentate gyrus (DG), the characteristics of TEA-induced plasticity and modulation by inhibitory interneurons remain unclear. This study recorded field EPSPs from CA1, CA3 and DG to examine the involvement of GABAergic modulation in TEA-induced synaptic plasticity for each region. In Schaffer collateral-CA1 synapses and associational fiber (AF)-CA3 synapses, bath application of TEA-induced LTP in the presence and absence of picrotoxin (PTX), a GABA(A) receptor blocker, whereas TEA-induced LTP at mossy fiber (MF)-CA3 synapses was detected only in the absence of GABA(A) receptor blockers. MF-CA3 LTP showed sensitivity to Ni(2+), but not to nifedipine. In DG, synaptic plasticity was modulated by GABAergic inputs, but characteristics differed between the afferent lateral perforant path (LPP) and medial perforant path (MPP). LPP-DG synapses showed TEA-induced LTP during PTX application, whereas at MPP-DG synapses, TEA-induced long-term depression (LTD) was seen in the absence of PTX. This series of results demonstrates that TEA-induced DG and CA3 plasticity displays afferent specificity and is exposed to GABAergic modulation in an opposite manner.  相似文献   

13.
Creation of AMPA-silent synapses in the neonatal hippocampus   总被引:10,自引:0,他引:10  
In the developing brain, many glutamate synapses have been found to transmit only NMDA receptor-mediated signaling, that is, they are AMPA-silent. This result has been taken to suggest that glutamate synapses are initially AMPA-silent when they are formed, and that AMPA signaling is acquired through activity-dependent synaptic plasticity. The present study on CA3-CA1 synapses in the hippocampus of the neonatal rat suggests that AMPA-silent synapses are created through a form of activity-dependent silencing of AMPA signaling. We found that AMPA signaling, but not NMDA signaling, could be very rapidly silenced by presynaptic electrical stimulation at frequencies commonly used to probe synaptic function (0.05-1 Hz). Although this AMPA silencing required a rise in postsynaptic Ca(2+), it did not require activation of NMDA receptors, metabotropic glutamate receptors or voltage-gated calcium channels. The AMPA silencing, possibly explained by a removal of postsynaptic AMPA receptors, could subsequently be reversed by paired presynaptic and postsynaptic activity.  相似文献   

14.
The mechanisms of synaptic transmission in the rat hippocampus at birth are assumed to be fundamentally different from those found in the adult. It has been reported that in the CA3-CA1 pyramidal cells a conversion of "silent" glutamatergic synapses to conductive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses starts gradually after P2. Further, GABA via its depolarizing action seems to give rise to grossly synchronous yet slow calcium oscillations. Therefore, GABA is generally thought to have a purely excitatory rather than an inhibitory role during the first postnatal week. In the present study field potential recordings and gramicidin perforated and whole cell clamp techniques as well as K(+)-selective microelectrodes were used to examine the relative contributions of AMPA and GABA(A) receptors to network activity of CA3-CA1 pyramidal cells in the newborn rat hippocampus. As early as postnatal day (P0-P2), highly coherent spontaneous firing of CA3 pyramidal cells was seen in vitro. Negative-going extracellular spikes confined to periodic bursts (interval 16 +/- 3 s) consisting of 2.9 +/- 0.1 spikes were observed in stratum pyramidale. The spikes were accompanied by AMPA-R-mediated postsynaptic currents (PSCs) in simultaneously recorded pyramidal neurons (7.6 +/- 3.0 unitary currents per burst). In CA1 pyramidal cells synchronous discharging of CA3 circuitry produced a barrage of AMPA currents at >20 Hz frequencies, thus demonstrating a transfer of the fast CA3 network activity to CA1 area. Despite its depolarizing action, GABA(A)-R-mediated transmission appeared to exert inhibition in the CA3 pyramidal cell population. The GABA(A)-R antagonist bicuculline hypersynchronized the output of glutamatergic CA3 circuitry and increased the network-driven excitatory input to the pyramidal neurons, whereas the GABA(A)-R agonist muscimol (100 nM) did the opposite. However, the occurrence of unitary GABA(A)-R currents was increased after muscimol application from 0.66 +/- 0.16 s(-1) to 1.43 +/- 0.29 s(-1). It was concluded that AMPA synapses are critical in the generation of spontaneous high-frequency bursts in CA3 as well as in CA3-CA1 transmission as early as P0-P2 in rat hippocampus. Concurrently, although GABA(A)-R-mediated depolarization may excite hippocampal interneurons, in CA3 pyramidal neurons it can restrain excitatory inputs and limit the size of the activated neuronal population.  相似文献   

15.
Activity-dependent long-term synaptic changes were investigated at glutamatergic synapses in the supraoptic nucleus (SON) of the rat hypothalamus. In acute hypothalamic slices, high frequency stimulation (HFS) of afferent fibres caused long-term potentiation (LTP) of the amplitude of AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) recorded with the whole-cell patch-clamp technique. LTP was also obtained in response to membrane depolarization paired with mild afferent stimulation. On the other hand, stimulating the inputs at 5 Hz for 3 min at resting membrane potential caused long-term depression (LTD) of excitatory transmission in the SON. These forms of synaptic plasticity required the activation of NMDA receptors since they were abolished in the presence of d -AP5 or ifenprodil, two selective blockers of these receptors. Analysis of paired-pulse facilitation and trial-to-trial variability indicated that LTP and LTD were not associated with changes in the probability of transmitter release, thereby suggesting that the locus of expression of these phenomena was postsynaptic. Using sharp microelectrode recordings in a hypothalamic explant preparation, we found that HFS also generates LTP at functionally defined glutamatergic synapses formed between the organum vasculosum lamina terminalis and SON neurons. Taken together, our findings indicate that glutamatergic synapses in the SON exhibit activity-dependent long-term synaptic changes similar to those prevailing in other brain areas. Such forms of plasticity could play an important role in the context of physiological responses, like dehydration or lactation, where the activity of presynaptic glutamatergic neurons is strongly increased.  相似文献   

16.
Altered hippocampal synaptic plasticity may underlie age-related memory impairment. In acute hippocampal slices from aged (22-24 mo) and young adult (1-12 mo) male Brown Norway rats, extracellular excitatory postsynaptic field potentials were recorded in CA1 stratum radiatum evoked by Schaffer collateral stimulation. We used enhanced Ca(2+) to Mg(2+) ratio and paired-pulse stimulation protocol to induce maximum changes in the synaptic plasticity. Six episodes of theta-burst stimulation (TBS) or nine episodes of paired low-frequency stimulation (pLFS) were used to generate asymptotic long-term potentiation (LTP) and long-term depression (LTD), respectively. In addition, long-term depotentiation (LTdeP) or de-depression (LTdeD) from maximal LTP and LTD were examined using two episodes of pLFS or TBS. Multiple episodes of TBS or pLFS produced significant LTP or LTD in aged and young adult rats; this was not different between age groups. Moreover, there was no significant difference in the amount of LTdeP or LTdeD between aged and young adult rats. Our results show no age differences in the asymptotic magnitude of LTP or LTD, rate of synaptic modifications, development rates, reversal, or decay after postconditioning. Thus impairment of the basic synaptic mechanisms responsible for expression of these forms of plasticity is not likely to account for decline in memory function within this age range.  相似文献   

17.
Hippocampal mu-opioid receptors (MORs) have been implicated in memory formation associated with opiate drug abuse. MORs modulate hippocampal synaptic plasticity acutely, when chronically activated, and during drug withdrawal. At the network level, MORs increase excitability in area CA1 by disinhibiting pyramidal cells. The precise inhibitory interneuron subtypes affected by MOR activation are unknown; however, not all subtypes are inhibited, and specific interneuron subtypes have been shown to preferentially express MORs. Here we investigate, using voltage-sensitive dye imaging in brain slices, the effect of MOR activation on the patterns of inhibition and on the propagation of excitatory activity in rat hippocampal CA1. MOR activation augments excitatory activity evoked by stimulating inputs in stratum oriens [i.e., Schaffer collateral and commissural pathway (SCC) and antidromic], stratum radiatum (i.e., SCC), and stratum lacunosum-moleculare (SLM; i.e., perforant path and thalamus). The augmented excitatory activity is further facilitated as it propagates through the CA1 network. This was observed as a proportionately larger increase in amplitudes of excitatory activity at sites distal from where the activity was evoked. This facilitation was observed for excitatory activity propagating from all three stimulation sites. The augmentation and facilitation were prevented by GABAA receptor antagonists (bicuculline, 30 microM), but not by GABAB receptor antagonists (CGP 55845, 10 microM). Furthermore, MOR activation inhibited IPSPs in all layers of area CA1. These findings suggest that MOR-induced suppression of GABA release onto GABAA receptors augments all inputs to CA1 pyramidal cells and facilitates the propagation of excitatory activity through the network of area CA1.  相似文献   

18.
Spike-timing modifies the efficacy of both excitatory and inhibitory synapses onto CA1 pyramidal neurons in the rodent hippocampus. Repetitively spiking the presynaptic neuron before the postsynaptic neuron induces inhibitory synaptic plasticity, which results in a depolarization of the reversal potential for GABA (E(GABA)). Our goal was to determine how inhibitory synaptic plasticity regulates CA1 pyramidal neuron spiking in the rat hippocampus. We demonstrate electrophysiologically that depolarizing E(GABA) by 24.7 mV increased the spontaneous action potential firing frequency of cultured hippocampal neurons 254% from 0.12+/-0.07 Hz to 0.44+/-0.13 Hz (n=11; P<0.05). Next we used a single compartment model of a CA1 pyramidal neuron to explore in detail how inhibitory synaptic plasticity of feedforward and feedback inhibition regulates the generation of action potentials, spike latency, and the minimum excitatory conductance required to generate an action potential; plasticity was modeled as a depolarization of E(GABA), which effectively weakens inhibition. Depolarization of E(GABA) at feedforward and feedback inhibitory synapses decreased the latency to the 1st spike by 2.27 ms, which was greater that the sum of the decreases produced by depolarizing E(GABA) at feedforward (0.85 ms) or feedback inhibitory synapses (0.02 ms) alone. In response to a train of synaptic inputs, depolarizing E(GABA) decreased the inter-spike interval and increased the number of output spikes in a frequency dependent manner, improving the reliability of input-output transmission. Moreover, a depolarizing shift in E(GABA) at feedforward and feedback synapses triggered by spike trains recorded from CA1 pyramidal layer neurons during field theta from anesthetized rats, significantly increased spiking on the up- and down-strokes of the first half of the theta rhythm (P<0.05), without changing the preferred phase of firing (P=0.783). This study provides the first explanation of how depolarizing E(GABA) affects pyramidal cell output within the hippocampus.  相似文献   

19.
Analysis of the cholinergic regulation of glutamatergic neurotransmission is an essential step in understanding the hippocampus because it can influence forms of synaptic plasticity that are thought to underlie learning and memory. We studied in vitro the cholinergic regulation of excitatory postsynaptic currents (EPSCs) evoked in rat CA1 pyramidal neurons by Schaffer collateral (SC) stimulation. Using 'minimal' stimulation, which activates one or very few synapses, the cholinergic agonist carbamylcholine (CCh) increased the failure rate of functional more (36 %) than of silent synapses (7 %), without changes in the EPSC amplitude. These effects of CCh were insensitive to manipulations that increased the probability of release, such as paired pulse facilitation, increases in temperature and increases in the extracellular Ca2+ : Mg2+ ratio. Using 'conventional' stimulation, which activates a large number of synapses, CCh inhibited more the pharmacologically isolated non-NMDA (86 %) than the NMDA (47 %) EPSC. The changes in failure rate, EPSC variance and the increased paired pulse facilitation that paralleled the inhibition imply that CCh decreased release probability. Muscarine had similar effects. The inhibition by both CCh and by muscarine was prevented by atropine. We conclude that CCh reduces the non-NMDA component of SC EPSCs by selectively inhibiting transmitter release at functional synapses via activation of muscarinic receptors. The results suggest that SCs have two types of terminals, one in functional synapses, selectively sensitive to regulation through activation of muscarinic receptors, and the other in silent synapses less sensitive to that regulation. The specific inhibition of functional synapses would favour activity-dependent plastic phenomena through NMDA receptors at silent synapses without the activation of non-NMDA receptors and functional synapses.  相似文献   

20.
Zamani MR  Levy WB  Desmond NL 《Neuroscience》2004,129(1):243-254
Hippocampal functions, e.g. synaptic plasticity and hippocampal-dependent behavior, are influenced by the circulating levels of ovarian steroids in adult, female rats. The mechanisms underlying this estradiol-dependent modulation, however, are poorly understood. One possibility is that estradiol alters N-methyl-D-aspartate (NMDA)-receptor functioning in the hippocampus. Here, using the in vitro hippocampal slice preparation, we evaluate estradiol-dependent changes in the NMDA receptor- and the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated components of excitatory postsynaptic potentials (EPSPs) evoked in CA1 by Schaffer collateral test stimulation. Using established experimental conditions [J Neurosci 17 (1997) 1848], we replicate the observation that estradiol pretreatment of ovariectomized rats increases a pharmacologically isolated NMDA receptor-mediated EPSP evoked by Schaffer collateral stimulation. However, using different conditions that optimize study of this evoked response, the estradiol-dependent increase in the monosynaptic NMDA receptor-mediated EPSP is eliminated. Low-intensity test stimulation of the Schaffer collaterals in this optimized medium reveals a novel, late NMDA receptor-mediated EPSP in CA1 from estradiol-pretreated rats. The mechanism(s) underlying this estradiol-dependent increase in a late, NMDA receptor-mediated EPSP is not known, but enhanced CA1-CA1 excitatory circuitry and glutamate spillover could contribute to this response. We conclude that estradiol pretreatment enhances NMDA receptor function in the female hippocampus by increasing not the monosynaptic, but rather a late NMDA receptor-mediated response. Variations in the magnitude of this late response may well contribute to ovarian steroid-dependent modulation of hippocampal synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号