首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background:

The WASF3 protein is involved in cell movement and invasion, and to investigate its role in prostate cancer progression we studied the phenotypic effects of knockdown in primary tumors and cell lines.

Methods:

ShRNA was used to knockdown WASF3 function in prostate cell lines. Cell motility (scratch wound assay), anchorage independent growth and in vivo tumorigenicity and metastasis were then compared between knockdown and wild-type cells.

Results:

Increased levels of expression were seen in high-grade human prostate cancer and in the PC3 and DU145 cell lines. Inactivation of WASF3 using shRNAs reduced cell motility and invasion in these cells and reduced anchorage independent growth in vitro. The loss of motility was accompanied by an associated increase in stress fiber formation and focal adhesions. When injected subcutaneously into severe combined immunodeficiency (SCID) mice, tumor formation was significantly reduced for PC3 and DU145 cells with WASF3 knockdown and in vivo metastasis assays using tail vain injection showed a significant reduction for PC3 and DU145 cells. The loss of the invasion phenotype was accompanied by down-regulation of matrix metalloproteinase 9.

Conclusions:

Overall, these observations demonstrate a critical role for WASF3 in the progression of prostate cancer and identify a potential target to control tumorigenicity and metastasis.  相似文献   

2.

Introduction

Epidermal growth factor receptor (EGFR) overexpression has been associated with prognostic and predictive value in inflammatory breast cancer (IBC). Epidermal growth factor receptor 2 (HER2) overexpression is observed at a higher rate in IBC compared with noninflammatory breast cancer. Current clinically available anti-HER2 therapies are effective only in patients with HER2 amplified breast cancer, including IBC. AZD8931 is a novel small-molecule equipotent inhibitor of EGFR, HER2, and HER3 signaling. In this study, we investigated the antitumor activity of AZD8931 alone or in combination with paclitaxel using preclinical models of EGFR-overexpressed and HER2 non-amplified IBC cells.

Methods

Two IBC cell lines SUM149 and FC-IBC-02 derived from pleural effusion of an IBC patient were used in this study. Cell growth and apoptotic cell death were examined in vitro. For the in vivo tumor growth studies, IBC cells were orthotopically transplanted into the mammary fat pads of immunodeficient mice. AZD8931 was given by daily oral gavage at doses of 25 mg/kg, 5 days/week for 4 weeks. Paclitaxel was subcutaneously injected twice weekly.

Results

AZD8931 significantly suppressed cell growth of IBC cells and induced apoptosis of human IBC cells in vitro. Significantly, we showed that AZD8931 monotherapy inhibited xenograft growth and the combination of paclitaxel + AZD8931 was demonstrably more effective than paclitaxel or AZD8931 alone treatment at delaying tumor growth in vivo in orthotopic IBC models.

Conclusion

AZD8931 single agent and in combination with paclitaxel demonstrated signal inhibition and antitumor activity in EGFR-overexpressed and HER2 non-amplified IBC models. These results suggest that AZD8931 may provide a novel therapeutic strategy for the treatment of IBC patients with HER2 non-amplified tumors.  相似文献   

3.
4.
5.

Background

Lipocalin 2, an iron binding protein, is abnormally expressed in some malignant human cancers and may play an important role in tumor metastasis. However, the roles of lipocalin 2 in breast cancer formation and metastasis have not been clearly shown. This study aimed to investigate the roles of lipocalin 2 in breast tumor metastasis.

Methods

Lipocalin 2 was overexpressed in the metastatic 4T1 murine mammary cancer cells. The effects of lipocalin 2 overexpression on the malignancy of breast cancer cells were examined using cell proliferation assay, migration assay, invasion assay, and soft agar assay in vitro. Tumor formation and metastasis abilities were examined using a well established mouse mammary tumor model in vivo.

Results

Lipocalin 2 overexpression significantly enhanced the migration and invasion abilities of 4T1 cells in vitro, and lung metastasis in vivo. But overexpression of lipocalin 2 in 4T1 cells didn''t affect cell proliferation and anchorage-independent growth in vitro, and primary tumor weight in vivo. Further studies demonstrated that the inhibition of the PI3K/Akt pathway could be a causative mechanism for the promotion of breast cancer migration/invasion induced by lipocalin 2 overexpression.

Conclusion

These results clarified that lipocalin 2 could promote lung metastasis of 4T1 cells through the inhibition of the PI3K/Akt pathway, suggesting that lipocalin 2 was a potential target for therapy of breast cancer.  相似文献   

6.

Introduction

Inflammatory breast cancer (IBC) is an aggressive type of breast cancer, characterized by very rapid progression, enlargement of the breast, skin edema causing an orange peel appearance (peau d’orange), erythema, thickening, and dermal lymphatic invasion. It is characterized by E-cadherin overexpression in the primary and metastatic disease, but to date no robust molecular features that specifically identify IBC have been reported. Further, models that recapitulate all of these clinical findings are limited and as a result no studies have demonstrated modulation of these clinical features as opposed to simply tumor cell growth.

Methods

Hypothesizing the clinical presentation of IBC may be mediated in part by the microenvironment, we examined the effect of co-injection of IBC xenografts with mesenchymal stem/stromal cells (MSCs).

Results

MSCs co-injection significantly increased the clinical features of skin invasion and metastasis in the SUM149 xenograft model. Primary tumors co-injected with MSCs expressed higher phospho-epidermal growth factor receptor (p-EGFR) and promoted metastasis development after tumor resection, effects that were abrogated by treatment with the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. E-cadherin expression was maintained in primary tumor xenografts with MSCs co-injection compared to control and erlotinib treatment dramatically decreased this expression in control and MSCs co-injected tumors. Tumor samples from patients demonstrate correlation between stromal and tumor p-EGFR staining only in IBC tumors.

Conclusions

Our findings demonstrate that the IBC clinical phenotype is promoted by signaling from the microenvironment perhaps in addition to tumor cell drivers.

Electronic supplementary material

The online version of this article (doi:10.1186/s13058-015-0549-4) contains supplementary material, which is available to authorized users.  相似文献   

7.
Objective:Homeobox B9 (HOXB9) is proposed to be involved in tumor angiogenesis and metastasis.We investigated the role of HOXB9 in the progression of colon cancer.Methods:HOXB9 expression was investigated by immunohistochemically and Western blotting in 128 colon cancer patients and the results were analyzed statistically associated with clinicopathological data and survival of the patients.The effect of HOXB9 on cell invasion and metastases abilities were analyzed in vitro and in vivo.Results:HOXB9 is overexpressed in colon cancer tissues and significandy correlated with metastasis and poor survival of patients (P<0.05,respectively).Additionally,high levels of expression of HOXB9 were observed in metastatic lymph nodes.The down-regulation of HOXB9 expression can inhibit the migration and invasive ability of colon cancer cells,while exogenous expression of HOXB9 in colon cancer cells enhanced cell migration and invasiveness.Moreover,stable knockdown of HOXB9 reduced the liver and lung metastasis of colon cancer in vivo.Conclusions:HOXB9 may play an important role in the invasion and metastasis of colon cancer cells and may be a useful biomarker for metastasis and prognostic of colon cancer.  相似文献   

8.

Background

Ubiquitination is a highly dynamic and reversible process with a central role in cell homeostasis. Deregulation of several deubiquitinating enzymes has been linked to tumor development but their specific role in prostate cancer progression remains unexplored.

Methods

RNAi screening was used to investigate the role of the ovarian tumor proteases (OTU) family of deubiquitinating enzymes on the proliferation and invasion capacity of prostate cancer cells. RhoA activity was measured in relation with OTUB1 effects on prostate cancer cell invasion. Tumor xenograft mouse model with stable OTUB1 knockdown was used to investigate OTUB1 influence in tumor growth.

Results

Our RNAi screening identified OTUB1 as an important regulator of prostate cancer cell invasion through the modulation of RhoA activation. The effect of OTUB1 on RhoA activation is important for androgen-induced repression of p53 expression in prostate cancer cells. In localized prostate cancer tumors OTUB1 was found overexpressed as compared to normal prostatic epithelial cells. Prostate cancer xenografts expressing reduced levels of OTUB1 exhibit reduced tumor growth and reduced metastatic dissemination in vivo.

Conclusions

OTUB1 mediates prostate cancer cell invasion through RhoA activation and promotes tumorigenesis in vivo. Our results suggest that drugs targeting the catalytic activity of OTUB1 could potentially be used as therapeutics for metastatic prostate cancer.

Electronic supplementary material

The online version of this article (doi:10.1186/s12943-014-0280-2) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Enhancer of zeste homolog 2 (EZH2), a member of the polycomb group proteins, has been shown to promote cancer progression and breast cancer stem cell (CSC) expansion. Breast CSCs are associated with resistance to radiation in inflammatory breast cancer (IBC), a rare but aggressive variant of breast cancer. In this retrospective study, we examined the clinical role of EZH2 in locoregional recurrence (LRR) of IBC patients treated with radiation.

Patients and methods

62 IBC patients who received radiation (7 pre-operative, 55 post-operative) and had adequate follow up to assess LRR were the subject of this study. Positive EZH2 status was defined as nuclear immunohistochemical staining in at least 10% of invasive cancer cells. Association of EZH2 expression with clinicopathologic features were evaluated using the Chi-square statistic and actuarial LRR free survival (LRFS) was determined using the Kaplan-Meier method.

Results

The median follow-up for this cohort was 33.7 months, and the 5-year overall LRFS rate was 69%. Of the 62 patients, 16 (25.8%) had LRR, and 15 out of 16 LRR occurred in EZH2 expressing cases. Univariate analysis indicated that patients who had EZH2-positive IBC had a significantly lower 5-year locoregional free survival (LRFS) rate than patients who had EZH2-negative IBC (93.3% vs. 59.1%; P = 0.01). Positive EZH2 expression was associated significantly with negative ER status (97.1% in ER- vs 48.1% in ER+; P < 0.0001) and triple-negative receptor status (P = 0.0001) and all triple-negative tumors were EZH2-positive. In multivariate analysis, only triple negative status remained an independent predictor of worse LRFS (hazard ratio 5.64, 95% CI 2.19 – 14.49, P < 0.0001).

Conclusions

EZH2 correlates with locoregional recurrence in IBC patients who received radiation treatment. EZH2 expression status may be used in addition to receptor status to identify a subset of patients with IBC who recur locally in spite of radiation and may benefit from enrollment in clinical trials testing radiosensitizers.  相似文献   

10.

Background:

Current organotypic models of dysplasia and oral squamous cell carcinoma (OSCC) lack the complexity that mimics in vivo tissue. Here we describe a three-dimensional in vitro model of the oral epithelium that replicates tumour progression from dysplasia to an invasive phenotype.

Methods:

The OSCC cell lines were seeded as a cell suspension (D20, Cal27) or as multicellular tumour spheroids (FaDu) with oral fibroblasts on to a de-epidermised acellular dermis to generate tissue-engineered models and compared with patient biopsies.

Results:

The D20 and Cal27 cells generated a model of epithelial dysplasia. Overtime Cal27 cells traversed the basement membrane and invaded the connective tissue to reproduce features of early invasive OSCC. When seeded onto a model of the normal oral mucosa, FaDu spheroids produced a histological picture mimicking carcinoma in situ with severe cellular atypia juxtaposed to normal epithelium.

Conclusion:

It is possible to culture in vitro models with the morphological appearance and histological characteristics of dysplasia and tumour cell invasion seen in vivo using native dermis. Such models could facilitate study of the molecular processes involved in malignant transformation, invasion and tumour growth as well as in vitro testing of new treatments, diagnostic tests and drug delivery systems for OSCC.  相似文献   

11.

Background:

Molecules that are highly expressed in tumour endothelial cells (TECs) may be candidates for specifically targeting TECs. Using DNA microarray analysis, we found that the lysyl oxidase (LOX) gene was upregulated in TECs compared with its expression in normal endothelial cells (NECs). LOX is an enzyme that enhances invasion and metastasis of tumour cells. However, there are no reports on the function of LOX in isolated TECs.

Methods:

TECs and NECs were isolated to investigate LOX function in TECs. LOX inhibition of in vivo tumour growth was also assessed using β-aminopropionitrile (BAPN).

Results:

LOX expression was higher in TECs than in NECs. LOX knockdown inhibited cell migration and tube formation by TECs, which was associated with decreased phosphorylation of focal adhesion kinase (Tyr 397). Immunostaining showed high LOX expression in human tumour vessels in vivo. Tumour angiogenesis and micrometastasis were inhibited by BAPN in an in vivo tumour model.

Conclusion:

LOX may be a TEC marker and a possible therapeutic target for novel antiangiogenic therapy.  相似文献   

12.

Background

Hepatocellular carcinoma (HCC) is a common malignancy worldwide, which is especially prevalent in Asia. Elucidating the molecular basis of HCC is crucial to develop targeted diagnostic tools and novel therapies. Recent studies have identified AT-rich interactive domain-containing protein 1A (ARID1A) as a broad-spectrum tumor suppressor. We evaluated the clinical implications of decreased ARID1A expression in HCC, and investigated the mechanisms of ARID1A-mediated tumor suppression.

Methods

Quantitative PCR, western blotting, immunohistochemical analysis of ARID1A mRNA and protein expression was conducted in 64 paired HCC and adjacent non-tumorous tissues. ARID1A function was evaluated in vitro in MHCC-97H and Huh7 HCC cell lines, and in vivo in a xenografted HCC tumor model.

Results

ARID1A mRNA and protein expression were significantly decreased in HCC tissues, and decreased expression was significantly associated with overall metastasis, including local lymph node and distant metastasis, and poor prognosis. ARID1A knockdown promoted HCC cell migration and invasion in vitro, whereas overexpression of ARID1A inhibited migration and invasion. E-cadherin levels were closely correlated with ARID1A expression, suggesting a role in migration and invasion. In addition, ARID1A and E-cadherin (CDH1) expression were found to be regulated in a coordinated fashion in HCC samples. Furthermore, ARID1A knockdown significantly increased HCC tumor growth and lung metastasis in vivo.

Conclusions

ARID1A served as an important tumor suppressor. Decreased expression of ARID1A was associated with tumor progression, metastasis, and reduced overall survival in mice and humans. ARID1A could represent a promising candidate therapeutic target for HCC.

Electronic supplementary material

The online version of this article (doi:10.1186/s13046-015-0164-3) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

The prognostic value of metastasis-associated gene 1 (MTA1) in nasopharyngeal carcinoma (NPC) has been suggested. However, there is still no direct evidence that MTA1 promotes NPC growth in vivo. In this study, we aimed to investigate the function of MTA1 in the regulation of NPC cell proliferation and tumorigenesis in vitro and in vivo.

Methods

Stable MTA1 knockdown or overexpression NPC cell lines were employed. The effects of MTA1 depletion or overexpression on cell proliferation, colony formation, cell cycle progression were examined by MTT, colony formation and flow cytometry assay. The effects of MTA1 depletion on tumor growth in vivo were examined in mouse xenograft model.

Results

MTA1 knockdown or overexpression drastically changed the proliferation, colony formation and cell cycle of NPC cells in vitro. MTA1 depletion significantly suppressed NPC tumorigenesis in vivo.

Conclusion

MTA1 promotes NPC cell proliferation via enhancing G1 to S phase transition, leading to increased tumor growth. Targeting MTA1 is a promising approach to reduce tumor burden of NPC.  相似文献   

14.
15.

Background

The progression of malignant tumors does not depend exclusively on the autonomous properties of cancer cells; it is also influenced by tumor stroma reactivity and is under strict microenvironmental control. By themselves, stromal cells are not malignant, and they maintain normal tissue structure and function. However, through intercellular interactions or by paracrine secretions from cancer cells, normal stromal cells acquire abnormal phenotypes that sustain cancer cell growth and tumor progression. In their dysfunctional state, fibroblast and immune cells produce chemokines and growth factors that stimulate cancer cell growth and invasion. In our previous work, we established an in vitro model based on a monolayer co-culture system of healthy human fibroblasts (HFs) and human osteosarcoma cells (the MG-63 cell line) that simulates the microenvironment of tumor cells and healthy cells. The coexistence between MG-63 cells and HFs allowed us to identify the YKL-40 protein as the main marker for verifying the influence of tumor cells grown in contact with healthy cells.

Methods

In this study, we evaluated the interactions of HFs and MG-63 cells in a transwell co-culture system over 24 h, 48 h, 72 h, and 96 h. We analyzed the contributions of these populations to the tumor microenvironment during cancer progression, as measured by multiple markers. We examined the effect of siRNA knockdown of YKL-40 by tracking the subsequent changes in gene expression within the co-culture. We validated the expression of several genes, focusing on those involved in cancer cell invasion, inflammatory responses, and angiogenesis: TNF alpha, IL-6, MMP-1, MMP-9, and VEGF. We compared the results to those from a transwell co-culture without the YKL-40 knockdown.

Results

In a pro-inflammatory environment promoted by TNF alpha and IL-6, siRNA knockdown of YKL-40 caused a down-regulation of VEGF and MMP-1 expression in HFs.

Conclusions

These findings demonstrated that the tumor microenvironment has an influence on the gene expression of healthy surrounding tissues and on the process of tumorigenicity and it is emerging as attractive targets for therapeutic strategies.  相似文献   

16.

Background:

Gestational trophoblastic diseases (GTDs) are related to trophoblasts, and human chorionic gonadotropin (hCG) is secreted by GTDs as well as normal placentas. However, the asparagine-linked sugar chains on hCG contain abnormal biantennary structures in invasive mole and choriocarcinoma, but not normal pregnancy or hydatidiform mole. N-acetylglucosaminyltransferase-IV (GnT-IV) catalyses β1,4-N-acetylglucosamine branching on asparagine-linked oligosaccharides, which are consistent with the abnormal sugar chain structures on hCG.

Methods:

We investigated GnT-IVa expression in GTDs and placentas by immunohistochemistry, western blot, and RT–PCR. We assessed the effects of GnT-IVa knockdown in choriocarcinoma cells in vitro and in vivo.

Results:

The GnT-IVa was highly expressed in trophoblasts of invasive mole and choriocarcinoma, and moderately in extravillous trophoblasts during the first trimester, but not in hydatidiform mole or other normal trophoblasts. The GnT-IVa knockdown in choriocarcinoma cells significantly reduced migration and invasive capacities, and suppressed cellular adhesion to extracellular matrix proteins. The extent of β1,4-N-acetylglucosamine branching on β1 integrin was greatly reduced by GnT-IVa knockdown, although the expression of β1 integrin was not changed. In vivo studies further demonstrated that GnT-IVa knockdown suppressed tumour engraftment and growth.

Conclusion:

These findings suggest that GnT-IVa is involved in regulating invasion of choriocarcinoma through modifications of the oligosaccharide chains of β1 integrin.  相似文献   

17.

Background

Most cancers, including breast cancer, have high rates of glucose consumption, associated with lactate production, a process referred as “Warburg effect”. Acidification of the tumour microenvironment by lactate extrusion, performed by lactate transporters (MCTs), is associated with higher cell proliferation, migration, invasion, angiogenesis and increased cell survival. Previously, we have described MCT1 up-regulation in breast carcinoma samples and demonstrated the importance of in vitro MCT inhibition. In this study, we performed siRNA knockdown of MCT1 and MCT4 in basal-like breast cancer cells in both normoxia and hypoxia conditions to validate the potential of lactate transport inhibition in breast cancer treatment.

Results

The effect of MCT knockdown was evaluated on lactate efflux, proliferation, cell biomass, migration and invasion and induction of tumour xenografts in nude mice. MCT knockdown led to a decrease in in vitro tumour cell aggressiveness, with decreased lactate transport, cell proliferation, migration and invasion and, importantly, to an inhibition of in vivo tumour formation and growth.

Conclusions

This work supports MCTs as promising targets in cancer therapy, demonstrates the contribution of MCTs to cancer cell aggressiveness and, more importantly, shows, for the first time, the disruption of in vivo breast tumour growth by targeting lactate transport.  相似文献   

18.

Background:

The Coxsackie and adenovirus receptor (CAR) has been shown to inhibit cancer cell proliferation, migration, and invasion. The underlying mechanisms, however, are poorly understood.

Methods:

The differential gene expression in the human colon cancer cell line DLD1 on RNAi-mediated functional CAR knockdown was analysed using oligo-array technology. Expression of α-catenin was determined by quantitative RT-PCR and western blotting. Proliferation, migration, and invasion after CAR knockdown were assessed by in vitro assays, and cell morphology in a three-dimensional context was evaluated using matrigel.

Results:

Oligo-array technology identified α-catenin as the strongest downregulated gene after CAR knockdown. Western blotting and quantitative RT-PCR confirmed a reduced α-catenin expression after CAR knockdown in DLD1 cells and in the rat intestinal cell line IEC-6. Functionally, both cell lines showed a marked increase in proliferation, migration, and invasion on CAR knockdown. In matrigel, both cell lines formed amorphous cell clusters in contrast to well-organised three-dimensional structures of CAR-expressing vector controls. Ectopic ‘re''-expression of α-catenin in DLD1 and IEC-6 CAR knockdown cells reversed these functional and morphological effects.

Conclusion

These data suggest that an interaction of CAR and α-catenin mediates the impact of CAR on cell proliferation, migration, invasion, and morphology.  相似文献   

19.

Background

As a commonly mutated form of the epidermal growth factor receptor, EGFRvIII strongly promotes glioblastoma (GBM) tumor invasion and progression, but the mechanisms underlying this promotion are not fully understood.

Methods

Through gene manipulation, we established EGFRvIII-, wild-type EGFR-, and vector-expressing GBM cells. We used cDNA microarrays, bioinformatics analysis, target-blocking migration and invasion assays, Western blotting, and an orthotopic U87MG GBM model to examine the phenotypic shifts and treatment effects of EGFRvIII expression in vitro and in vivo. Confocal imaging, co-immunoprecipitation, and siRNA assays detected the focal adhesion-associated complex and their relationships to the EGFRvIII/JAK2/STAT3 axis in GBM cells.

Results

The activation of JAK2/STAT3 signaling is vital for promoting migration and invasion in EGFRvIII-GBM cells. AG490 or WP1066, the JAK2/STAT3 inhibitors, specifically destroyed EGFRvIII/JAK2/STAT3-related focal adhesions and depleted the activation of EGFR/Akt/FAK and JAK2/STAT3 signaling, thereby abolishing the ability of EGFRvIII-expressing GBM cells to migrate and invade. Furthermore, the RNAi silencing of JAK2 in EGFRvIII-expressing GBM cells significantly attenuated their ability to migrate and invade; however, as a result of a potential EGFRvIII-JAK2-STAT3 activation loop, neither EGFR nor STAT3 knockdown yielded the same effects. Moreover, AG490 or JAK2 gene knockdown greatly suppressed tumor invasion and progression in the U87MG-EGFRvIII orthotopic models.

Conclusion

Taken together, our data demonstrate that JAK2/STAT3 signaling is essential for EGFRvIII-driven migration and invasion by promoting focal adhesion and stabilizing the EGFRvIII/JAK2/STAT3 axis. Targeting JAK2/STAT3 therapy, such as AG490, may have potential clinical implications for the tailored treatment of GBM patients bearing EGFRvIII-positive tumors.  相似文献   

20.

Introduction

There is a major need to better understand the molecular basis of triple negative breast cancer (TNBC) in order to develop effective therapeutic strategies. Using gene expression data from 587 TNBC patients we previously identified six subtypes of the disease, among which a mesenchymal-stem like (MSL) subtype. The MSL subtype has significantly higher expression of the transforming growth factor beta (TGF-β) pathway-associated genes relative to other subtypes, including the TGF-β receptor type III (TβRIII). We hypothesize that TβRIII is tumor promoter in mesenchymal-stem like TNBC cells.

Methods

Representative MSL cell lines SUM159, MDA-MB-231 and MDA-MB-157 were used to study the roles of TβRIII in the MSL subtype. We stably expressed short hairpin RNAs specific to TβRIII (TβRIII-KD). These cells were then used for xenograft tumor studies in vivo; and migration, invasion, proliferation and three dimensional culture studies in vitro. Furthermore, we utilized human gene expression datasets to examine TβRIII expression patterns across all TNBC subtypes.

Results

TβRIII was the most differentially expressed TGF-β signaling gene in the MSL subtype. Silencing TβRIII expression in MSL cell lines significantly decreased cell motility and invasion. In addition, when TβRIII-KD cells were grown in a three dimensional (3D) culture system or nude mice, there was a loss of invasive protrusions and a significant decrease in xenograft tumor growth, respectively. In pursuit of the mechanistic underpinnings for the observed TβRIII-dependent phenotypes, we discovered that integrin-α2 was expressed at higher level in MSL cells after TβRIII-KD. Stable knockdown of integrin-α2 in TβRIII-KD MSL cells rescued the ability of the MSL cells to migrate and invade at the same level as MSL control cells.

Conclusions

We have found that TβRIII is required for migration and invasion in vitro and xenograft growth in vivo. We also show that TβRIII-KD elevates expression of integrin-α2, which is required for the reduced migration and invasion, as determined by siRNA knockdown studies of both TβRIII and integrin-α2. Overall, our results indicate a potential mechanism in which TβRIII modulates integrin-α2 expression to effect MSL cell migration, invasion, and tumorigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号