首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Dental materials》2022,38(8):1301-1315
ObjectiveAlthough microcapsules (MCs) have been used for dental resins to achieve self-healing capabilities, the fragile organic shell and single healing event functions during the service period limit their use. Herein, a novel nanoparticle-modified MC with a nano-antibacterial inorganic filler (NIF) containing a quaternary ammonium salt was synthesized to address these issues.MethodsMCs with 0 %–30 % NIFs were prepared via an in situ polymerization method and characterized their morphology, chemical composition, thermal stability, roughness, mechanical properties, and antibacterial effect. Subsequently, M-10 MCs were mixed into the resin matrix at a mass fraction of 7.5 %. The self-healing capability and cytotoxicity were evaluated.ResultsThe introduction of nanomaterials enhances the shell of the MCs and endows them with an antibacterial effect. With the addition of NIFs, the roughness, modulus, and hardness values of MCs all increased (p < 0.05). The presence of M-10 MCs reduced the CFU by 2–3 orders of magnitude compared to the control group. The dental resin containing 7.5 % M-10 MCs obtained almost 69 % self-healing efficiency, without significantly compromising cell viability (p < 0.05).SignificanceSelf-healing MCs with NIFs were prepared for the first time with strong antibacterial properties, a substantial self-healing capability, and low toxicity. This multifunctional MC is a promising candidate for use in dental resins to extend the service life and resolve the problem of bulk fracture and secondary caries.  相似文献   

2.
目的 合成含长链烷基季铵盐纳米抗菌无机填料的复合树脂,探讨其对人牙菌斑生物膜的影响。方法 制备含长链烷基季铵盐的纳米抗菌二氧化硅填料,经表面偶联处理后,分别以0%、5%、10%、15%及20%的质量分数添加到复合树脂中,以0%组作为对照组,用三点弯曲试验来检测其力学性能。建立人牙菌斑生物膜体外模型,通过菌落计数、乳酸代谢分析及活/死细菌染色等手段来评价复合树脂对人牙菌斑生物膜的影响。结果 与对照组相比,当复合树脂纳米抗菌无机填料的质量分数小于15%时,其力学性能没有明显改变(P>0.05);当纳米抗菌无机填料的质量分数达到5%及以上时,复合树脂对人牙菌斑生物膜的代谢产生明显的抑制作用,显示出良好的抗菌性能(P<0.05)。结论 当抗菌无机填料的质量分数达到5%时,复合树脂具有较强的抗菌防龋功能。  相似文献   

3.
ObjectiveThe core–shell chlorhexidine/amorphous calcium phosphate (CHX/ACP) nanoparticles were synthesized and used to modify the dental resin composite, aiming to improve its remineralized and antibacterial properties.MethodsThe core–shell CHX/ACP nanoparticles were synthesized by vesicle-templating technology and characterized, and their sustained release and antibacterial properties were also evaluated. Subsequently, the synthesized nanoparticles were incorporated into the dental resin composite at 1 wt.%, 5 wt.% or 10 wt.% to obtain different experimental groups. The physical properties, including curing depth, double bond conversion rate, water absorption and solubility, the sustained-release effects, and mechanical properties of the modified resin composite were evaluated. The remineralization ability was also measured by SEM. The antibacterial experiment of the modified resin composite with fresh preparation or aging in water for 28 days was carried out by a plate count method.ResultsThe physical and chemical characterizations showed that the synthesized nanoparticles presented a core–shell structure, and their diameter was about 98.5 nm. The shell was composed of ACP with the core full of CHX. These nanoparticles had a release effect on calcium, phosphate ions, and CHX. The nanoparticles could effectively inhibit the growth of S. mutan at a lower concentration (≥50 μg/mL). The curing depth, the double bond conversion, the water absorption, the solubility, the flexural strength, the flexural modulus, and the compressive strength of the modified resin composite were 3.86–4.88 mm, 62.32–73.61%, 1.47–2.84%, 0.21?0.48%, 45.83–109.46 MPa, 2.57–4.91 GPa, and 66.43–160.38 MPa, respectively. The modified resin composite containing 5 wt.% and above CHX/ACP nanoparticles could effectively inhibit the growth of S. mutans regardless of aging in water, with immediate and aging antibacterial rate of more than 92%. In addition, the modified resin composite had a certain remineralization property in the SBF solution verified by SEM.SignificanceThe core–shell CHX/ACP nanoparticles were successfully prepared and used to modify the resin composite. The modified dental resin composite with 5 wt.% CHX/ACP nanoparticles had excellent mechanical, antibacterial, and remineralization properties. It is expected to be an ideal restorative filling material for clinical application.  相似文献   

4.
《Dental materials》2022,38(9):1518-1531
ObjectiveThe cariogenic biofilm on enamel, restoration, and bonding interface is closely related to dental caries and composite restoration failure. Enamel remineralization at adhesive interface is conducive to protecting bonding interface and inhibiting secondary caries. This study intended to assess the remineralization efficiency of adhesive with dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on initial caries lesion of biofilm-coated enamel.MethodsArtificial initial carious lesion was created via 72-hour immersion in demineralization solution and cariogenic biofilm was formed after 24-hour culture of Streptococcus mutans (S. mutans). Specimens were then divided into 4 groups: enamel control, enamel treated with NACP, DMAHDM and NACP+DMAHDM respectively. Samples next underwent 7-day cycling, 4 h in BHIS (brain heart infusion broth containing 1 % sucrose) and 20 h in AS (artificial saliva) per day. The pH of BHIS was tested daily. So did the concentration of calcium and phosphate in BHIS and AS. Live/dead staining, colony-forming unit (CFU) count, and lactic acid production of biofilms were measured 7 days later. The enamel remineralization efficiency was evaluated by microhardness testing and transverse microradiography (TMR) quantitatively.ResultsEnamel of NACP+DMAHDM group demonstrated excellent remineralization effectiveness. And the NACP+DMAHDM adhesive released a great number of Ca2+ and PO43- ions, increased pH to 5.81 via acid neutralization, decreased production of lactic acid, and reduced CFU count of S. mutans (P < 0.05).SignificanceThe NACP+DMAHDM adhesive would be applicable to preventing secondary caries, strengthening enamel-adhesive interface, and extending the lifespan of composite restoration.  相似文献   

5.
《Dental materials》2020,36(8):e266-e278
ObjectivesDental plaque build-up on the cervical area adjacent to gingival margins is a trigger factor for secondary caries around restored root caries lesions. Dimethylaminohexadecyl methacrylate (DMAHDM) and amorphous calcium phosphate nanoparticles (NACP) impart anti-caries effect by reducing the bacterial growth and releasing high concentrations of calcium and phosphate ions, respectively. The present study explored the optimization and formulation of dental composite with increased concentration of DMAHDM combined with NACP and its effect on mechanical behavior and antibacterial response.MethodsDMAHDM was incorporated into dental composite formulation at 3% and 5% with 20% NACP fillers. Mechanical properties were assessed by flexural strength and elastic modulus. The cationic charge density of the samples was determined using fluorescein staining assay. A human saliva-derived microcosm biofilm model was used to assess antibacterial response via colony-forming units, metabolic activities, lactic acid production, and live/dead assay. Surface roughness was measured after 48 h-biofilm formation.ResultsThe viability of human saliva microcosm biofilms was DMAHDM concentration-dependent, where all the microbiological assays were substantially reduced in the presence of 5%DMAHDM. The increased DMAHDM concentration mirrors an increased surface charge density of composites by 8–12 folds and reduced the growth of cariogenic species by 2–5 log (p  0.05). Metabolic activity and lactic acid were reduced by 70–90% and 48–99%, respectively. Increasing DMAHDM concentration up to 5% and its association with NACP fillers did not adversely affect the mechanical properties.SignificanceA highly potent antibiofilm bioactive composite for root caries restorations having DMAHDM-NACP could be flexibly tailored during formulation without detrimental outcome for mechanical function. The enhanced antibacterial performance of the novel bioactive composite has great potential to suppress the dental plaque build-up that triggers secondary caries around the restored root caries lesions.  相似文献   

6.
《Dental materials》2020,36(6):794-807
ObjectiveThe purpose of this work was to explore the enhancement effect of zinc doped mesoporous silica nanoparticles (Zn-MSNs), which could form micromechanical interlocking with resin matrix and sustainably release Zn2+, on the mechanical and antibacterial properties of the dental resin composites.MethodsZn-MSNs were prepared by a sol–gel method, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption/desorption. The mechanical properties of the dental composites reinforced by Zn-MSNs were measured by a universal mechanical testing machine. Antibacterial activities of dental composites were evaluated by both qualitative and quantitative analysis using Streptococcus mutans (S. mutans). The cytotoxicity of the Zn-MSNs filled dental composites was investigated by osteoblasts (OBs).ResultsThe synthesized Zn-MSNs possessed good monodispersity with an average particle size of about 138 nm. The mechanical properties of the composites gradually increased with the increase of the content of Zn-MSNs. The flexural strength, flexural modulus, compressive strength and micro-hardness of the composites containing 15 wt% Zn-MSNs were 31.21%, 50.47%, 53.83% and 26.79% higher than the samples with no Zn-MSNs, respectively. The antibacterial performance was significantly improved by the addition of Zn-MSNs and the antibacterial rate of the composite with 15 wt% of Zn-MSNs reached 100%. Cytotoxicity tests revealed that all the composites were biocompatible during OBs incubation.SignificanceThe prepared Zn-MSNs can effectively improve the mechanical and antibacterial properties of the dental resin composites.  相似文献   

7.
《Dental materials》2022,38(11):1689-1702
ObjectiveA low-shrinkage-stress resin-based cement with antibacterial properties could be beneficial to create a cement with lower stress at the tooth-restoration interface, which could help to enhance the longevity of the fixed dental restoration by reducing microleakage and recurrent caries. To date, there has been no report on the development of a low-shrinkage-stress and bio-interactive cement. Therefore, the objectives of this study were to develop a novel low-shrinkage-stress resin-based cement containing dimethylaminohexadecyl methacrylate (DMAHDM) and investigate the mechanical and antibacterial properties for the first time.MethodsThe monomers urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) were combined and denoted as UV resin. Three cements were fabricated: (1) UV+ 0%DMAHDM (experimental control); (2) UV+ 3%DMAHDM, (3) UV+ %5DMAHDM. RelyX Ultimate cement was used as commercial control. Mechanical properties and Streptococcus mutans (S. mutans) biofilms growth on cement were evaluated.ResultsThe novel bio-interactive cement demonstrated excellent antibacterial and mechanical properties. Compared to commercial and experimental controls, adding DMAHDM into the UV cement significantly reduced colony forming unit (CFU) counts by approximately 7 orders of magnitude, metabolic activities from 0.29 ± 0.03 A540/cm2 to 0.01 ± 0.01 A540/cm2, and lactic acid production from 22.3 ± 0.74 mmol/L to 1.2 ± 0.27 mmol/L (n = 6) (p < 0.05). The low-shrinkage-stress cement demonstrated a high degree of conversion of around 70 %, while reducing the shrinkage stress by approximately 60%, compared to a commercial control (p < 0.05).ConclusionsThe new antibacterial low-shrinkage-stress resin-based cement provides strong antibacterial action and maintains excellent mechanical properties with reduced polymerization shrinkage stress.Clinical significanceA low-shrinkage-stress resin-based cement containing DMAHDM was developed with potent antibacterial effects and promising mechanical properties. This cement may potentially enhance the longevity of fixed dental restoration such as a dental crown, inlay, onlay, and veneers through its excellent mechanical properties, low shrinkage stress, and strong antibacterial properties.  相似文献   

8.
复合树脂被应用广泛于牙体的充填修复治疗,继发龋和充填修复体折裂仍然是复合树脂充填修复失败的主要原因。近年来,加入纳米抗菌成分的复合树脂具有了一定的抗菌性和良好的机械性,正逐渐成为研究的热点,本文就复合树脂中的纳米抗菌成分的研究进展作一综述。  相似文献   

9.
目的 研究渗透树脂治疗对釉质白斑样病损颜色的影响。方法 选择人磨牙60颗,树脂包埋,以牙尖方向作为观察面,每个样本打磨出2个釉质小平面,随机分为A、B点。60颗样本牙随机分为第1、2、3组,每组20颗,经人工龋脱矿液分别脱矿24、48、72 h;对各样本的A点进行渗透树脂处理,B点行0.1%氟化钠涂氟处理30 d,B点涂氟处理后再行渗透树脂处理。应用电子分光光度比色仪测量A、B点脱矿及处理前后的L*值。结果 各组A、B点脱矿前L*值没有明显差异,脱矿后均明显增加;经渗透树脂处理后,各组A点的L*值均较脱矿后降低,第1、2组的L*值恢复到脱矿前水平,第3组L*值与第1、2组存在差异(P<0.05);经涂氟处理后,各组B点的L*值变化不明显;涂氟再经渗透树脂处理后,B点L*值明显降低,但仍高于A点和脱矿前(P<0.05)。结论 渗透树脂能够有效改善釉质白斑样病损的颜色,即刻效果优于传统涂氟治疗;其治疗效果与釉质脱矿程度及龋损活动性有关。  相似文献   

10.
目的 合成含纳米抗菌无机填料的新型树脂粘接剂,并探讨其粘接强度、力学性能、体外抗菌性能等。方法 制备长链烷基季铵盐修饰的纳米抗菌二氧化硅填料,并以0%、2.5%、5.0%、7.5%及10%的质量分数添加到树脂粘接剂中,生成新型纳米抗菌树脂粘接剂。以0%组作为对照组,用牙本质剪切试验来测试粘接强度;用三点弯曲试验来测试力学性能;建立人牙菌斑生物膜体外模型,通过菌落计数、乳酸代谢分析及活/死细菌染色等手段来评价新型树脂粘接剂对牙菌斑生物膜的影响。结果 加入5.0%的纳米抗菌无机填料时,树脂粘接剂的牙本质粘接强度为28.9 MPa,弯曲强度及弹性模量分别为86.6 MPa和4.2 GPa,与对照组比较,粘接强度及力学性能明显提高(P<0.05);当抗菌无机填料含量达到2.5%时,新型抗菌树脂粘接剂对牙菌斑生物膜代谢产生明显抑制作用,显示了良好的抗菌性能(P<0.05)。结论 含一定质量分数(5.0%)新型纳米抗菌无机填料的树脂粘接剂具有较强的粘接强度、力学性能及抗菌功能,为进一步临床应用打下基础。  相似文献   

11.
《Dental materials》2022,38(2):409-420
The objectives of this in vitro study were to develop a novel low-shrinkage-stress flowable nanocomposite with antibacterial properties through the incorporation of dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and investigate the mechanical and oral biofilm properties, to be used in minimally-invasive techniques.MethodsThe light-cured low-shrinkage-stress flowable resin was formulated by mixing urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) at a 1:1 mass ratio. Different mass fractions of glass, and either 5% DMAHDM or 20%NACP or both were incorporated. Paste flowability, ultimate micro tensile strength and surface roughness were evaluated. The antibacterial response of DMAHDM resin was assessed by using biofilms of human saliva-derived microcosm model. Virtuoso flowable composite was used as a control.Results(45% resin+5% DMAHDM+20% NACP+30% glass) formula yielded the needed outcomes. It had flow rate within the range of ISO requirement. The micro tensile strength was (39.1 ± 4.3) MPa, similar to (40.1 ± 4.0) MPa for commercial control (p > 0.05). The surface roughness values of the novel composite (0.079 ± 0.01) µm similar to commercial composite (0.09 ± 0.02) µm (p > 0.05). Salivary microcosm biofilm colony forming unit values were reduced by 5–6 logs (p < 0.05). Biofilm metabolic activity was also substantially reduced, compared to control composite (p < 0.05).SignificanceThe novel bioactive flowable nanocomposite achieved strong antibacterial activities without compromising the mechanical properties. It is promising to be used as pit and fissure sealants, and as fillings in conservative cavities to inhibit recurrent caries and increase restoration longevity.  相似文献   

12.
《Dental materials》2022,38(9):1482-1491
The development of restorative materials containing antibacterial agents is an alternative to reduce the progression of caries lesions.Objectiveto compare the influence of the degree of crosslinking of chitosan particles loaded with dibasic calcium phosphate (DCPA) on the mechanical properties, degree of conversion (DC), and antimicrobial properties of experimental composites.MethodsChitosan/DCPA particles were synthesized by the electrospraying, crosslinked by 0, 8, or 16 h in glutaraldehyde, and characterized by zeta potential and minimum inhibitory concentration (MIC) against S. mutans. Experimental resin composites of Bis-GMA and TEGDMA and 59.5% of barium glass were synthesized, chitosan/DCPA particles were added at 0 or 0.5 wt% with the different crosslinking time. The materials were subject to DC analysis, three-point bending test at 24 h and 7 days, and antimicrobial assays. Data were submitted to one-way ANOVA and Tukey test (α = 0.05).ResultsThe particles with longer crosslinking time presented higher zeta potential and MIC, and the composite containing these particles showed significantly higher biofilm inhibition than the control group. The other two groups were similar to each other and the control. The composite containing particles with 88 h crosslinking time showed the lowest flexural strength at 7 days in water, and materials with non-crosslinked particles and longer crosslinking time presented flexural strength similar to control. The flexural modulus and DC showed no statistical difference among groups.Significancecomposite resin containing 0.5% chitosan/DCPA particles crosslinked by 16 h showed a reduction of biofilm formation without affecting the mechanical properties in relation to the control.  相似文献   

13.
《Dental materials》2023,39(8):677-681
ObjectivesThe antibacterial efficacy of silicone is improved by impregnating it with antimicrobials such as chlorohexidine and zinc oxide. The purpose of this study was to examine mechanical properties and bonding of maxillofacial silicone elastomer mixed with Zinc Oxide nanoparticles (ZnO-NP), and Chlorohexidine Diacetate Salt (CHX) at three different concentrations (1 %, 3 %, and 5 %).MethodsSpecimens of a silicone elastomer (M511) were prepared and divided into 7 groups. Group 1 was control of no additive. Groups 2–4 included silicone elastomer mixed with ZnO-NP (surface area = 67 m2/g) at 3 different concentrations (by weight %); 1 %, 3 % and 5 %. Groups 5–7 included silicone elastomer mixed with CHX at the same concentrations. Tear and tensile strengths, elongation percentage, modulus of elasticity, and shear bond strength to primed acrylic resin surfaces were evaluated. Data was analyzed with 1-way ANOVA, Bonferroni, and Dunnett’s T3 post-hoc tests (P < 0.05).ResultsThere was significant effect of the additives on the tensile strength, elongation percentage, tear strength, and shear bond strength (P < 0.05). Shear bond strengths ranged from 0.55 to 0.96 MPa. Silicone elastomer mixed with CHX (5 %) resulted in the highest shear bond strength (P < 0.05). Non-linear regressions between tensile strength and ZnO and CHX additives were 0.95 and 0.96 respectively.SignificanceAll additives reduced the tensile strength of the silicone. However, CHX at 5 % optimized shear bond strength and thus is proposed in order to fabricate maxillofacial prostheses of sufficient mechanical properties, bonding and antimicrobial activity.  相似文献   

14.
《Dental materials》2020,36(11):1397-1406
ObjectiveTo assess the ultrastructural change of demineralized dentin collagen during calcium phosphate polymer-induced liquid precursor (Ca/P-PILP) mediated remineralization process and to evaluate the biomimetic remineralization potential of high concentration Ca/P-PILP at demineralized artificial caries dentin lesion, additionally to investigate the bond interfacial integrity as well as the bonding strength of the biomimetic remineralized artificial caries dentin lesion.MethodsDemineralized dentin collagen of 5 μm thick was biomimetically remineralized with low, medium concentration Ca/P-PILP for 10 days and high concentration Ca/P-PILP for 10, 15, 20 days. Artificial caries dentin lesion at a thickness of 150 ± 50 μm was biomimetically remineralized with high concentration Ca/P-PILP for 20 days. The biomimetic remineralization of demineralized dentin collagen was observed by scanning electron microscopy (SEM). The biomimetic remineralization intensity and depth of artificial caries dentin lesion was assessed by Electron Probe Micro Analyzer (EPMA). The bonding interfacial integrity between remineralized artificial caries dentin and composite resin was observed by Swept-source optical coherence tomography (SS-OCT) and the bonding strength of remineralized artificial caries dentin was evaluated by micro-tensile bond strength analysis (μTBS).ResultsSolely PAA-PASP solution and solely saturated Ca/P solution can’t achieve dentin collagen remineralization. Increased concentration of Ca/P-PILP and prolonged remineralization time can enhance the biomimetic remineralization intensity of demineralized dentin collagen. After treating with high concentration Ca/P-PILP, a 150 ± 50 μm thick layer of demineralized artificial caries dentin lesion was not fully remineralized, and the biomimetic remineralization intensity reached up to 88.0%. Furthermore, a better bonding interfacial integrity with less microgap and increased bond strength at both baseline level and aging level were observed when artificial caries dentin lesion was biomimetically remineralized with high concentration Ca/P-PILP.SignificanceBiomimetic remineralization of demineralized caries dentin lesion promotes its clinical properties for resin composited adhesive restoration.  相似文献   

15.
BackgroundThis narrative review addresses dental restorative materials with sustained antibacterial action, especially those containing quaternary ammonium compounds. Secondary caries occurs around restorations, causing further loss of mineral and breakdown of the restoration. Lesions adjacent to restorations account for more than 40% of needed restorations. Restorative materials with antibacterial properties will potentially solve this problem.Types of Studies ReviewedSeveral groups are researching composite restorative materials that incorporate antibacterial agents. These agents are mostly exhausted over time. Newer studies involve materials that incorporate antibacterial microparticles that remain active and do not leach out.ResultsOne such antibacterial agent, quaternary ammonium coupled with inorganic silica into minute particles (QASi), has been studied in the laboratory and in humans. QASi particles incorporated into dental materials retain their antibacterial action over time without leaching or loss of activity. A clinical in situ study in humans using dental composite containing QASi resulted in highly significantly less demineralization in the adjacent enamel than the control composite material.Conclusions and Practical ImplicationsDental restorative materials that contain QASi have sustained antibacterial properties, have mechanical properties comparable to those of presently marketed materials, and have been cleared by the US Food and Drug Administration. Clinical studies have shown that composites incorporating QASi have the potential to markedly reduce the occurrence of caries around restorations. Because caries around restorations is a major problem, restorative materials with sustained antibacterial properties will have an important effect in reducing secondary caries around restorations.  相似文献   

16.
《Dental materials》2022,38(5):858-873
ObjectiveThe main aim of the current work was to develop the novel self-healing dental composites contained poly(methyl methacrylate) (PMMA) microcapsules. The effects of PMMA microcapsule content in self-healing performance and mechanical properties of dental composites including flexural strength, flexural modulus, and fracture toughness were discussed. The antibacterial activity and non-toxicity properties of optimum self-healing dental composites were also investigated.MethodsNovel acrylic microcapsules were prepared using triethylene glycol dimethacrylate (TEGDMA) as healing agent and PMMA as microcapsule shell via solvent evaporation method. The silica nanoparticles with the mean size of 15–20 nm were treated by 3-methacryloxypropyltrimethoxysilane (MPS) to enhance their adhesion and dispersion within the acrylic matrix of composite. Acrylic microcapsules with mass fractions of 0%, 5%, 10%, and 15% were added into a mixture of acrylic resins and MPS-grafted SiO2 nanoparticles. The strength and elastic modulus of dental composites were measured by the flexural test. The single edge V-notched beam (SEVNB) method was applied to investigate fracture toughness (KIC) and healing ef?ciency. The results were then statistically analyzed using one-way analysis of variance (ANOVA) at the con?dence level of 0.95.ResultsAcrylic microcapsules were synthesized with the mean size around 30 µm and the core content of about 15 wt%. The grafting percentage of MPS surface modifier onto SiO2 nanoparticles was measured 3.2%. The incorporation of PMMA microcapsules into the dental composites had no significant effect on flexural properties. The self-healing dental composites also indicated the high efficient healing performance in the range of 78–121%. The self-healing dental composites also exhibited impressive antibacterial activity against Streptococcus mutans (S. mutans). The MTT assay also revealed that the incorporation of acrylic microcapsules in dental composites has no cytotoxicity effects.Signi?canceIn the current study, for the first time, the self-healing dental nanocomposites contained acrylic microcapsules were prepared with excellent healing performance and antibacterial properties.  相似文献   

17.
《Dental materials》2020,36(7):936-944
ObjectiveThis study investigated the effect of silver diammine fluoride (SDF), nano-silver (AgNPs) and nano-silver/potassium fluoride (AgNPs/KF) on the morphology of dentin collagen and color staining on the dentin. Also, we investigated the anti-caries properties in terms of anti-bacterial effects and potentiality of dentin remineralization at collagen level.MethodsDentin specimens obtained from bovine tooth roots were finished with #2000 SiC and sonicated for 5 min. Specimens were divided into two main groups: sound and demineralized dentin. Each group was subdivided into five subgroups according to treatment solution: control (no treatment), SDF, nano-silver (AgNPs), AgNPs/KF and KF. Specimens were analyzed using transmission electron microscope (TEM), spectrophotometer, scanning electron microscope (SEM) and antibacterial test. Repeated Measures ANOVA was used for statistical analysis of color change while one-way ANOVA was used for CFU analysis.ResultsRegarding color change, SDF showed the highest values while the other groups exhibited insignificant changes. SDF showed alteration in the collagen fibrils while the other groups showed normal intact fibrils. Regarding antibacterial activity, SDF and AgNPs/KF showed the greatest antibacterial effect.SignificanceSDF altered the dentin collagen morphology and inferior ethetics, but still providing intrafibrillar remineralization. Nano-silver fluoride preparations (AgNPs/KF) can be an alternative material for SDF as it can preserve the dentin collagen, showing no color change overtime, and provide a high anti-caries property including intrafibrillar remineralization with a significant anti-bacterial effect.  相似文献   

18.
复合树脂和粘接系统广泛应用于修复牙体组织缺损,改善牙体颜色和外观;但目前的树脂及粘接材料普遍缺乏有效的抗菌性能,远期修复效果常受到继发龋的影响。近年来,加入防龋成分的粘接剂有了一定的抗菌性能,具有促进牙体硬组织矿化的作用和良好的生物力学性能,逐渐成为口腔修复材料和龋病防治研究的热点。本文就防龋粘接剂的分类、抗菌粘接剂和促进矿化的粘接剂的研究进展作一综述。  相似文献   

19.
《Dental materials》2023,39(6):577-585
ObjectiveTo evaluate the effect of preheating on the microleakage and surface hardness of resin composites in the treatment of pit-and-fissure caries with various widths, as measured by an intraoral scanner.MethodsA total of 153 L-shaped cavities with different widths (1 mm, 1.6 mm and 2 mm) were prepared on the buccal or palatal/lingual surfaces of human molars. The cavities were measured in three dimensions by a TRIOS scanner and then filled with various resins (room temperature Z350 flowable resin and room temperature and 60 ℃ Z350 universal resin). Microleakage and gap formation at 2 sites were evaluated by stereomicroscopy and scanning electron microscope. Resin samples were prepared, and the top surface Vickers hardness (VHNtop) of all samples was measured at 1 day and 30 days postirradiation.ResultsNo difference were observed in the 3D scans for the cavities sizes among groups with the same width. For the 1 mm-wide cavity, the lowest microleakage was obtained with the flowable group; for the 1.6 mm-wide cavity, the nonpreheating universal group showed the highest microleakage at site 1, and the preheating group exhibited lower microleakage than that of the nonpreheating universal group at site 2; and for the 2 mm-wide cavity, the preheating group presented lower microleakage at site 2. The gap formations were consistent with the microleakage degrees. The preheating group exhibited the highest VHNtop at 1 day and 30 days postirradiation.SignificanceA digital intraoral scanner could be used to scan the cavities in three dimensions. Preheating technology could reduce the microleakage of Z350 universal resin and enhance its surface hardness.  相似文献   

20.
《Dental materials》2022,38(5):824-834
ObjectiveA novel method of combining chlorhexidine (CHX) loaded poly (amido amine) (PAMAM) dendrimers with a dental adhesive containing amorphous calcium phosphate (ACP) nanofillers are proposed for etch-and-rinse bonding system to enhance resin-dentin bonding durability.MethodsThe CHX-loaded PAMAM and ACP nanofillers were synthesized and characterized. Their effects on the cytotoxicity were tested by MTT assay. Micro-tensile bond strength (μTBS) before and after thermomechanical challenges were used to evaluate the bonding durability. Anti-matrix metalloproteinase (MMPs) property was examined using in-situ zymography. A double-fluorescence technique was used to examine interfacial permeability after bonding. Dentin remineralization in Ca/P lacking solution was observed under scanning electron microscopy.ResultsCompared with a 0.2 wt% CHX solution, the PAMAM loaded CHX had less cytotoxicity, while the in situ zymography showed it could still inhibit MMPs activity within the hybrid layer after released from PAMAM. The application of the novel method maintained the μTBS better than the control group after thermomechanical challenges, and it did not negatively affect water permeability of the bonding interfaces. CHX-loaded PAMAM regulated the calcium (Ca) and phosphate (P) ions provided by the ACP-containing adhesives to remineralize the demineralized dentin surfaces without initial Ca/P in the environment.SignificanceThe novel method can reduce the cytotoxicity of CHX, inhibit MMPs activities, maintain μTBS, and induce dentin remineralization, which are crucial factors for enhancing bonding durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号