首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dental materials》2020,36(10):1343-1355
ObjectiveRecurrent caries is a primary reason for restoration failure caused by biofilm acids. The objectives of this study were to: (1) develop a novel multifunctional composite with antibacterial function and calcium (Ca) and phosphate (P) ion release, and (2) investigate the effects on enamel demineralization and hardness at the margins under biofilms.MethodsDimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into composite. Four groups were tested: (1) Commercial control (Heliomolar), (2) Experimental control (0% DMAHDM + 0% NACP), (3) antibacterial group (3% DMAHDM + 0% NACP), (D) antibacterial and remineralizing group (3% DMAHDM + 30% NACP). Mechanical properties and Ca and P ion release were measured. Colony-forming units (CFU), lactic acid and polysaccharide of Streptococcus mutans (S. mutans) biofilms were evaluated. Demineralization of bovine enamel with restorations was induced via S. mutans, and enamel hardness was measured. Data were analyzed via one-way and two-way analyses of variance and Tukey’s multiple comparison tests.ResultsAdding DMAHDM and NACP into composite did not compromise the mechanical properties (P > 0.05). Ca and P ion release of 3% DMAHDM + 30% NACP was increased at cariogenic low pH. Biofilm lactic acid and polysaccharides were greatly decreased via DMAHDM, and CFU was reduced by 4 logs (P < 0.05). Under biofilm acids, enamel hardness at the margins was decreased to about 0.5 GPa for control; it was about 1 GPa for antibacterial group, and 1.3 GPa for antibacterial and remineralizing group (P < 0.05).ConclusionsThe novel 3% DMAHDM + 30% NACP composite had strong antibacterial effects. It substantially reduced enamel demineralization adjacent to restorations under biofilm acid attacks, yielding enamel hardness that was 2-fold greater than that of control composites. The novel multifunctional composite is promising to inhibit recurrent caries.  相似文献   

2.
ObjectiveA glass-ionomer cement (GIC) containing BioUnion filler has been reported to release Zn2+ under acidic conditions and to inhibit oral bacteria on its surface. However, previous results are based on in vitro experiments under static conditions. This study aimed to assemble an in vitro saliva-drop setting to simulate in vivo conditions of the oral cavity and to investigate the ion releasing and recharging properties of the GIC containing BioUnion filler.MethodsThe effective concentrations of Zn2+ and F? against Streptococcus mutans and saliva-derived multi-species biofilms were determined. Artificial saliva was dropped on the GIC containing BioUnion filler using the in vitro saliva-drop setting assembly and was periodically replaced with acetic acid. Ion release/recharge properties were investigated by measuring the release concentrations of Zn2+ and F?.ResultsThe concentration of Zn2+ released from the BioUnion filler-containing GIC during seven days with repeated exposure to acid could be maintained at the level to inhibit S. mutans and saliva-derived multi-species biofilm formation. Moreover, the BioUnion filler-containing GIC could be recharged with Zn2+ and F? by the application of a tooth gel containing Zn2+ and F?. The release concentration of Zn2+ after recharging was significantly higher than the effective concentration of Zn2+ to hinder S. mutans and saliva-derived multi-species biofilm formation on material surfaces.SignificanceThe GIC containing BioUnion filler was shown to have the potential to inhibit biofilm formation in the oral cavity. In addition, recharging Zn2+ and F? would further enhance the effect of the GIC containing BioUnion filler.  相似文献   

3.
《Dental materials》2020,36(9):1226-1240
ObjectiveThe study investigated the effect of incorporating l-arginine (Arg) in a glass ionomer cement (GIC) on its mechanical properties and antibacterial potential.MethodsPre-determined proportions (1%, 2%, and 4% by wt.) of Arg were incorporated in GIC powder; while GIC without Arg served as control. The flexural strength, nanohardness, surface roughness, elemental analysis using SEM-EDX (n = 6) and F/Arg/Ca/Al/Si release in deionized water for 21 days were assessed. The antibacterial potential was evaluated in a multi-species biofilm model with Streptococcus mutans, Streptococcus sanguinis, Streptococcus gordonii, and Lactobacillus acidophilus for 72 h. Real-time qPCR was used to analyse biofilm bacterial concentrations. Propidium monoazide modification of real-time qPCR was performed to quantify viable/dead bacteria. The pH, lactic acid, ADS activity, and H2O2 metabolism were measured. Confocal microscopy was used to investigate the biofilm bacterial live/dead cells, density, and thickness.ResultsThere was no difference in flexural strength among the different groups (p > 0.05). No significant difference in nanohardness and surface roughness was observed between 4% Arg + GIC and control (p > 0.05). The 4% Arg + GIC showed significantly higher F/Arg/Al/Si release than the other groups (p < 0.05), reduced total bacterial concentration and growth inhibition of viable S. mutans and S. sanguinis (p < 0.05). Lactic acid formation for 4% Arg + GIC was significantly higher than 1% Arg + GIC (p < 0.05). The spent media pH of 4% Arg + GIC was higher than the other groups (p < 0.05), with proportionately lower ammonia and higher H2O2 released (p < 0.05).SignificanceAddition of 4% l-arginine in GIC enhanced its antibacterial activity via a biofilm modulatory effect for microbial homeostasis, with no detrimental effect on its mechanical properties.  相似文献   

4.
《Dental materials》2022,38(11):1689-1702
ObjectiveA low-shrinkage-stress resin-based cement with antibacterial properties could be beneficial to create a cement with lower stress at the tooth-restoration interface, which could help to enhance the longevity of the fixed dental restoration by reducing microleakage and recurrent caries. To date, there has been no report on the development of a low-shrinkage-stress and bio-interactive cement. Therefore, the objectives of this study were to develop a novel low-shrinkage-stress resin-based cement containing dimethylaminohexadecyl methacrylate (DMAHDM) and investigate the mechanical and antibacterial properties for the first time.MethodsThe monomers urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) were combined and denoted as UV resin. Three cements were fabricated: (1) UV+ 0%DMAHDM (experimental control); (2) UV+ 3%DMAHDM, (3) UV+ %5DMAHDM. RelyX Ultimate cement was used as commercial control. Mechanical properties and Streptococcus mutans (S. mutans) biofilms growth on cement were evaluated.ResultsThe novel bio-interactive cement demonstrated excellent antibacterial and mechanical properties. Compared to commercial and experimental controls, adding DMAHDM into the UV cement significantly reduced colony forming unit (CFU) counts by approximately 7 orders of magnitude, metabolic activities from 0.29 ± 0.03 A540/cm2 to 0.01 ± 0.01 A540/cm2, and lactic acid production from 22.3 ± 0.74 mmol/L to 1.2 ± 0.27 mmol/L (n = 6) (p < 0.05). The low-shrinkage-stress cement demonstrated a high degree of conversion of around 70 %, while reducing the shrinkage stress by approximately 60%, compared to a commercial control (p < 0.05).ConclusionsThe new antibacterial low-shrinkage-stress resin-based cement provides strong antibacterial action and maintains excellent mechanical properties with reduced polymerization shrinkage stress.Clinical significanceA low-shrinkage-stress resin-based cement containing DMAHDM was developed with potent antibacterial effects and promising mechanical properties. This cement may potentially enhance the longevity of fixed dental restoration such as a dental crown, inlay, onlay, and veneers through its excellent mechanical properties, low shrinkage stress, and strong antibacterial properties.  相似文献   

5.
Condensed phosphates (CP: Na salts of pyro-1, tripoly-1, tetrapoly-1, pentapoly-1, hexameta-1 and ultra-; K salts of pyro- and poly-) used as food additives depressed the growth of seven strains of Streptococcus mutans (serotype a-g) as assessed by disc diffusion methods. Minimal inhibitory concentrations (MIC) of CP on growth of strain Kl-R (g) in a chemically defined medium were measured turbidimetrically. Commercial grade CP (1CP used) had the same growth inhibitory effects as purified linear type CP and they were superior to the cyclic type CP. The MIC of CP for Strep. mutans appeared to be related to their chelating capacity. As the growth inhibition by CP was reversed by the addition of divalent metal ions (Ca2+, Mg2+ or Mn2+), the chelating capacity of CP was apparently responsible for their antibacterial action. The antibacterial action of CP seemed largely bacteriostatic. Condensed phosphates depressed lactate production from glucose and sucrose by the cells of strain Kl-R. A similar inhibition was produced by the supernatant of heated human saliva. Condensed phosphates depressed insoluble glucan production from sucrose by the cells of strain Kl-R. The inhibition of sugar metabolism may be due to the interference of sugar transport into Strep. mutans induced by the chelation effects of CP. Hamsters were inoculated orally with strain Kl-R and reared on the high-sucrose diet No. 2000 supplemented with 2 per cent (w/w) CP for 60 days. Dietary supplements of CP were associated with reduced caries activity (p < 0.01) and plaque formation (p < 0.05). The antibacterial actions of CP could be responsible for these caries-inhibitory effects.  相似文献   

6.
《Dental materials》2022,38(11):1679-1688
ObjectiveThis study aimed to investigate the role of the incorporation of an antibacterial nanoceramic (AgVO3) on the properties of a restorative dental glass-ceramic.MethodA commercially available restorative glass-ceramic, commonly designated as porcelain (IPS d.SIGN) was functionalized with an antibacterial agent (nanostructured β-AgVO3), synthesized by a hydrothermal route. Both functionalized and pristine samples were processed according to the manufacturer's instructions. All samples were characterized by X-ray diffraction, Rietveld refinement, particle size distribution, Scanning Electron Microscopy, chemical solubility, and Inductively Coupled Plasma Spectroscopy. Their antibacterial potential (Mueller-Hinton test) was analyzed against gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli).ResultsThe commercial glass-ceramic showed leucite (KAlSi2O6) as the only detectable crystalline phase, and, for both strains, no antibacterial activity could be detected in the Mueller-Hinton agar plates test. A monophasic, needle-shaped, and nanometric β-AgVO3 powder was successfully synthesized by a simple hydrothermal route. After thermal treatment, glass-ceramic samples containing different percentages of β-AgVO3 showed a second crystalline phase of microline [K0.95(AlSi3O8)]. For modified samples, inhibition halos were easily visible on the Mueller-Hinton test, which ranged from 11.1 ± 0.5 mm to 16.6 ± 0.5 mm and 12.7 ± 0.3 mm to 15.5 ± 0.3 mm in the S. aureus and E.coli cultures, respectively, showing that the halos formed were dose-dependent. Also, increasing the percentage of β-AgVO3 promoted a significant increase in chemical solubility, from 72 µg/cm2 (samples with 1 wt% of β-AgVO3) to 136 µg/cm2 (samples with 2 wt% of β-AgVO3), which was associated with the silver and vanadium ions released from the glass matrix.Significance:Our in vitro results indicate that IPS d.SIGN, as most of the dental glass-ceramics, do not exhibit antibacterial activity per se. Nonetheless, in this concept test, we demonstrated that it is possible to modify dental veneering materials giving them antibacterial properties by adding at least 2 wt% of β-AgVO3, a nanomaterial easily synthesized by a simple route.  相似文献   

7.
《Dental materials》2022,38(9):1518-1531
ObjectiveThe cariogenic biofilm on enamel, restoration, and bonding interface is closely related to dental caries and composite restoration failure. Enamel remineralization at adhesive interface is conducive to protecting bonding interface and inhibiting secondary caries. This study intended to assess the remineralization efficiency of adhesive with dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on initial caries lesion of biofilm-coated enamel.MethodsArtificial initial carious lesion was created via 72-hour immersion in demineralization solution and cariogenic biofilm was formed after 24-hour culture of Streptococcus mutans (S. mutans). Specimens were then divided into 4 groups: enamel control, enamel treated with NACP, DMAHDM and NACP+DMAHDM respectively. Samples next underwent 7-day cycling, 4 h in BHIS (brain heart infusion broth containing 1 % sucrose) and 20 h in AS (artificial saliva) per day. The pH of BHIS was tested daily. So did the concentration of calcium and phosphate in BHIS and AS. Live/dead staining, colony-forming unit (CFU) count, and lactic acid production of biofilms were measured 7 days later. The enamel remineralization efficiency was evaluated by microhardness testing and transverse microradiography (TMR) quantitatively.ResultsEnamel of NACP+DMAHDM group demonstrated excellent remineralization effectiveness. And the NACP+DMAHDM adhesive released a great number of Ca2+ and PO43- ions, increased pH to 5.81 via acid neutralization, decreased production of lactic acid, and reduced CFU count of S. mutans (P < 0.05).SignificanceThe NACP+DMAHDM adhesive would be applicable to preventing secondary caries, strengthening enamel-adhesive interface, and extending the lifespan of composite restoration.  相似文献   

8.
《Dental materials》2022,38(6):946-959
ObjectivesThe manufacturing of polymethylmethacrylate(PMMA) microspheres loaded with doxycycline(DOX) and/or silver sulfate(Ag2SO4) to be incorporated into glass ionomer cement(GIC).MethodsPMMA microspheres were manufactured with Ag2SO4(1–5%) and/or DOX(5–15%). Particle size, encapsulation efficiency and drug release were measured by light microscope, ICP, and HPLC. Microspheres were added to a dental GIC(20%w/w). Drug release and DTS were investigated. Minimum inhibitory concentration and antibacterial effects of PMMA microspheres into GIC materials were tested.ResultsThe median diameter of 50 µm was obtained for microspheres. DOX was encapsulated at an efficiency of 8.3% using a theoretical loading of 15%DOX + 5%Ag2SO4. The Ag2SO4 encapsulation efficiency was 0.63% using a theoretical loading of 5%AgSO4. All groups showed burst release within the first day and continued released up to 15 days, with 60–83% of DOX and approximately 30% of silver. For GIC, approximately 15% of DOX and 0.18% of silver were released in a 7-day period. Microbiological results showed an antimicrobial effect against S. mutans when the lead formulation of microspheres was added. The DTS was reduced by the inclusion of microspheres.SignificancePMMA microspheres containing DOX and Ag2SO4 offer a sustained antimicrobial activity for dental applications and promising potential for the biomedical field.  相似文献   

9.
ObjectivesThe present study aimed to assess the antibacterial activity against bacteria with cariogenic relevance, toxic and genotoxic potential of the plants Anacardium occidentale L. and Anadenanthera macrocarpa (Benth.) Bernam.DesignUsing a microdilution technique, the extracts were submitted to minimum inhibitory concentration (MIC) testing against Streptococcus mitis (ATCC 903), Streptococcus mutans (ATCC 25175), Streptococcus oralis (ATCC 10557), Streptococcus salivarius (ATCC 7073), Streptococcus sanguinis (ATCC 15300) and Streptococcus sobrinus (ATCC 27609). The toxicity of the extracts was then verified against eukaryotic cells. Additionally, a micronucleus assay was performed to investigate the potential mutagenic effects of the extracts on rat erythrocytes. The Student’s t-test, Bonferroni test, and one-way ANOVA followed by Tukey’s tests were used for statistical analysis, at a significance level of 5%.ResultsWhile the A. occidentale extract was able to inhibit all of the tested strains, with S. mutans and S. mitis being the most susceptible to that extract́s action, the A. macrocarpa did not show antimicrobial activity. Interestingly, the hemolytic, oxidant and antioxidant activities were slightly observed for either extract, even at high concentrations (1000 mg/mL). The micronucleus assay showed no significant changes in the cells exposed to the extracts.ConclusionThe A. occidentale extract has potential as an antimicrobial agent with low eukaryotic cell toxicity or mutagenic activity. The A. macrocarpa extract, although absent of antibacterial activity might as well be a safe and effective phytotherapeutic alternative.  相似文献   

10.
ObjectivePrevention is difficult to decrease dental caries only via the partial application of fluoride. The GC Co. has developed a coating material adhesive containing fluoride and zinc. It is thought that this zinc has an effect which prevents dental caries. The aim of this study was to evaluate the influence of the Caredyne Shield® (CS) on biofilm generation by S. mutans, as compared to an acidulated phosphate fluoride (APF) gel.Materials and methodsWe performed the comparative study of the biofilm inhibitory effect which used the enamel of bovine teeth. Specimens were separated into a control group, an APF gel group, and a CS group. Biofilms were generated by adherent S. mutans. We observed the antibacterial weigh by the creation state of Biofilms.ResultsSignificant difference was observed in the number of bacterial colonies formed after 24 h, the number of bacterial colonies formed from detached S. mutans from the CS-treated experimental group were fewer in number than in the other group (p < 0.01). The biofilm formed by S. mutans 72 h after dissemination on the enamel surface was visible by fluorescence microscopy (Live/Dead staining method) and under the scanning electron microscope, in the CS-treated group, no plastic structures were observed, as the models were free of the biofilm and only scattered S. mutans cells were observed.ConclusionWe showed in this study the efficacy of CS in controlling the formation of biofilm. From such a result, we conclude that CS is a novel anticaries agent.  相似文献   

11.
ObjectiveBiomaterials with anti-microbial properties are highly desirable in the oral cavity. Ideally, bactericidal molecules should be immobilized within the biomaterial to avoid unwanted side-effects against surrounding tissues. They may then however loose much of their antibacterial efficiency. The aim of this study was to investigate how much antibacterial effect an immobilized bactericidal molecule still has against oral bacteria.MethodsExperimental resins containing 0, 1 and 3% cetylpyridinium chloride (CPC) were polymerized, and the bacteriostatic and bactericidal effects against Streptococcus mutans were determined. Adherent S. mutans on HAp was quantitatively determined using FE-SEM and living cells of S. mutans were quantified using real-time RT-PCR. The amount of CPC released from the 0%-, 1%- and 3%-CPC resin sample into water was spectrometrically quantified using a UV–vis recording spectrophotometer.ResultsUV spectrometry revealed that less than 0.11 ppm of CPC was released from the resin into water for all specimens, which is lower than the minimal concentration generally needed to inhibit biofilm formation. Growth of S. mutans was significantly inhibited on the surface of the 3%-CPC-containing resin coating, although no inhibitory effect was observed on bacteria that were not in contact with its surface. When immersed in water, the antibacterial capability of 3%-CPC resin lasted for 7 days, as compared to resin that did not contain CPC.SignificanceThese results demonstrated that the bactericidal molecule still possessed significant contact bacteriostatic activity when it was immobilized in the resin matrix.  相似文献   

12.

Introduction

Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. Objectives: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined.

Material and Methods

S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL-1 and 4 mg mL-1); with sucrose containing the extract (2 mg mL-1 and 4 mg mL-1)]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly.

Results

It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm2 glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL-1 corresponded to that of 0.12% chlorhexidine. At 4 mg mL-1 of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity.

Conclusion

The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.  相似文献   

13.
Objectives

To evaluate new pulp capping cements containing surface pre-reacted glass ionomer (S-PRG) filler and to investigate ion release kinetics and pH shift of eluates from the cement.

Materials and methods

Molars of Wistar rats were directly pulp capped using three kinds of cement containing S-PRG filler and mineral tri-oxide aggregate (MTA) was used as a control. After 1, 2, or 4 weeks, histological evaluation was performed and differences of tertiary dentin formation were analyzed. Release of Sr2+, BO33−, SiO32−, Na+, and Al3+ ions was determined by inductively coupled plasma-atomic emission spectrometry, and F ion release was measured using a fluoride ion selective electrode. The pH of the eluate from each cement after mixing was measured with a pH electrode.

Results

One of S-PRG cements promoted tertiary dentin formation to the same extent as the control (p > 0.05) and it showed a tendency of less inflammatory response. This cement released more BO33− and SiO32−, but less Sr2+, Na+, and F than other S-PRG specimens. Each cement recovered nearly neutral compared with glass ionomer cement.

Conclusions

S-PRG cement induced tertiary dentin formation based on multiple ion releases, suggesting that it is suitable as a pulp capping material.

Clinical relevance

This new material can be an alternative pulp capping agent to MTA.

  相似文献   

14.
《Dental materials》2020,36(9):1241-1253
ObjectivePit and fissure sealants with antibacterial and remineralization properties have broad application prospects in caries prevention. The objectives of this study were to: (1) develop a novel pit and fissure sealant containing CaF2 nanoparticles (nCaF2) and dimethylaminohexadecyl methacrylate (DMAHDM); and (2) investigate the effects of nCaF2 and DMAHDM on biofilm response and fluoride (F) ion release for the first time.MethodsHelioseal F was used as a control. Bioactive sealants were formulated with DMAHDM and nCaF2. Flow properties, enamel shear bond strength, hardness and F ion releases were measured. Streptococcus mutans (S. mutans) biofilms were grown on sealants. Biofilm metabolic activity, lactic acid production, colony-forming units (CFU), and pH of biofilm culture medium were measured.ResultsAdding 5% DMAHDM and 20% nCaF2 did not reduce the paste flow and enamel bond strength, compared to control (p < 0.05). Hardness of sealants with 20% nCaF2 and DMAHDM was higher than control (p < 0.05). The F ion release from 20% nCaF2 was much higher than that of commercial control (p < 0.05). The sealant with DMAHDM reduced the S. mutans biofilm CFU by 4 logs. The pH in biofilm medium of the new bioactive sealant was much higher (pH 6.8) than that of commercial sealant (pH 4.66) (p < 0.05).SignificanceThe new bioactive pit and fissure sealant with nCaF2 and DMAHDM achieved high fluoride release and strong antibacterial performance. This novel fluoride-releasing and antibacterial sealant is promising to inhibit caries and promote the remineralizaton of enamel and dentin.  相似文献   

15.
BackgroundThe aim of this work was to evaluate the efficacy of proanthocyanidins (PACNs) as an adjunctive periodontal therapy in patients with periodontitis.MethodsPatients with periodontitis (stage III–IV) were included in this randomised clinical study. Patients with periodontitis received 2 different treatment modalities: minimally invasive nonsurgical therapy only (MINST group) or minimally invasive nonsurgical therapy and subgingival application of collagen hydrogels with PACNs (MINST + PACNs group). Clinical periodontal parameters, that is, pocket probing depth (PPD), clinical attachment level (CAL), bleeding on probing (BOP), plaque index (PI), were evaluated before treatment and after 8 weeks. Concentrations of immunologic markers, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in saliva were assessed at baseline and at 8-week follow-up.ResultsForty-six patients diagnosed with periodontitis were randomised into 2 groups: 23 patients in the MINST group and 23 patients in the MINST + PACNs group received the intended treatment. PACNs combined with MINST resulted in additional statistically significant PPD reduction and CAL gain in moderate periodontal pockets by 0.5 mm (P < .05) on average compared to MINST alone. Additional use of PACNs did not result in additional statistically significant improvement of BOP or PI values. Application of PACNs showed significant reduction of MMP-3 levels in saliva after 8 weeks (P < .05).ConclusionsAdjunctive use of PACNs in MINST resulted in better clinical outcomes for moderate pockets. Additional use of PACNs improved MMP-3 concentration in saliva more than MINST alone. Biochemical analysis revealed that MMP-3 concentration in saliva reflected the periodontal health state.  相似文献   

16.
ObjectivesTo evaluate the antimicrobial activity, mechanical properties, and fluoride release capacity of glass ionomer cement (GIC) used for cementing orthodontic bands and modified by ethanolic extract of red propolis (EERP) in different concentrations.Materials and MethodsTwo orthodontic GICs containing EERP at 10%, 25%, and 50%, were used. The following assays were carried out: cell viability tests against Streptococcus mutans and Candida albicans, diametral tensile strength, compressive strength, shear bond strength, microhardness, and fluoride release capacity. The statistical analyses of the antimicrobial tests, fluoride release, diametral tensile strength, compressive strength, and microhardness were performed using two-way analysis of variance and Tukey test (P < .05). Shear bond strength data were analyzed using one-way analysis of variance followed by Tukey test (P < .05).ResultsAt the concentrations of 25% and 50%, EERP was shown to be a promising antimicrobial agent incorporated into GICs against C albicans (P < .001) and S mutans (P < .001). The fluoride release capacity of the GICs was not affected, and the EERP concentration of 25% was the one that least affected the mechanical properties of the cements (P > .05).ConclusionsThe GICs containing EERP at 25% showed a significant increase in their antimicrobial activity against S mutans and C albicans, while mechanical properties and fluoride release remained without significant changes.  相似文献   

17.
TiO2 has an antibacterial effect against Streptococcus mutans (S. mutans). The objective of this study was to show the Inhibition of the adhesive ability of S. mutans on hydroxyapatite pellet using a toothbrush equipped with TiO2 semiconductor and solar panel. Gradual brushing of 9 hydroxyapatite pellets was done by the same person using a solar toothbrush under 750/LUX light source in water. As a control, pellets brushed with a placebo toothbrush were done using the same procedure by the same person. All the pellets were inoculated in 10 ml Brain Heart Infusion (BHI) broth containing 100μl of 108 CFU/ml S. mutans and 1% sucrose and then incubated at 37°C for 12 hours. After incubation, the adherence conditions of S. mutans on each pellet were checked. The bacterial count of S. mutans on the brushed pellets using solar toothbrush were fewer than those using placebo toothbrush. The quantities of adherence of S. mutans decreased according to number of brushing and adhesion on pellets brushed more than 50 times could not be recognized. However, adhesion of S. mutans on the pellets brushed using placebo toothbrush were recognized and the adhesive quantities were visually the same. These results occurred because of some electronic charges on the brushed pellets using solar toothbrush. Soladey-3 toothbrush prevented S. mutans adhesion to the hydroxyapatite pellet under a light source.  相似文献   

18.
BackgroundThis study explored the association of functional impairment due to rheumatoid arthritis (RA) and RA disease activity with periodontal disease in patients with RA.MethodsNinety-three patients with RA were included. Their RA functional status was assessed using the Steinbrocker classification. The serum level of matrix metalloproteinase-3 (MMP-3) was used as an indicator of RA disease activity. Probing depth (PD) and clinical attachment level (CAL) were used as indicators of periodontal status. We examined the association of RA severity and MMP-3 levels with periodontal status using a generalised linear model (GLM).ResultsIn a multivariate GLM, the coefficient for the mean PD was significantly positive in those with RA severity classes III or IV (reference: class I; β = 0.14; 95% confidence interval [CI], 0.03–0.25; P = .02) independent of other confounding variables. In multivariate GLM using the mean CAL as the dependent variable, the coefficient was significant in patients with high MMP-3 levels (10 ng/mL; β = 0.005; 95% CI, 0.001–0.008; P = .02).ConclusionsFunctional impairment due to RA may affect PD, and high serum levels of MMP-3 may affect CAL.  相似文献   

19.
BackgroundSortase A is an enzyme responsible for the covalent attachment of Pac proteins to the cell wall in Streptococcus mutans. It has been shown to play a role in modulating the surface properties and the biofilm formation and influence the cariogenicity of S. mutans. Curcumin, an active ingredient of turmeric, was reported to be an inhibitor for Staphylococcus aureus sortase A. The aim of this study was to investigate the inhibitory ability of curcumin against S. mutans sortase A and the effect of curcumin for biofilm formation.MethodsThe antimicrobial activity of the curcumin to the S. mutans and inhibitory ability of the curcumin against the purified sortase A in vitro were detected. Western-blot and real-time PCR were used to analysis the sortase A mediated Pac protein changes when the S. mutans was cultured with curcumin. The curcumin on the S. mutans biofilm formation was determined by biofilm formation analysis.ResultsCurcumin can inhibit purified S. mutans sortase A with a half-maximal inhibitory concentration (IC50) of (10.2 ± 0.7) μmol/l, which is lower than minimum inhibitory concentration (MIC) of 175 μmol/l. Curcumin (15 μmol/l) was found to release the Pac protein to the supernatant and reduce S. mutans biofilm formation.ConclusionsThese results indicated that curcumin is an S. mutans sortase A inhibitor and has promising anti-caries characteristics through an anti-adhesion-mediated mechanism.  相似文献   

20.
ObjectivesTo evaluate the effect of probiotic bacteria in yogurt on Streptococcus mutans (MS) count, plaque adherence and salivary pH compared to xylitol-containing chewing gum in geriatric patients.Materials and methodsTotal number of 96 high caries risk geriatric patients were randomized into two equal groups (n=48). Group 1 (intervention group) received probiotic yogurt (Activia, Danone) once per day, and group 2 (control group) received xylitol chewing gum (Trident original) three times per day. The primary outcome was salivary Streptococcus mutans count and secondary outcomes were interdental plaque Streptococcus mutans count, salivary pH and bacterial adherence.ResultsFor Streptococcus mutans count in saliva and plaque, a statistically significant reduction in the level of MS over all the examined follow up periods of the study in probiotic yogurt group as well as xylitol gum group was found. An intergroup comparison for salivary MS count showed statistically significant difference between the two materials in a two week and a three month period of time and there was no statistically significant difference between both materials at one month time period. Salivary pH results showed statistically significant increase in pH in both groups along the follow-up periods. Bacterial adherence results showed statistically significant reduction in both groups.ConclusionsProbiotic yogurt is an effective antibacterial agent against salivary and plaque bacteria in geriatric patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号