首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 6 normotensive Wistar-Kyoto (WKY) and 6 spontaneously hypertensive rats (SHRs) anesthetized with urethane and chloralose, paralyzed, artificially ventilated, vagotomized with carotid sinus nerves bilaterally cut, somatosympathetic reflex discharges were recorded in cervical and renal nerves by stimulating group II and III cutaneous afferents in the sural nerve. Only a long-circuited, late supraspinal component reflex discharge could be elicited. After averaging the responses evoked by random stimulation, the latency of the reflex discharge was significantly longer in the renal than in the cervical sympathetic nerve, equally in the WKY rat and in SHR. In WKY rats the peak of sympathetic discharge corresponded to early expiration, whereas in SHRs--to late inspiratory phase. The duration of the reflex discharge elicited in inspiration was greater in SHR than in WKY rats. In WKY rats stimuli applied during phrenic discharge produced a reflex response of longer latency and of reduced amplitude than those applied in expiration. In SHRs the latency of the reflex response in the sympathetic cervical nerve was shorter during inspiration than in expiratory phase. The timing of the sympathetic reflex responsiveness within respiratory cycle in SHR and in WKY rats corresponded to strain-dependent opposite respiratory synchronization pattern of the spontaneous sympathetic activity characterizing each strain. No respiratory modulation of the somatosympathetic reflex was observed in the renal nerve of SHR. It is concluded that both spontaneous and evoked sympathetic activity is synchronized differently in SHR and in WKY rats and this difference is both species- and strain-dependent.  相似文献   

2.
Afferent neurons contained within cardiac sympathetic nerves may have important influences on the circulation when activated during myocardial ischemia. Although such activation is known to reflexly excite upper thoracic sympathetic efferent neurons, effects on other components of sympathetic outflow are unknown. Therefore, cardiac sympathetic afferent nerves were stimulated by occlusion of coronary arteries to investigate their reflex influences on renal sympathetic nerve activity and systemic arterial blood pressure. Responses were observed in anesthetized cats in which sympathetic and/or vagal cardiac afferent nerves remained intact and arterial baroreceptors remained intact or had been denervated. Stimulating sympathetic afferent neurons caused excitation of renal nerve activity, which was accompanied by variable changes in arterial pressure. Stimulation of vagal afferents by coronary occlusion consistently produced inhibition of renal nerve activity and marked depressor responses. When both components of cardiac innervation remained intact, increases or decreases in renal nerve activity and blood pressure were elicited by coronary artery occlusion in the presence or absence of arterial baroreceptors. These results illustrate that cardiac sympathetic afferent nerves can contribute significantly to cardiovascular control during myocardial ischemia.  相似文献   

3.
In anesthetized cats electrical stimulation of the medial articular nerve of the knee joint evoked sympathetic reflex discharges in inferior cardiac nerves. Low intensity single stimuli elicited early reflex discharges (A-reflexes, latency 70-90 ms, duration 110-200 ms) whereas short tetanic stimulation at higher intensities evoked, in addition, late reflexes (C-reflexes, latency 390-480 ms, duration 230-400 ms). An analysis of the relation between the conduction velocity and the electrical threshold of 231 single medial articular nerve fibers revealed that the A-reflex is mainly due to activation of Group II units, whereas the C-reflex is evoked by activity in unmyelinated Group IV fibers.  相似文献   

4.
1. In dogs under chloralose-urethane anaesthesia the chemoreceptors of the two carotid bodies were separately stimulated.2. The distribution of three primary reflex responses to carotid body stimulation was studied: parasympathetic bradycardia, sympathetic vasoconstriction, and increase in somatic phrenic nerve activity.3. The reflex bradycardia evoked by either carotid body was mediated by both vagus nerves, but when either vagus was blocked a greater response could be obtained from the contralateral than from the ipsilateral carotid body.4. The reflex vasoconstriction evoked by either carotid body was seen in both hind limbs, with no predominance in either limb.5. The reflex increase in phrenic nerve activity evoked by either carotid body was seen in both phrenic nerves, with no predominance in either nerve.  相似文献   

5.
A number of studies in this and other laboratories using hemodynamic and pharmacologic evidence have suggested that occlusion of the mesenteric artery evokes a pressor reflex initiated by mesenteric baroreceptors. To provide additional evidence in support of this hypothesis, neurophysiological recordings were made of inferior cardiac nerve activity during mesenteric artery occlusion (MAO). The results indicate that MAO enhances inferior cardiac nerve activity in the cat, providing that the carotid sinus nerves have been cut. Cutting of the mesenteric nerves further facilitates cardiac nerve activity and abolishes the response to mesenteric artery occlusion. The evidence suggests that MAO evokes a reflex sympathetic discharge which is subject to override by the carotid sinus depressor reflex. The afferent limb of the reflex is characterized by a tonic depressor outflow from the mesenteric pressure receptors.  相似文献   

6.
1. The effects of severe arterial and primary tissue (carbon monoxide) hypoxia on cardiac output, arterial and right atrial pressures, heart rate and ventilation, have been studied in unanaesthetized normal rabbits, and in animals subjected to adrenalectomy, ;sympathectomy' (guanethidine), adrenalectomy + ;sympathectomy', and section of the carotid sinus and aortic nerves.2. In both arterial and primary tissue hypoxia the sympathetic nerves play a more important part in the normal circulatory response than the adrenal medullary hormones.3. Provided one adrenergic effector pathway remains intact, animals with intact chemoreceptors and baroreceptors tolerate both types of hypoxia well. Circulatory control during both types of hypoxia by means of sympathetic nerves alone produces relatively more peripheral vasoconstriction than is observed during reflex control through increased adrenal catecholamine secretion.4. The occurrence of tonic sympathetic activity in animals with section of carotid sinus and aortic nerves permits maintenance of a high cardiac output during hypoxia but the arterial pressure is low and there is probably less selective distribution of blood flow to the periphery than in animals with normal reflex control.5. Absence of any adrenergic activity in adrenalectomized and ;sympathectomized' animals results in a gradual fall in cardiac output during prolonged hypoxia, after an initial small rise.6. The results in guanethidine-treated animals suggest that the sympathetic discharge to the arterial chemoreceptors is a factor sustaining chemoreceptor discharge during prolonged arterial hypoxia.  相似文献   

7.
Boscan P  Allen AM  Paton JF 《Neuroscience》2001,103(1):153-160
Homeostatic regulation of arterial pressure is maintained by arterial baroreceptors. Activation of these receptors results in an inhibition of sympathetic activity to the heart. It is known that angiotensin II in the nucleus tractus solitarii attenuates the baroreceptor reflex-evoked vagal bradycardia. Here, we determined whether the cardiac sympathetic component of the baroreceptor reflex could be modulated by angiotensin II in the nucleus of the solitary tract. An in situ, arterially perfused working heart--brainstem preparation of rat was employed and the sympathetic inferior cardiac nerve recorded. Increases in perfusion pressure caused a reflex bradycardia and inhibition of inferior cardiac nerve activity. Microinjection of angiotensin II (500 fmol) in the nucleus of the solitary tract attenuated significantly both the reflex bradycardia and inhibition of inferior cardiac nerve activity (P<0.01). The latter was reversible and sensitive to losartan, an angiotensin II type 1 receptor antagonist. In contrast, the peripheral chemoreceptor reflex evoked an increase in inferior cardiac nerve activity that was not affected by angiotensin II applied exogenously in the nucleus of the solitary tract. We conclude that within the nucleus of the solitary tract angiotensin II exerts a powerful and specific inhibitory modulation of the baroreceptor reflex control of sympathetic nerve activity destined for the heart. We suggest that our data may have clinical implications relating to hypertension, a condition when angiotensin II activity is heightened in the brain and the efficacy of the baroreflex is reduced.  相似文献   

8.
1. Activation of the sympathetic input to the urinary bladder by electrical stimulation of afferent fibres in the pelvic nerve evoked three responses: (1) an initial transient rise in intravesical pressure, (2) an inhibition of neurally evoked bladder contractions and (3) an inhibition of transmission in vesical parasympathetic ganglia. Similar responses were elicited by stimulation of the hypogastric nerve. 2. The reflex responses were observed in acute spinal preparations (T10-T12) and in cats with intact spinal cords, but were abolished by bilateral transection of the hypogastric nerves. 3. The inhibition of bladder contractions was antagonized by the administration of propranolol (200-400 mug, I.A.), a beta-adrenergic blocking agent. The inhibition of ganglionic transmission was antagonized by dihydroergotamine (30-75 mug, I.A.), an alpha-adrenergic blocking agent. The initial rise in intravesical pressure was not antagonized by either agent. 4. Electrical stimulation of other afferents (carotid sinus nerve and sciatic nerve) did not consistently elicit responses in the urinary bladder. However, stimulation of these afferents as well as pelvic nerve afferents evoked reflex firing in nerve filaments on the surface of the urinary bladder. The firing was abolished by transection of the ipsilateral hypogastric nerve. 5. It is concluded that stimulation of vesical afferents activates a spinal sympathetic reflex which results in closing of the internal urethral sphincter and a depression of bladder activity. The latter occurs by a direct depression of detrusor smooth muscle as well as a block of the neural input to the bladder. This vesico-sympathetic reflex represents a negative feed-back mechanism which may have an important role in the maintenance of urinary continence.  相似文献   

9.
We examined the role of carotid baroreceptors in the short-term modulation of sympathetic outflow to the muscle vascular bed and parasympathetic outflow to the heart in 10 healthy adults. Afferent carotid baroreceptor activity was modified with 30-mmHg neck suction or pressure applied during held expiration, and efferent sympathetic activity was measured with microelectrodes inserted percutaneously into peroneal nerve muscle fascicles. Sympathetic responses were conditioned importantly by directional changes of carotid transmural pressure: increased pressure (onset of neck suction or offset of neck pressure) inhibited (totally) sympathetic activity, and reduced pressure (offset of neck suction or onset of neck pressure) augmented sympathetic activity. Responses occurred after a latency of about 2 s and did not persist as long as changes of neck-chamber pressure. Cardiac intervals were prolonged by increased carotid transmural pressures and shortened by decreased carotid transmural pressures, but, in contrast to sympathetic responses, cardiac responses adapted only slightly during neck-chamber pressure changes. Our results suggest that in the human a common baroreceptor input is processed differently in central vagal and sympathetic networks. Muscle sympathetic responses to changing levels of afferent baroreceptor traffic are profound but transitory. They appear to be conditioned more by changes of arterial pressure than by its absolute levels.  相似文献   

10.
The present study was initiated to determine the role of somatic A (myelinated) and C (unmyelinated) afferent fibers in both responses of increases and decreases in adrenal sympathetic nerve activities during repetitive mechanical pinching and brushing stimulations of the skin in anesthetized rats with central nervous system (CNS) intact. Accordingly, changes in adrenal sympathetic nerve activity resulting from repetitive and single shock electrical stimulation of various spinal afferent nerves, especially the 13th thoracic (Th13) spinal nerve and the sural nerve, were examined in urethane/chloralose-anesthetized rats. Repetitive electrical stimulation of A afferent fibers in Th13 spinal or sural nerve decreased the adrenal nerve activity similarly as brushing stimulation of skin of the lower chest or hindlimb did, while repetitive stimulation of A plus C afferent fibers of those nerves increased the adrenal nerve activity as pinching stimulation of those skins did. Single shock stimulation of spinal afferent nerves evoked various reflex components in the adrenal nerve: an initial depression of spontaneous activity (the early depression); the following reflex discharge due to activation of A afferent fibers (the A-reflex); a subsequent reflex discharge due to activation of C afferent fibers (the C-reflex); and following post-excitatory depressions. These reflexes seem to be mediated mainly via supraspinal pathways since they were abolished by spinal transection at the C1-2 level. Although the supraspinal A- and C-reflexes could be elicited from stimulation of a wide variety of spinal segmental afferent levels, the early depression was more prominent when afferents at spinal segments closer to the level of adrenal nerve outflow were excited. It is suggested that the decreased responses of the adrenal nerve during repetitive electrical stimulation of A afferent nerve fibers are attributable to summation of both the early depression and post-excitatory depression evoked by single shock stimulation, while the increased responses during repetitive stimulation of A plus C afferent fibers are attributable to summation of the C-reflex after single shock stimulation. In spinalized rats, repetitive stimulation of Th13 always increased the adrenal nerve activities regardless of whether A fibers alone or A plus C fibers were stimulated, just as brushing and pinching of the lower chest skin always increased them. The increased responses in spinal animals seem to be related to the fact that single electrical stimuli of Th13 produced A- and C-reflexes of spinal origin without clear depressions.  相似文献   

11.
Central pathways of some autonomic reflex discharges   总被引:2,自引:5,他引:2       下载免费PDF全文
1. Electrical stimulation of spinal sensory nerves evoked discharges in inferior cardiac and renal nerves. In the anaesthetized cat both an early and a late response could be recorded in each nerve.2. For any one afferent input the central delay of the late cardiac nerve response was significantly less than that of the late renal nerve response. The central delay of the early responses was similar for both nerves. In the spinal cat only the early response was present.3. Cooling the floor of the 4th ventricle abolished the late responses in renal nerves, but left reflex volleys in white rami and intercostal nerves unchanged.4. Stimulation in the brain stem evoked responses in both cardiac and renal nerves which had a shorter latency than the reflexes evoked in these nerves by stimulating dorsal roots.5. The late responses could be abolished by lesions in the cervical spinal cord.6. Such evidence led to the conclusion that there are two pathways for reflex discharge into inferior cardiac and renal nerves, one involving a supraspinal relay and the other confined to the spinal cord.  相似文献   

12.
Spinal sympathetic reflexes initiated by coronary receptors   总被引:4,自引:2,他引:4       下载免费PDF全文
1. The main left coronary artery of vagotomized spinal cats was perfused at different flows and pressures. The changes in pressure were limited to the coronary bed.2. Increased coronary flow which increased coronary arterial pressure provoked a reflex increase in sympathetic discharge in the white ramus of the third thoracic spinal nerve and the inferior cardiac nerve. Reflex reductions in activity were not observed.3. Occlusion of the coronary sinus and myocardial ischaemia, due to cessation of pump inflow, evoked similar reflex increases of sympathetic activity. The effect of myocardial ischaemia was apparent before systemic arterial blood pressure fell or left ventricular end-diastolic pressure rose.4. Increased coronary arterial pressure, myocardial ischaemia and coronary sinus occlusion could activate the same preganglionic neurone.5. The afferent limb of the excitatory coronary-sympathetic reflex was in the cardiac sympathetic nerves, mainly on the left. Afferent nerve fibres running in these nerves and in the third left thoracic sympathetic ramus communicans were excited by increased coronary arterial pressure, myocardial ischaemia, and occlusion of the coronary sinus. Inhibition was not observed. Many of the receptors were further localized by direct probing over the coronary vessels and adjacent myocardium.6. Some receptors were excited by increased coronary arterial pressure alone, others by coronary sinus occlusion, and still others by myocardial ischaemia. In addition, some receptors were excited by all three stimuli.  相似文献   

13.
Our study determined the effects of the calcium antagonists, nifedipine and verapamil, on the carotid sinus baroreceptors and baroreflex. The left carotid sinus region in dogs was vascularly isolated and filled with oxygenated physiological salt solution. Steady-state multiunit activity was recorded from the carotid sinus nerve for sinus pressures of 50-200 mmHg after bathing the carotid sinus region in a solution containing no drug, 10 micrograms/ml nifedipine (n = 6), or 5 micrograms/ml verapamil (n = 5). The slopes of the curves relating carotid sinus nerve activity (% of maximum control) to carotid sinus pressure were control, 0.81 +/- 0.06; nifedipine, 1.29 +/- 0.14; and verapamil, 0.48 +/- 0.06%/mmHg, indicating that nifedipine increased and verapamil decreased the sensitivity of the carotid sinus baroreceptors. Additional studies with bilateral carotid sinus isolation (carotid sinus nerves intact) indicated that nifedipine enhanced and verapamil attenuated carotid baroreflex control of renal sympathetic nerve activity. Pressure-volume curves generated in the isolated carotid sinus showed that effects on smooth muscle do not account for the opposing effects of the two Ca2+ antagonists. Omitting Ca2+ from the physiological solution resulted in increased carotid sinus nerve activity, an effect blocked by verapamil but not nifedipine. Verapamil, but not nifedipine, inhibited veratrine-induced (Na+-dependent) excitation of carotid baroreceptors. Thus the excitatory effects of nifedipine on the carotid sinus baroreceptors are dependent on Ca2+ mechanisms, whereas the inhibitory effects of verapamil may be due mainly to interference with the inward Na+ current.  相似文献   

14.
The effects of unloading of the carotid baroreceptors on arterial plasma glucose concentration as well as on portal plasma immunoreactive glucagon (IRG) and insulin (IRI) concentrations were studied in anestethized, vagotomized cats either by sectioning the sinus nerves or by lowering the pressure in the isolated carotid sinuses. Complete elimination of the carotid baroreceptor discharge by cutting the sinus nerves caused an increase in the arterial plasma glucose concentration by 100% and an increase in the portal IRG level by about 200%, whereas the portal IRI concentration decreased to 50% of its basal value. These baroreceptor-induced changes of the plasma IRG and IRI levels seemed to be graded in relation to the drop in carotid blood pressure and they were clearly detectable when the pressure was lowered from 120 to 90 mmHg in the isolated carotid sinus preparation. The described reflex hyperglycemia, hyperglucagonemia and hypoinsulinemia were mediated to the pancreas and liver mainly by the sympatho-adrenal system, since cutting the splanchnic nerves above the adrenal glands abolished the hyperglycemia and hypoinsulinemic responses and markedly depressed the magnitude of the hyperglucagonemic response. In adrenalectomized cats, complete unloading of the baroreceptors evoked both hyperglucagonemia and hypoinsulinemia although the magnitude of the hormonal responses was diminished. In animals where the pancreas and liver were sympathectomized but the adrenal glands left intact, cutting the sinus nerves evoked a doubling of the IRG level and a slight increase in plasma glucose, but no significant change of the IRI level. I.v. infusion of adrenaline (1 microgram/kg X min) or noradrenaline (5 microgram/kg X min) caused pronounced increases in IRG and plasma glucose and a clear-cut reduction of IRI. We conclude that the function of the endocrine pancreas in the cat can be influenced by variations in the blood pressure by means of a reflex control which originates from arterial baroreceptors. This reflex adjustment of the endocrine pancreas is mediated chiefly by two links of the sympatho-adrenal system, namely by catecholamine-release from the adrenal medulla and, more importantly, by a direct adrenergic nerve fibre influence on the alpha- and beta- cells.  相似文献   

15.
The present experiments were designed to study effects of neural control mechanisms on renal sympathetic nerve activity during acute portal vein distension in anesthetized dogs. Following the inflation of a balloon placed into the main portal vein of animals with the neuraxis intact (intact group), portal vein pressure at a site of the splanchnic regions increased significantly. Mean blood pressure (MBP) fell significantly and then renal vascular resistance (RVR) increased significantly in parallel with changes in portal venous pressure. In animals with sinoaortic denervation (SAD group), changes in portal venous pressure during the inflation of a balloon did not differ from the intact group. However, decreases in MBP in the SAD group were greater than that in the intact group, and sinoaortic denervation did not alter increases in RVR. In animals with both sinoaortic denervation and cervical vagotomy (vagotomy group), portal vein distension produced more profound hypotension, and significant increases in RVR occurred. This increase in RVR, however, was abolished by renal nerve denervation. The results of the present study indicate that increases in RVR during the portal vein distension, which is associated with systemic hypotension, may be mediated by an activation of efferent sympathetic renal nerves and modified by at least two neural reflex mechanisms such as carotid sinus baroreceptors and cardiopulmonary baroreceptors. In addition, local reflex systems such as stretch receptors in the venous wall of the portal vein may be involved in excitatory response to renal sympathetic nerve, leading to renal vasoconstriction, during the portal vein distension.  相似文献   

16.
1. Brief stimuli were delivered to the carotid chemoreceptors or baroreceptors in dogs anaesthetized with pentobarbitone or chloralose. Chemoreceptor stimulation was achieved by rapid retrograde injections of 0-2-0-5 ml. warmed, CO2-equilibrated saline through a cannula in the external carotid artery. Baroreceptor stimulation was achieved by forceful retrograde injection of 2-5 ml. air-equilibrated saline, or of freshly drawn arterial blood, into the external carotid artery after first clamping the common carotid artery. 2. Brief baroreceptor stimuli had no noticeable effect on breathing. Brief chemoreceptor stimuli had no effect on breathing in some dogs, but in many produced a reflex increase in the depth of inspiration when delivered during inspiration. In these same dogs, brief chemoreceptor stimuli delivered in expiration either prolonged the expiratory pause or evoked an active expiratory effort. 3. Prompt decreases in heart rate were elicited by brief sudden chemoreceptor or baroreceptor stimuli when these were delivered during the expiratory phase of respiration. The stimuli did not modify the control heart rate pattern when delivered during inspiration. If the carotid sinus nerve or the vagus nerves were cut the responses were abolished. 4. Brief chemoreceptor or baroreceptor stimuli remained effective in evoking prompt decreases in heart rate during periods of apnoea in the end-inspiratory position (Hering-Breuer inflation reflex). In periods of apnoea after prolonged artificial hyperventilation the stimuli were sometimes ineffective at first, but were always effective late in the period of apnoea, again producing prompt cardiac slowing. 5. After denervation of the lungs, brief baroreceptor and chemoreceptor stimuli continued to evoke prompt falls in heart rate when given during expiration. When delivered during inspiration the same stimuli were either ineffective, or less effective.  相似文献   

17.
By injecting noise into the carotid sinus baroreceptors, we previously showed that heart rate (HR) responses to weak oscillatory tilt were enhanced via a mechanism known as "stochastic resonance." It remains unclear, however, whether the same responses would be observed when using oscillatory lower body negative pressure (LBNP), which would unload the cardiopulmonary baroreceptors with physically negligible effects on the arterial system. Also, the vasomotor sympathetic activity directly controlling peripheral resistance against hypotensive stimuli was not observed. We therefore investigated the effects of weak (0 to approximately -10 mmHg) oscillatory (0.03 Hz) LBNP on HR and muscle sympathetic nerve activity (MSNA) while adding incremental noise to the carotid sinus baroreceptors via a pneumatic neck chamber. The signal-to-noise ratio of HR, cardiac interbeat interval, and total MSNA were all significantly improved by increasing noise intensity, while there was no significant change in the arterial blood pressure in synchronized with the oscillatory LBNP. We conclude that the stochastic resonance, affecting both HR and MSNA, results from the interaction of noise with the signal in the brain stem, where the neuronal inputs from the arterial and cardiopulmonary baroreceptors first come together in the nucleus tractus solitarius. Also, these results indicate that the noise could induce functional improvement in human blood pressure regulatory system in overcoming given hypotensive stimuli.  相似文献   

18.
The effects of unloading of the carotid baroreceptors on arterial plasma glucose concentration as well as on portal plasma immunoreactive glucagon (IRG) and insulin (IRI) concentrations were studied in an-estethized, vagotomized cats either by sectioning the sinus nerves or by lowering the pressure in the isolated carotid sinuses. Complete elimination of the carotid baroreceptor discharge by cutting the sinus nerves caused an increase in the arterial plasma glucose concentration by 100% and an increase in the portal IRG level by about 200%, whereas the portal IRI concentration decreased to 50% of its basal value. These baroreceptor-induced changes of the plasma IRG and IRI levels seemed to be graded in relation to the drop in carotid blood pressure and they were clearly detectable when the pressure was lowered from 120 to 90 mmHg in the isolated carotid sinus preparation. The described reflex hyperglycemia, hyperglucago-nemia and hypoinsulinemia were mediated to the pancreas and liver mainly by the sympatho-adrenal system, since cutting the splanchnic nerves above the adrenal glands abolished the hyperglycemic and hypoinsulinemic responses and markedly depressed the magnitude of the hyperglucagonemic response. In adrenalectomized cats, complete unloading of the baroreceptors evoked both hyperglucagonemia and hypoinsulinemia although the magnitude of the hormonal responses was diminished. In animals where the pancreas and liver were sympathectomized but the adrenal glands left intact, cutting the sinus nerves evoked a doubling of the IRG level and a slight increase in plasma glucose, but no significant change of the IRI level. I.v. infusion of adrenaline (1 γg/kg × min) or noradrenaline (5 γg/kg × min) caused pronounced increases in IRG and plasma glucose and a clear-cut reduction of IRI. We conclude that the function of the endocrine pancreas in the cat can be influenced by variations in the blood pressure by means of a reflex control which originates from arterial baroreceptors. This reflex adjustment of the endocrine pancreas is mediated chiefly by two links of the sympatho-adrenal system, namely by catecholamine-release from the adrenal medulla and, more importantly. by a direct adrenergic nerve fibre influence on the α- and β-cells.  相似文献   

19.
The reflex effects of noxious mechanical stimulation of a hindpaw or abdominal skin on ovarian blood flow, and the reflex pathways involved in those responses were examined in anesthetized rats. Blood flow in the left ovary was measured using a laser Doppler flowmeter, and the activity of the left ovarian sympathetic nerve and mean arterial pressure (MAP) of the common carotid artery were recorded. Stimulation of the left or right hindpaw for 30 s produced marked increases in ovarian sympathetic nerve activity and MAP. Ovarian blood flow slightly decreased during the stimulation and then slightly increased after the stimulation. After the left ovarian sympathetic nerves were severed, the same stimulus produced a remarkable monophasic increase in ovarian blood flow that was explained by passive vasodilation due to a marked increase in MAP. After spinal transection at the third thoracic (T3) level, the responses of MAP, ovarian sympathetic nerve activity, and ovarian blood flow to hindpaw stimulation were nearly abolished. Stimulation of the abdomen at the right or left side for 30 s produced slight increases in ovarian sympathetic nerve activity and MAP. Ovarian blood flow slightly decreased during the stimulation and then slightly increased after the stimulation. After the ovarian sympathetic nerves were severed, the response of the ovarian blood flow changed to a monophasic increase due to an increase in MAP. After spinal transection, stimulation of the left abdomen produced a moderate increase in MAP, a remarkable increase in ovarian sympathetic nerve activity and a slight decrease in ovarian blood flow during the stimulation. In contrast, stimulation of the right abdomen produced a smaller response in ovarian sympathetic nerve activity during the stimulation while it increased the MAP to a similar degree. Ovarian blood flow slightly increased after the end of stimulation, which was explained as passive vasodilation due to the increase in MAP. In conclusion, stimulation of somatic afferents affects ovarian blood flow by inducing changes in ovarian sympathetic nerve activities and blood pressure. When stimulation was applied to a hindpaw whose segment of afferent input is far from the segment of the ovarian sympathetic nerves, it took a supraspinal reflex pathway. However, when stimulation was applied to the abdomen whose spinal segment of the afferent is close to the segment of the ovarian sympathetic nerve output, there are spinal segmental reflex pathways. The present results demonstrate that spinal reflexes depend on the laterality of the stimulus, while supraspinal reflexes do not depend on the laterality of the stimulus.  相似文献   

20.
The present study was designed to determine effect of the preganglionic splanchnic nerve activity (SNA) on the brief hypotension accompanied with the occlusion of left circumflex coronary artery (CxCAO) in chloralose anesthetized cats. Following CxCAO in animals with neuraxis intact, no significant alterations of SNA occurred despite the significant fall in mean blood pressure (MBP). A significant fall in MBP also occurred in vagotomized animals with arterial baroreceptors intact, but SNA was significantly augmented from 12.9 +/- 2.7 impulses/sec before CxCAO to 24.4 +/- 4.3 impulses/sec 60 sec after the occlusion. In vagotomized animals, in which their carotid sinuses were isolated and perfused with the constant pressure at a level equal to systemic blood pressure (112 +/- 6 mmHg) and with higher pressure (167 +/- 7 mmHg), SNA was not altered significantly during the hypotension due to CxCAO. When the carotid sinuses were perfused with lower pressure (53 +/- 8 mmHg), a significant increase in SNA occurred simultaneously with the decrease in MBP after CxCAO. The peak decreases in blood pressure during the coronary occlusion were significantly greater in the vagotomized group (-46 +/- 5 mmHg) and in the Low-CSP group (-50 +/- 5 mmHg) than in other groups. Onset of this excitatory efferent sympathetic response to the hypotension due to the coronary occlusion in the vagotomized and Low-CSP groups was delayed significantly despite a significant fall in arterial blood pressure. These results show that vagal afferents from the heart may play a role of inhibiting the sympathetic augmentation mediated by arterial baroreceptors during cardiogenic hypotension. An excessive activation of cardiac receptors with sympathetic afferents may be induced by the profound fall in blood pressure, resulting in further impairment of cardiac function due to progressive myocardial ischemia under the condition of high sympathetic tone activated by baroreceptor reflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号