首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose. To assess the usefulness of biorelevant dissolution tests in predicting food and formulation effects on the absorption of four poorly soluble, lipophilic drugs. Methods. Dissolution was studied with USP Apparatus II in water, milk, SIFsp, FaSSIF, and FeSSIF. The in vitro dissolution data were compared on a rank order basis with existing in vivo data for the tested products under fasted and fed state conditions. Results. All drugs/formulations showed more complete dissolution in bile salt/lecithin containing media and in milk than in water and SIFsp (USP 23). Comparisons of the in vitro dissolution data in biorelevant media with in vivo data showed that in all cases it was possible to forecast food effects and differences in absorption between products of the same drug with the physiologically relevant media (FaSSIF, FeSSIF and milk). Differences between products (both in vitro or in vivo) were less pronounced than differences due to media composition (in vitro) or dosing conditions (in vivo). Conclusions. Although biorelevant dissolution tests still have issues which will require further refinement, they offer a promisingin vitro tool for forecasting the in vivo performance of poorly soluble drugs.  相似文献   

2.
The aim of the current research was to develop an in silico oral absorption model coupled with an in vitro dissolution/precipitation testing to predict gastric pH-dependent drug-drug interactions for weakly basic drugs. The effects of elevated gastric pH on the plasma profiles of dipyridamole, prasugrel, and nelfinavir were simulated and compared with pharmacokinetic data reported in humans with or without use of proton pump inhibitors or histamine H2 receptor antagonists.The in vitro dissolution and precipitation data for the weakly basic drugs in biorelevant media were obtained using paddle apparatus. An in silico prediction model based on the STELLA software was designed and simulations were conducted to predict the oral pharmacokinetic profiles of the 3 drugs under both usual (low) and elevated gastric pH conditions.The changes in oral absorption of dipyridamole and prasugrel in subjects with elevated gastric pH compared with those with low stomach pH were predicted well using the in vitroin silicoin vivo approach. The proposed approach could become a powerful tool in the formulation development of poorly soluble weak base drugs.  相似文献   

3.
Much pharmaceutical research has been invested into drug dissolution testing and its mathematical modeling. Even today, there is no complete understanding of the dissolution process but novel imaging tools have been introduced into pharmaceutics that may spur further scientific advancement. We used UV imaging to study the intrinsic dissolution of various poorly soluble acidic model drugs to understand the effects of heterogeneity on early intrinsic drug dissolution using a biorelevant medium: celecoxib, ketoprofen, naproxen, and sulfathiazole. All compounds were characterized using X-ray powder diffraction and thermal analysis. Raman spectroscopy and scanning electron microscopy were employed before and after the initial dissolution phase. As a result, ranges of fractal-like dissolution behavior were found with all model compounds. Intrinsic dissolution rate exhibited a power law mainly at early time points. Subsequently, after several minutes, pseudo-equilibrium was reached with a nearly constant dissolution rate. Further research should investigate whether compounds other than acids demonstrate similar early dissolution kinetics in biorelevant media. The observed fractal-like intrinsic dissolution behavior has several pharmaceutical implications. This study primarily helps us to better understand in vitro dissolution testing, particularly on a miniaturized scale. This improved understanding of early dissolution events may advance future correlations with in vivo data. Therefore, fractal-like dissolution should be considered during biopharmaceutical modeling.  相似文献   

4.
The potential of UV imaging as a new small scale flow-through dissolution testing platform and its ability to incorporate biorelevant media was tested. Furosemide was utilized as a model poorly soluble drug, and dissolution media simulating conditions in the small intestine (5/1.25?mM and 40/10?mM bile salt/phospholipid, pH 6.5) together with corresponding blank buffer were employed. Dissolution rates as a function of flow rate (0.2–1.0?mL/min) were determined directly from UV images, and by analysis of collected effluent using UV spectrophotometry. A good agreement in dissolution rates was observed, however repeatability of data based on measurement of collected effluent was superior to that obtained by UV imaging in the utilized prototypic flow cell. Both methods indicated that biorelevant media did not markedly increase the dissolution rate of furosemide as compared to buffer. Qualitatively, UV images indicated that uncontrolled swelling/precipitation of furosemide on the compact surface was occurring in some samples. In situ Raman spectroscopy together with X-ray diffraction analysis confirmed that the observations were not due to a solid form transformation of furosemide. The presented results highlight the complementary features of the utilized techniques and, in particular, the detailed information related to dissolution behavior which can be achieved by UV imaging.  相似文献   

5.
Purpose  The objectives of the study was to develop a dissolution test method that can be used to predict the oral absorption of montelukast sodium, and to establish an in vitro/in vivo correlation (IVIVC) using computer simulations. Methods  Drug solubility was measured in different media. The dissolution behaviour of montelukast sodium 10 mg film coated tablets was studied using the flow-through cell dissolution method following a dynamic pH change protocol, as well as in the USP Apparatus 2. Computer simulations were performed using GastroPlus™. Biorelevant dissolution media (BDM) prepared using bile salts and lecithin in buffers was used as the dissolution media, as well as the USP simulated intestinal fluid (SIF) pH 6.8 and blank FaSSIF pH 6.5. Dissolution tests in the USP Apparatus 2 were performed under a constant pH condition, while the pH range used in the flow through cells was pH 2.0 to 7.5. The in vitro data were used as input functions into GastroPlus™ to simulate the in vivo profiles of the drug. Results  The solubility of montelukast sodium was low at low pH, but increased as the pH was increased. There was no significant difference in solubility in the pH range of 5.0 to 7.5 in blank buffers, but the drug solubility was higher in biorelevant media compared with the corresponding blank buffers at the same pH. Using the flow through cells, the dissolution rate was fast in simulated gastric fluid containing 0.1% SLS. The dissolution rate slowed down when the medium was changed to FaSSIF pH 6.5 and increased when the medium was changed to FaSSIF medium at pH 7.5. In the USP Apparatus 2, better dissolution was observed in FaSSIF compared with the USP buffers and blank FaSSIF with similar pH values. Dissolution was incomplete with less than 10% of the drug dissolved in the USP-SIF, and was practically non existent in blank FaSSIF pH 6.5. The in vitro results of the dynamic dissolution test were able to predict the clinical data from a bioavailability study best. Conclusions  Dynamic dissolution testing using the flow through cell seems to be a powerful tool to establish in vitro/in vivo correlations for poorly soluble drugs as input function into GastroPlus.  相似文献   

6.
The aim of this study was to evaluate the utility of biorelevant dissolution tests coupled with in silico simulation technology to forecast in vivo bioperformance of poorly water-soluble bases, using nelfinavir mesylate as a model compound.An in silico physiologically based pharmacokinetic (PBPK) model for poorly water-soluble, weakly basic drugs was used to generate plasma profiles of nelfinavir by coupling dissolution results and estimates of precipitation with standard gastrointestinal (GI) parameters and the disposition pharmacokinetics of nelfinavir. In vitro dissolution of nelfinavir mesylate film-coated tablets was measured in biorelevant and compendial media. Drug precipitation in the small intestine was estimated from crystal growth theory. GI parameters (gastric emptying rate and fluid volume) appropriate to the dosing conditions (fasting and fed states) were used in the PBPK model. The disposition parameters of nelfinavir were estimated by fitting compartmental models to the in vivo oral PK data. The in vivo performance in each prandial state was simulated with the PBPK model, and predicted values for AUC and Cmax were compared to observed values.Dissolution results in FaSSIF-V2 and FeSSIF-V2, simulating the fasting and fed small intestinal conditions, respectively, correctly predicted that there would be a positive food effect for nelfinavir mesylate, but overestimated the food effect observed in healthy human volunteers. In order to better predict the food effect, an in silico PBPK simulation model using STELLA® software was evolved. Results with the model indicated that invoking drug precipitation in the small intestine is necessary to describe the in vivo performance of nelfinavir mesylate in the fasted state, whereas a good prediction under fed state conditions is obtained without assuming any precipitation. In vitroin silicoin vivo relationships (IVISIV-R) may thus be a helpful tool in understanding the critical parameters that affect the oral absorption of poorly soluble weak bases.  相似文献   

7.
The performance of the Ion-Selective Electrode (ISE) for in vitro dissolution testing using biorelevant media was evaluated in this study. In vitro dissolution was carried out using USP apparatus 2 (paddle method) with classical and with updated biorelevant media to simulate the pre- and postprandial states. The ISE was used as an analytical stand-alone system and in combination with a single-point HPLC-UV measurement. A modified method enabling the use of the ISE for very poorly soluble substances is also proposed.In terms of f2-factor, the results acquired using the ISE for the drug diphenhydramine-HCl were found to be very similar to the results obtained by manual sampling followed by HPLC-UV analysis. In Fed State Simulated Gastric Fluid (FeSSGF), a medium containing 50% milk, the ISE is more practical since the need to separate proteins from the analyte prior to HPLC-UV analysis is eliminated. Further work will be needed to establish ISE methodology for Fed State Simulated Intestinal Fluid (FeSSIF) media.In summary, the ISE has promise as an analytical tool for research and development applications.  相似文献   

8.
The aim of the present series of experiments was to compare various in vitro tools including evaluation of formulations influence on solubility, various dissolution tests, and an updated, miniaturized transfer model to forecast the behavior of novel formulations of the poorly soluble, weakly basic model compound ketoconazole (KETO) after oral administration. A binary complex with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) and a ternary formulation with HP‐β‐CD and Soluplus® were evaluated and their solubility, dissolution, and transfer behavior was compared with that of the pure drug. Binary and ternary formulations could significantly improve (p < 0.05) KETO solubility in all test media. Dissolution in media simulating the fasted stomach and the fed small intestine was almost complete for the pure drug and both complex formulations. By contrast, in pH 6.5 FaSSIF, dissolution of the pure drug was less than 10%. Both formulations resulted in significantly higher KETO release (p < 0.05) in this test medium (32%/95% release from the binary/ternary formulation). In the transfer experiments, the ternary complex showed the best performance with respect to stabilizing a supersaturated solution and inhibiting precipitation of KETO. Overall, the miniaturized transfer model appeared to be the best single tool for rank‐ordering formulations.  相似文献   

9.
In this study, we evaluated the usefulness of biorelevant in vitro data and of canine data in forecasting early exposure after the administration of two phases of a BCS Class II compound, i.e., doxazosin base (DB) and its mesylate salt (DM). DB, DM, and doxazosin hydrochloride (DH) were prepared and characterized. In vitro data were collected in various media, including human aspirates. Solubilities of DB and DM in human gastric fluid were forecasted by data in fasted state simulating gastric fluid containing physiological components (FaSSGF-V2) but not by data in HClpH 1.8. Unlike data in FaSSGF-V2, dissolution of DB and DM tablets in HClpH 1.6 is rapid. Dissolution of DB tablet in FaSSGF-V2 is incomplete and conversion to DH seems to occur. Differences between DB and DM in dissolution in the small intestine are overestimated in the absence of physiological solubilizers. Using the in vitro data and previously described modeling procedures, the cumulative doxazosin profile in plasma was simulated and the 0-2 h profile was used for evaluating early exposure. Individual cumulative doxazosin profiles in plasma, after single DM tablet administrations to 24 adults, were constructed from corresponding actual plasma profiles. Compared with in vitro DM data in pure aqueous buffers, DM data in biorelevant media led to better prediction of early exposure. Based on intersubject variability in early exposure after DM administration and simulated profiles, the administered phase, DB or DM, does not have a significant impact on early exposure. Partial AUCs were used for evaluating early exposure after DB and DM administration in 4 dogs. Early exposure was significantly higher after administration of DM to dogs. Dogs are not appropriate for evaluating differences in early exposure after DB and DM administrations.  相似文献   

10.
Biorelevant dissolution testing has been widely used to better understand a drug or formulation's behavior in the human gastrointestinal (GI) tract. The successful evaluation of biorelevant dissolution behavior requires recognizing the importance of utilizing suitable biorelevant media in conjunction with an appropriate dissolution method, especially for supersaturating drug delivery systems, such as amorphous solid dispersions (ASDs). However, most conventional biorelevant dissolution testing methods are not able to accurately reflect the dissolution, supersaturation, and precipitation tendencies of a drug or formulation, which could misinform ASD formulation screening and optimization. In this study, we developed a single compartment 2-stage pH-shift dissolution testing method to simulate the changes in pH, media composition, and transit time in the GI tract, and results were compared against the conventional single compartment 1-stage dissolution method. Nine model drugs were selected based on their ionization properties (i.e. acid, base or neutral) and precipitation tendency (i.e. moderate or slow crystallizer). The dissolution results confirmed that 2-stage pH-shift dissolution is the preferred biorelevant dissolution method to assess non-ionized weak base (nifedipine) and neutral (griseofulvin) compounds exhibiting a moderate precipitation rate from solution when formulated as ASDs. Finally, we designed a flowchart guidance for the appropriate biorelevant dissolution performance characterization of different categories of ASD formulations.  相似文献   

11.
Biorelevant dissolution test methods for lipid formulations of RZ-50, an experimental Roche compound, were developed and compared with standard compendial methods in terms of their in vivo predictability. Release of RZ-50, a poorly soluble weakly acidic drug, from lipid suspensions filled in soft gelatin capsules was studied in compendial and biorelevant media using the USP Apparatus 2 (paddle method) and the USP Apparatus 3 (Bio-Dis method). Pharmacokinetic data were obtained in dogs after oral administration of a single 2.5mg dose of RZ-50 soft gelatin capsules in the postprandial state. Level A IVIVC analysis and curve comparison of fraction drug dissolved vs. absorbed using the Weibull distribution were used to evaluate the in vitro methods in terms of their ability to fit the in vivo plasma profiles. Very low drug release was observed with the paddle method owing to poor dispersibility of the lipids in the dissolution media, whereas the Bio-Dis method hydrodynamics facilitated release of the drug by emulsifying the formulation in the medium. The best IVIVC was obtained using a dissolution medium representing fed gastric conditions in combination with the Bio-Dis method. Curve comparisons of the fraction drug absorbed and the fraction drug dissolved profiles based on Weibull distribution fits yielded similar results. The Bio-Dis/biorelevant in vitro method appears to be suitable for this type of lipid formulation.  相似文献   

12.
The establishment of biorelevant and discriminating dissolution procedure for drug products with limited water solubility is a useful technique for qualitative forecasting of the in vivo behavior of formulations. It also characterizes the drug product performance in pharmaceutical development. Lornoxicam, a BCS class-II drug is a nonsteroidal antiinflammatory drug of the oxicam class, has no official dissolution media available in the literature. The objective of present work was to develop and validate a discriminating and biorelevant dissolution test for lornoxicam tablet dosage forms. To quantify the lornoxicam in dissolution samples, UV spectrophotometric method was developed using 0.01M sodium hydroxide solution as solvent at λma×376 nm. After evaluation of saturation solubility, dissolution, sink conditions and stability of lornoxicam bulk drug in different pH solutions and biorelevant media, the dissolution method was optimized using USP paddle type apparatus at 50 rpm rotation speed and 500 ml simulated intestinal fluid as discriminating and biorelevant dissolution medium. The similarity factor (f2) were investigated for formulations with changes in composition and manufacturing variations, values revealed that dissolution method having discriminating power and method was validated as per standard guidelines. The proposed dissolution method can be effectively applied for routine quality control in vitro dissolution studies of lornoxicam in tablets and helpful to pharmacopoeias.  相似文献   

13.
Human biorelevant media have been shown to be a useful tool in pharmaceutical development and to provide input for in silico prediction of pharmacokinetic profiles after oral dosing. Dogs, in particular Beagles, are often used as animal models for preclinical studies. Key differences in the composition of human and canine gastric and intestinal fluids are described in the literature and underscore the need to develop a discrete set of biorelevant media, adapted to the conditions of the proximal canine gastrointestinal (GI) tract, to improve forecast and interpretation of preclinical results using in vitro dissolution studies. Canine biorelevant media can also be used in the development of oral dosage forms for companion animals, which is a rapidly growing market. The compositions of Fasted State Simulated Gastric Fluid canine (FaSSGFc) and Fasted State Simulated Intestinal Fluid canine (FaSSIFc) are adapted to the physiological composition of the corresponding gastrointestinal fluids in terms of pH, buffer capacity, osmolality, surface tension, as well as the bile salt, phospholipid, and free fatty acid content (in terms of concentration and reported subtypes). It was demonstrated that canine Fasted State Simulated Intestinal Fluid (FaSSIFc) is superior in predicting the solubility of model compounds in Canine Intestinal Fluid (CIF) compared to the human biorelevant media (FaSSIF and FaSSIF-V2). Two different versions of FaSSGFc, composed at pH 1.5 and pH 6.5, offer the possibility to design in vitro studies which correspond to the in vivo study design, depending on whether pentagastrin is used to decrease the gastric pH in the dogs or not. Canine biorelevant media can therefore be recommended to achieve more accurate forecasting and interpretation of pharmacokinetic studies of oral drug products in dogs.  相似文献   

14.
Sodium lauryl sulfate (SLS) is an anionic surfactant widely used in pharmaceutical research as a dissolution enhancer for poorly soluble drugs. When SLS was used in ritonavir (RTV) tablet formulation to improve wetting, dissolution of RTV was surprisingly deteriorated in acidic media. To understand this unexpected phenomenon, a systematic investigation, including solubility determination, intrinsic dissolution rate measurement, dissolution in an artificial stomach and duodenum apparatus, and solid-state characterization, revealed the formation of a poorly soluble salt, [RTV2+][LS?]2, in an acidic environment. Solubilization of the poorly soluble RTV salt was observed when the concentration of SLS exceeded the critical micelle concentration. Thus, precipitation of [RTV2+][LS?]2 at a low pH and in presence of a low SLS concentration can lead to deteriorated bioavailability. This unintended negative effect on dissolution should be carefully considered when using SLS in a tablet formulation of a basic drug that can be ionized in gastric fluid.  相似文献   

15.
Abstract

The objective of this study was to investigate the effect of the physiological parameters (pH, buffer capacity, and ionic strength) of the gastrointestinal (GI) fluid on the dissolution behavior of the class II weakly acidic (BCS class IIa) drug valsartan. A series of in vitro dissolution studies was carried out on Diovan® immediate release tablets using media that cover the physiological range of pH (1.2–7.8), buffer capacity (0–0.047?M/ΔpH), and ionic strength (0–0.4?mol/L) of the GI fluid during fasted and fed states using the conventional USP II apparatus. Valsartan exhibited pH- and buffer capacity-dependent dissolution behavior, where valsartan release was slow and incomplete in media simulating gastric fluid with low pH, and fast and complete in media simulating intestinal fluid with high pH. In addition, the rate of valsartan release increased with increasing the buffer capacity of the dissolution medium. In water and NaCl solutions, valsartan release was incomplete and the dissolution profiles were similar regardless of the ionic strength of the medium, indicating an ionic strength-independent dissolution behavior. These results highlight the significant effect of the physiological parameters of the GI fluid on the dissolution behavior of BCS class IIa drugs.  相似文献   

16.
Since the rate-determining step to the intestinal absorption of poorly soluble drugs is the dissolution in the gastrointestinal (GI) tract, postprandial changes in GI physiology, in addition to any specific interactions between drug and food, are expected to affect the pharmacokinetics and bioavailability of such drugs. In this study, in vitro dissolution testing using biorelevant media coupled with in silico physiologically based pharmacokinetic (PBPK) modeling was applied to the prediction of food effects on the absorption of a poorly soluble drug, celecoxib, from 200 mg capsules. A PBPK model was developed based on STELLA® software using dissolution kinetics, solubility, standard GI parameters and post-absorptive disposition parameters. Solubility, dissolution profiles and initial dissolution rate from celecoxib 200 mg capsules were measured in biorelevant and compendial media. Standard GI parameters (gastric emptying rate and fluid volume) were varied according to the dosing conditions. Disposition parameters were estimated by fitting compartmental models to the oral PK data, since intravenous data are not available for celecoxib. Predictions of food effects and average plasma profiles were evaluated using the AUC and Cmax and the difference factor (f1). An approximately 7-fold difference in the maximum percentage dissolved was observed in in vitro dissolution tests designed to represent the fed and fasted states. By contrast, the food effect estimated by simulating the plasma profiles with the PBPK model predicted only a slight delay in the peak plasma level (1 h), and modest increases in the Cmax and AUC of 1.9-fold and 1.3-fold in the fed state, respectively. The PBPK approach, combining in silico simulation coupled with biorelevant dissolution test results, thus corresponds much better to the food effect observed for celecoxib in vivo. Additionally, point estimates of AUC and Cmax as well as f1 calculations demonstrated clear advantages of using results in biorelevant rather than compendial media in the PBPK model.  相似文献   

17.
Biorelevant media are commonly used to simulate the physiological composition of human intestinal fluids (HIF) in in vitro solubility and dissolution investigations. In comparison with the surfactant solutions or blank buffers, these media are able to better reflect the physiological solubility and dissolution behavior of poorly soluble active pharmaceutical ingredients (APIs). The aim of this investigation was to review the composition of FaSSIF and FaSSIF-V2 according to recently summarized data about the physiological composition of fasted state human intestinal fluid and propose an updated version, FaSSIF-V3. Furthermore the surface tension was considered as a possible surrogate parameter to gauge the physiological correctness of new versions of biorelevant media.Various prototypes of FaSSIF-V3 were prepared with each of the following five bile salts: taurocholate (TC), glycocholate (GC), tauroursodeoxycholate (TUDC), taurochenodeoxycholate (TCDC) and glycochenodeoxycholate (GCDC) as well as replacing lecithin with its hydrolysis products, lysolecithin and sodium oleate. Two additional media consisting of a mixture of glycocholate (GC) and taurocholate (TG), with or without 0.2 mM cholesterol, were also investigated.Solubilities of ten model compounds in various prototypes of FaSSIF-V3 were measured using HPLC-UV and compared to the solubilities in the existing biorelevant media (FaSSIF and FaSSIF-V2), fasted HIF, blank buffer and a 0.5% sodium dodecyl sulfate (SDS) solution. Additionally, the influence on the surface tension properties of various combinations of bile salts, phospholipids and their hydrolysis products and cholesterol in these media was investigated and an attempt was made to calculate the CMC of the various generations of FaSSIF.The results demonstrated that the amount and the type of phospholipids as well as the type of bile salt had a significant influence on the solubility and surface tension in the various FaSSIF-V3 prototypes and existing biorelevant media. In contrast to results with biorelevant media, it was demonstrated that blank buffers generally underestimate and SDS solutions highly overestimate the physiological relevant solubilities of all investigated APIs.The prototype containing FaSSIF-V3-GC/TC_Chol was able to better reflect the solubilities of the most investigated APIs in fasted HIF than the existing media, and it also matched the physiological surface tension reported for the fasted human gut, and was designated FaSSIF-V3.  相似文献   

18.
目的 制备格列齐特片,进行体外溶出一致性评价。方法 通过单因素实验考察黏合剂的浓度、外加崩解剂的量、外加润滑剂和助流剂的量、颗粒的大小和片剂的硬度几个因素对溶出的影响,进行处方工艺的筛选。放大制备3批格列齐特片,考察在4种不同溶出介质中自制片和参比制剂的溶出一致性。结果 3批自制片在磷酸盐缓冲液(pH7.4)中15 min内溶出大于85%,在水、pH1.2盐酸溶液、pH6.0磷酸盐溶液中的f2均大于50。结论 在4种不同的溶出介质中,自制片与参比制剂体外溶出一致。  相似文献   

19.
Introduction: For poorly soluble compounds, a good bioavailability is typically needed to assess the therapeutic index and the suitability of the compound for technical development. In industry, the selection of the delivery technology is not only driven by technical targets, but also by constraints, such as production costs, time required for development and the intellectual property situation.

Areas covered: This review covers current developments in parenteral and oral delivery technologies and products for poorly water-soluble compounds, such as nano-suspensions, solid dispersions and liposomes. In addition, the use of biorelevant dissolution media to assess dissolution and solubility properties is described. Suggestions are also included to systematically address development hurdles typical of poorly water-soluble compounds intended for parenteral or oral administration.

Expert opinion: A holistic assessment is recommended to select the appropriate delivery technology by taking into account technical as well as intellectual property considerations. Therefore, first and foremost, a comprehensive physico-chemical characterization of poorly water-soluble compounds can provide the key for a successful selection and development outcome. In this context, the identified physical form of the compound in the formulation is used as a guide for a risk–benefit assessment of the selected oral delivery technology. The potential of nano-suspensions for intravenous administration is unclear. In the case of oral administration, nano-suspensions are mainly used to improve the oral absorption characteristics of micronized formulations. The development of an in situ instantaneous solubilization method, based on stable, standardized liposomes with low toxicity, opens new avenues to solubilize poorly water-soluble compounds.  相似文献   

20.
The usefulness of selected biorelevant dissolution media (BDM) to predict in vivo drug absorption was studied. Dissolution profiles of solid formulations of a poorly soluble model compound were compared in BDM simulating fasted and two levels of fed state. A non-physiologically relevant medium containing the cationic surfactant, cetrimide, was also investigated. All the media studied were capable of differentiating between the formulations employed, with formulation A consistently ranking high and formulations C and D ranking low. An in vivo dog study was carried out and an attempt was made to obtain a level A correlation between the plasma absorption curves and in vitro dissolution curves, using non-linear regression software. The in vitro-in vivo correlation (IVIVC) models developed indicated that fed state media (BDM 3) containing high levels of both bile salts (BS) and lipolysis products (LP) were best able to predict in vivo pharmacokinetic parameters (Cmax and AUC) with prediction errors lower than 10%. Overall, design and use of appropriate media for in vitro dissolution is extremely important. This study demonstrates the potential of physiologically relevant media containing both BS and LP for use in formulation and early drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号