首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous D-serine in mammalian brains]   总被引:3,自引:0,他引:3  
It is well established that, like glycine and D-alanine, D-serine potentiates glutamate neurotransmission via the N-methyl-D-aspartate (NMDA) receptor by selective stimulation of its strychnine-insensitive glycine site and acts as a co-agonist of the glutamate receptor. D-Serine has been found to modify behavioral changes associated with higher brain functions such as memory, convulsion, anxiety, psychotomimetic-induced abnormal behavior and cerebellar ataxia. Interestingly, a substantial amount of free D-serine has been demonstrated in mammalian brains, although it has long been presumed that D-amino acids are uncommon in mammals. Free D-serine is predominantly concentrated in the brain with a persistent high content throughout life. The patterns of the regional variations and the postnatal changes in brain D-serine are closely correlated with those of the R2B subunit of the N-methyl-D-aspartate (NMDA) type excitatory amino acid receptor. Moreover, D-serine is released to the extracellular space and taken up into the brain homogenates, C6 glioma cells and primary culture of astrocytes of the rat cerebral cortex. Recently, the conversion of L-serine to its D-form by serine racemase has been suggested by in vivo and in vitro experiments. These data are consistent with the view that D-serine might be an intrinsic positive modulator of the brain NMDA receptor containing the R2B subunit and play a pivotal role in controlling behavioral expression in mammals.  相似文献   

2.
D-amino acid oxidase (DAAO) catalyzes the oxidative metabolism of D-amino acids including D-serine, a full agonist at the allosteric glycine binding site of the NMDA receptor. D-serine was reported to improve negative and cognitive symptoms of schizophrenia, symptoms poorly addressed by the standard D2 antagonist therapies. Therefore, inhibition of DAAO has gained substantial interest as an effective way to increase D-serine levels in the brain. During the last several years, a growing number of structurally diverse DAAO inhibitors have been identified with significantly higher inhibitory potency compared to the conventional DAAO inhibitors. Some of these new generation of DAAO inhibitors are being evaluated for their ability to enhance D-serine levels in rodents and efficacy in animal models of schizophrenia. This article highlights the progress that has been made toward the discovery of DAAO inhibitors and recent efforts to exploit their therapeutic utility in schizophrenia.  相似文献   

3.
BackgroundN-methyl-D-aspartate (NMDA) receptor activation requires the binding of a co-agonist on the glycine-binding site. D-serine is the main endogenous co-agonist of NMDA receptors, and its availability significantly depends on the activity of the metabolic enzyme D-amino acid oxidase (DAAO). Inhibition of DAAO increases the brain levels of D-serine and modulates a variety of physiological functions, including cognitive behavior.MethodsHere, we examined the effects of a novel 4-hydroxypyridazin-3(2H)-one derivative DAAO inhibitor, Compound 30 (CPD30), on passive avoidance learning and on neuronal firing activity in rats.ResultsD-serine administration was applied as reference, which increased cognitive performance and enhanced hippocampal firing activity and responsiveness to NMDA after both local and systemic application. Similarly to D-serine, CPD30 (0.1 mg/kg) effectively reversed MK-801–induced memory impairment in the passive avoidance test. Furthermore, local iontophoretic application of CPD30 in the vicinity of hippocampal pyramidal neurons significantly increased firing rate and enhanced their responses to locally applied NMDA. CPD30 also enhanced hippocampal firing activity after systemic administration. In 0.1- to 1.0-mg/kg doses, CPD30 increased spontaneous and NMDA-evoked firing activity of the neurons. Effects of CPD30 on NMDA responsiveness emerged faster (at 10 minutes post-injection) when a 1.0-mg/kg dose was applied compared with the onset of the effects of 0.1 mg/kg CPD30 (at 30 minutes post-injection).ConclusionsThe present results confirm that the inhibition of DAAO enzyme is an effective strategy for cognitive enhancement. Our findings further facilitate the understanding of the cellular mechanisms underlying the behavioral effects of DAAO inhibition in the mammalian brain.  相似文献   

4.
Labrie V  Wong AH  Roder JC 《Neuropharmacology》2012,62(3):1484-1503
The glutamate neurotransmitter system is one of the major candidate pathways for the pathophysiology of schizophrenia, and increased understanding of the pharmacology, molecular biology and biochemistry of this system may lead to novel treatments. Glutamatergic hypofunction, particularly at the NMDA receptor, has been hypothesized to underlie many of the symptoms of schizophrenia, including psychosis, negative symptoms and cognitive impairment. This review will focus on D-serine, a co-agonist at the NMDA receptor that in combination with glutamate, is required for full activation of this ion channel receptor. Evidence implicating D-serine, NMDA receptors and related molecules, such as D-amino acid oxidase (DAO), G72 and serine racemase (SRR), in the etiology or pathophysiology of schizophrenia is discussed, including knowledge gained from mouse models with altered D-serine pathway genes and from preliminary clinical trials with D-serine itself or compounds modulating the D-serine pathway. Abnormalities in D-serine availability may underlie glutamatergic dysfunction in schizophrenia, and the development of new treatments acting through the D-serine pathway may significantly improve outcomes for many schizophrenia patients.  相似文献   

5.
We review the role of two susceptibility genes; G72 and DAAO in glutamate neurotransmission and the aetiology of schizophrenia. The gene product of G72 is an activator of DAAO (D-amino acid oxidase), which is the only enzyme oxidising D-serine. D-serine is an important co-agonist for the NMDA glutamate receptor and plays a role in neuronal migration and cell death. Studies of D-serine revealed lower serum levels in schizophrenia patients as compared to healthy controls. Furthermore, administration of D-serine as add-on medication reduced the symptoms of schizophrenia. The underlying mechanism of the involvement of G72 and DAAO in schizophrenia is probably based on decreased levels of D-serine and decreased NMDA receptor functioning in patients. The involvement of this gene is therefore indirect support for the glutamate dysfunction hypothesis in schizophrenia.  相似文献   

6.
Recent studies indicate that an endogenous co-agonist for an N-methyl-D-aspartate (NMDA) receptor-related glycine site, D-serine, is synthesized by serine racemase and is metabolized by D-amino acid oxidase (DAO) and that acute treatment with morphine augments the gene expression of serine racemase and DAO in rat brain. To further elucidate the mechanism underlying the activation of NMDA receptors following chronic opioid administration, we have evaluated the effects of the chronic administration of morphine on the mRNA and protein expressions of serine racemase and DAO and on the contents of D-serine in several areas of the rat brain. Repeated administration of morphine for 30 days produced a significant augmentation of both the mRNA and protein expressions of serine racemase in all the brain regions, whereas no significant change in the protein expression of DAO was observed in all the brain regions. Furthermore, the chronic administration caused a slight but significant elevation in the concentration of D-serine in the cortex, striatum, and hippocampus. These results indicate the elevated D-serine level following the chronic morphine treatment could at least in part be involved in the activation of NMDA receptors via the glycine site.  相似文献   

7.
The ionnotropic glutamate receptor, N-methyl-D-aspartate (NMDA) receptor, is a prominent ligand-gated and voltage-gated ion channel in excitatory synaptic transmission in the mammalian central nervous system. The NMDA channel is also regulated by its phosphorylation. We have shown that an Src family kinase Fyn phosphorylates NR2A and NR2B subunits of the NMDA receptor. The phosphorylation events are facilitated by the presence of PSD-95, which is quite likely due to the complex formation of Fyn, PSD-95, and the NMDA receptor: Fyn interacts with PSD-95 and PSD-95 interacts with the NMDA receptor. We have identified tyrosine phosphorylation sites on NR2A and NR2B. A phosphorylation of one of the sites on NR2B (Tyr1472) is largely dependent on Fyn and is elevated upon the LTP induction of hippocampal CA1 neurons. The data suggest that Tyr-1472 phosphorylation of NR2B is important for synaptic plasticity. A phosphorylation of the other tyrosine residues of NR2A and NR2B would also be involved in brain development and function.  相似文献   

8.
The contributions of hippocampal long-term depression (LTD) to explicit learning and memory are poorly understood. Electrophysiological and behavioral studies examined the effects of modulating NMDA receptor-dependent LTD on spatial learning in the Morris water maze (MWM). The NMDA receptor co-agonist D-serine substantially enhanced NR2B-dependent LTD, but not long-term potentiation (LTP) or depotentiation, in hippocampal slices from adult wild type mice. Exogenous D-serine did not alter MWM acquisition, but substantially enhanced subsequent reversal learning of a novel target location and performance in a delayed-matching-to-place task. Conversely, an NR2B antagonist disrupted reversal learning and promoted perseveration. Endogenous synaptic D-serine likely saturates during LTP induction because exogenous D-serine rescued deficient LTP and MWM acquisition in Grin1(D481N) mutant mice having a lower D-serine affinity. Thus, D-serine may enhance a form of hippocampal NR2B-dependent LTD that contributes to spatial reversal learning. By enhancing this form of synaptic plasticity, D-serine could improve cognitive flexibility in psychiatric disorders characterized by perseveration of aberrant ideation or behaviors.  相似文献   

9.
The determination of small amounts of D-amino acids in mammalian tissues is still a challenging theme in the separation sciences. In this review, various gas-chromatographic and high-performance liquid chromatographic methods are discussed including highly selective and sensitive column-switching procedures. Based on these methods, the distributions of D-aspartic acid, D-serine, D-alanine, D-leucine and D-proline have been clarified in the mouse brain. As the regulation mechanisms of D-amino acid amounts in mammals, we focused on the D-amino-acid oxidase, which catalyzes the degradation of D-amino acids. Using the mutant mouse strain lacking D-amino-acid oxidase activity, the effects of the enzymatic activity on the amounts and distributions of various D-amino acids have been investigated.  相似文献   

10.
Several lines of investigation indicate that D-serine may be an endogenous ligand for the glycine site of N-methyl-D-aspartate (NMDA) receptors in some CNS regions. We here studied the in vivo effects of D-serine on the NMDA receptor/nitric oxide/cGMP pathway by monitoring extracellular cGMP in the cerebellum of freely-moving rats subjected to transcerebral microdialysis. Local application of NMDA (200, 500 μM) through the dialysis probe for 20 min evoked transient, concentration-dependent cGMP responses which peaked in the fraction of drug administration, the nucleotide levels returning to basal values after 40 min. The NMDA-induced elevation of the extracellular nucleotide was completely inhibited by the selective receptor channel blocker dizocilpine (MK-801) locally co-perfused at the concentration of 10 μM. The non-competitive antagonist had no effect on its own suggesting that endogenous glutamic acid does not tonically activate NMDA receptors. The effect of 200 μM NMDA was largely attenuated by 30 μM 7-chloro-kynurenic acid and completely abrogated when the concentration of the strychnine-insensitive glycine receptor antagonist was raised to 100 μM. D-serine (300 μM), perfused in the presence of 7-chloro-kynurenate (30 μM), was able to fully restore the NMDA (200 μM)-induced increase of cGMP extracellular levels. On the other hand, the D-amino acid directly potentiated in a concentration-dependent manner (0.3, 1 and 10 mM) the NMDA (200 μM)-evoked cGMP production whereas it was inactive on its own. These data show that in vivo the activation of the strychnine-insensitive glycine site is essential for the functioning of the NMDA receptor complex and can be activated by the selective agonist D-serine. They also confirm that cerebellar NMDA receptors do not have their glycine sites saturated. Received: 25 June 1996 / Accepted: 23 September 1996  相似文献   

11.
The behavioral impairment produced by ketamine represents a pharmacological model for some aspects of schizophrenia such as positive, negative, and cognitive symptoms. Despite the multiple properties of ketamine, the main mechanism for its psychomimetic and anesthetic effect involves NMDA receptor system. Present study examined whether subchronic administration of ketamine at the subanesthetic doses (50 mg/kg) induces changes of behavior analogous to those observed in schizophrenia and the gene expressions of the enzymes for D-serine, an endogenous co-agonist for the NMDA-glycine site, in rat brain. Administration of ketamine daily for 14 consecutive days increased stereotyped behavior, ataxia and locomotion. The levels of serine racemase mRNAs in forebrain areas significantly decreased after subchronic administration of ketamine. In contrast, subchronic ketamine administration produced a significant increase in the mRNA expression of D-amino acid oxidase in the midbrain. These findings suggest that there is a relationship between the gene expression of the D-serine-related enzymes and the blockade of the NMDA receptors.  相似文献   

12.
Proteins of glutamatergic NMDA receptor signaling pathways have been studied as targets for intervention in a variety of neuropathological conditions, including neurodegenerations, epilepsy, neuropathic pain, drug addiction, and schizophrenia. High activity NMDA-blocking agents have been designed to treat some of these disorders; however, their effect is often compromised by undesirable side effects. Therefore, alternative ways of modulating NMDA receptor function need to be sought after. The opening of the NMDA receptor ion channel requires occupation of two distinct binding sites, the glutamate site and the glycine site. It has been shown that D-serine, rather than glycine, can trigger the physiological NMDA receptor function. D-serine is a product of the activity of a specific enzyme, serine racemase (SR), which was identified a decade ago. SR has therefore emerged as a new potential target for the NMDA-receptor-based diseases. There is evidence linking increased levels of D-Ser to amyotrophic lateral sclerosis and Alzheimer's disease and decreased concentrations of D-serine to schizophrenia. SR is a pyridoxal-5'-phosphate dependent enzyme found in the cytosol of glial and neuronal cells. It is activated by ATP, divalent cations like Mg(2+) or Ca(2+), and reducing agents. This paper reviews the present literature on the activity and inhibition of mammalian SRs. It summarizes approaches that have been applied to design SR inhibitors and lists the known active compounds. Based on biochemical and docking analyses, i) we delineate for the first time the ATP binding site of human SR, and ii) we suggest possible mechanisms of action for the active compounds. In the end, we discuss the SR features that make the discovery of its inhibitors a challenging, yet very important, task of medicinal chemistry.  相似文献   

13.
Research suggests that dysfunctional glutamatergic signalling may contribute to depression, a debilitating mood disorder affecting millions of individuals worldwide. Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects in approximately 70% of patients. Glutamate evokes the release of D-serine from astrocytes and neurons, which then acts as a co-agonist and binds at the glycine site on the NR1 subunit of NMDA receptors. Several studies have implicated glial deficits as one of the underlying facets of the neurobiology of depression. The present study tested the hypothesis that D-serine modulates behaviours related to depression. The behavioural effects of a single, acute D-serine administration were examined in several rodent tests of antidepressant-like effects, including the forced swim test (FST), the female urine sniffing test (FUST) following serotonin depletion, and the learned helplessness (LH) paradigm. D-serine significantly reduced immobility in the FST without affecting general motor function. Both D-serine and ketamine significantly rescued sexual reward-seeking deficits caused by serotonin depletion in the FUST. Finally, D-serine reversed LH behaviour, as measured by escape latency, number of escapes, and percentage of mice developing LH. Mice lacking NR1 expression in forebrain excitatory neurons exhibited a depression-like phenotype in the same behavioural tests, and did not respond to D-serine treatment. These findings suggest that D-serine produces antidepressant-like effects and support the notion of complex glutamatergic dysfunction in depression. It is unclear whether D-serine has a convergent influence on downstream synaptic plasticity cascades that may yield a similar therapeutic profile to NMDA antagonists like ketamine.  相似文献   

14.
The glycine modulation of the N-methyl-D-aspartate (NMDA) response in guinea-pig myenteric plexus was investigated by using D-serine and 7-chloro kynurenic acid as a glycine agonist and antagonist, respectively. D-serine caused a concentration-dependent enhancement of the NMDA response, an effect which was competitively inhibited by 7-chloro kynurenic acid (pA2 = 6.0). In addition, 7-chloro kynurenic acid induced a concentration-dependent, non-competitive inhibition of the NMDA response per se, even in the absence of added D-serine. This inhibition was fully reversed by exogenous D-serine, suggesting that this effect was also due to the occupancy of the glycine site. These results emphasize the usefulness of the guinea-pig myenteric plexus for studying the function of the NMDA receptor complex.  相似文献   

15.
(2S*,3R*)-1-(biphenyl-4-carbonyl)piperazine-2,3-dicarboxylic acid (PBPD) is a moderate affinity, competitive N-methyl-d-aspartate (NMDA) receptor antagonist with an atypical pattern of selectivity among NMDA receptor 2 subunit (NR2) subunits. We now describe the activity of several derivatives of PBPD tested at both rat brain NMDA receptors using l-[3H]-glutamate binding assays and at recombinant receptors expressed in Xenopus oocytes. Substituting various branched ring structures for the biphenyl group of PBPD reduced NMDA receptor activity. However, substituting linearly arranged ring structures - fluorenone or phenanthrene groups - retained or enhanced activity. Relative to PBPD, the phenanthrene derivative (2S*, 3R*)-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA) displayed a 30- to 78-fold increase in affinity for native NMDA receptors. At recombinant receptors, PPDA displayed a 16-fold (NR2B) to 94-fold (NR2C) increase in affinity over PBPD. Replacement of the biphenyl group of PBPD with a 9-oxofluorene ring system resulted in small changes in receptor affinity and subtype selectivity. 2'-Bromo substitution on the biphenyl group of PBPD reduced antagonist affinity 3- to 5-fold at NR2A-, NR2B- and NR2D-containing receptors, but had little effect on NR2C-containing receptors. In contrast, 4'-fluoro substitution of the biphenyl ring of PBPD selectively increased NR2A affinity. The aromatic rings of PBPD and PPDA increase antagonist affinity and appear to interact with a region of the NMDA receptor displaying subunit heterogeneity. PPDA is the most potent and selective NR2C/NR2D-preferring antagonist yet reported and thus may be useful in defining NR2C/NR2D function and developing related antagonists with improved NMDA receptor subtype selectivity.British Journal of Pharmacology (2004) 141, 508-516. doi:10.1038/sj.bjp.0705644  相似文献   

16.
The microdialysis technique was utilized to study the effects of exogenous D-serine on the cGMP level in the perfusate of rat hippocampus. Addition of N-methyl-D-aspartate (NMDA) 250 μmol·L-1 to the perfusate resulted in a striking increase of cGMP in perfusate. The cGMP response elicited by NMDA was prevented by 7-chlorokynurenic acid (7-CKA), a selective antagonist at the glycine site of the NMDA receptor. D-serine completely reversed the antagonism by 7-CKA of the NMDA-evoked cGMP response. The NMDA-evoked cGMP response was enhanced by D-serine. D-serine alone was inactive. The data show that D-serine, administered to freely-moving rats, behaves as a selective agonist at the glycine site of hippocampus NMDA receptor. Furthermore, these results suggest that the glycine modulatory site may not be fully saturated in vivo, and thus can serve to regulate NMDA receptor function.  相似文献   

17.
D-serine plays a significant role in neuronal activity, including learning, memory, neuronal migration at developmental stages, and cell-death signaling. It has been also suggested that D-serine can potantiate the neurotoxicity induced by N-methyl-D-aspartate (NMDA) receptor activation due to its coagonist function. However, little is known about the role of D-serine in oxidative stress mechanisms. The aim of this study was to determine the possible neurotoxic or oxidative effects of the dose- (50-200 mg/kg) and time-dependent (2 or 6 hours) D-serine administration on lipid, protein, DNA, mitochondrial integrity (i.e., function), levels of antioxidant enzyme activities (e.g., catalase, glutathione peroxidase, and superoxide dismutase), and glutathione (GSH) in the rat brain. Our results showed that D-serine significantly increases the levels of lipid peroxidation, protein carbonyls, and DNA damage. In addition, D-serine treatment changes cellular antioxidant status due to the decreased levels of antioxidant enzymes, GSH, and mitochondrial function. Therefore, it is concluded that the regulation of D-serine levels in the brain may be an important target for the development of neuroprotective strategies against neurodegenerative processes where excitotoxicity is involved.  相似文献   

18.
The present review focused the involvement of N-methyl-d-aspartate (NMDA) receptors in morphine physical dependence. The increased levels of extracellular glutamate, NMDA receptor ζ subunit (NR1) mRNA, NMDA receptor 1 subunit (NR2A) protein, phosphorylated Ca2+/calmodulin kinase II (p-CaMKII) protein, c-fos mRNA, c-Fos protein, are observed in the specific brain areas of mice and/or rats showing signs of naloxone-precipitated withdrawal. In preclinical and clinical studies, a variety of NMDA receptor antagonists and pretreatment with an antisense oligonucleotide of the NR1 have been reported to inhibit the development, expression and/or maintenance of opiate physical dependence. In contrast to data obtained in adult animals, NMDA receptor antagonists are neither effective in blocking the development of opiate dependence nor the expression of opiate withdrawal in neonatal rats. In the NMDA receptor-deficient mice, the NR2A knockout mice show the marked loss of typical withdrawal abstinence behaviors precipitated by naloxone. The rescue of NR2A protein by electroporation into the nucleus accumbens of NR2A knockout mice reverses the loss of abstinence behaviors. The activation of CaMKII and increased expression of c-Fos protein in the brain of animals with naloxone-precipitated withdrawal syndrome are prevented by NMDA receptor antagonists, whereas the increased levels of extracellular glutamate are not prevented by them. These findings indicate that glutamatergic neurotransmission at the NMDA receptor site contributes to the development, expression and maintenance of opiate dependence, and suggest that NMDA receptor antagonists may be a useful adjunct in the treatment of opiate dependence.  相似文献   

19.
NMDA/NR2B selective antagonists in the treatment of ischemic brain injury   总被引:5,自引:0,他引:5  
Glutamate is the main excitatory neurotransmitter in the central nervous system and it plays a significant role not only in synaptic transmission but also in acute and chronic neuropathologies including stroke. Presently, four receptors for glutamate have been identified and the NMDA receptor family is the most intensively studied. A number of NMDA receptor antagonists have been developed and used for treatment of neurological diseases in patients. However, all of these drugs have been failed in clinical trials either because of intolerable side effects or lack of medical efficacy. Recently, the understanding of molecular structure of NMDA receptors has been advanced and this finding thus provides information for designing subtype-selective antagonists. Using NR2B subunit selective antagonists, ifenprodil and eliprodil, as basic structure models, second and third generation congeners have been developed. Several NR2B-selective compounds showed neuroprotective actions at doses that did not produce measurable side effects in preclinical studies. Some of NR2B subunit selective antagonists have also been tested for the treatment of ischemic brain injury. The present review describes the role of glutamate in ischemic brain injury with an emphasis on the NR2B containing NMDA receptors.  相似文献   

20.
We present a comparative study of the modulation of the N-methyl-D-aspartate (NMDA) receptor at the strychnine-insensitive glycine site in the spinal cord and in the cortex. The excitatory effect of NMDA was potentiated by D-serine (a glycine mimetic) in the hemisected rat spinal cord. The non-competitive NMDA antagonists 7-chlorokynurenic acid (7-Cl KYNA; 10 microM) and 3-amino-1-hydroxypyrrolid-2-one (HA-966; 100 or 200 microM) antagonized the effect of NMDA in the spinal cord and cortical wedge preparation. The antagonism was reversed by the addition of D-serine. This effect was strychnine-insensitive and hence not related to the inhibitory glycine receptor known to be present in the spinal cord. Our results suggest strongly that glycine positively modulates the NMDA system not only at a supraspinal level but also at the spinal level. As the positive modulation of NMDA responses by D-serine was also seen in the presence of tetrodotoxin, we conclude that the NMDA/glycine complex is (also) located on motoneurones in addition to the known glycine-mediated inhibitory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号