首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
African trypanosomes are ancient eukaryotes that cause lethal disease in humans and cattle. Available drugs are inadequate and the need for new therapeutic targets is great. Trypanosoma brucei and related pathogens differ strikingly from higher eukaryotes in many aspects of nucleic acid structure and metabolism. We find yet another example of this in their unusual DNA topoisomerase IB. Type IB topoisomerases relieve the supercoils that accumulate during DNA and RNA synthesis, and are of considerable importance as the target for antitumor camptothecins. Dozens of type IB topoisomerases sequenced from eukaryotes, bacteria, and pox viruses are all encoded by a single gene that predictably contains a highly conserved DNA binding domain and C-terminal catalytic domain, linked by a nonconserved hydrophilic region. We find that topoisomerase IB in T. brucei is encoded by two genes: one for the DNA-binding domain and a second for the C-terminal catalytic domain. In keeping with this, highly purified fractions of native T. brucei topoisomerase IB catalytic activity contain two proteins, of 90 and 36 kDa. The native enzyme is conventional in its Mg2+-independence, ability to relax positive and negative supercoils, and inhibition by camptothecin. Camptothecin promotes the formation of a covalent complex between 32P-labeled substrate DNA and the small subunit. This unusual structural organization may provide a missing link in the evolution of type IB enzymes, which are thought to have arisen over time from the fusion of two independent domains. It also provides another basis for the design of selectively toxic drug candidates.  相似文献   

2.
3.
4.
5.
ATP-independent type II topoisomerase from trypanosomes.   总被引:11,自引:1,他引:11  
We have characterized in Trypanosoma cruzi a DNA topoisomerase capable of decatenating complex trypanosomal kinetoplast DNA networks in the absence of ATP. The enzymatic activity requires Mg2+ and K+. Using a defined DNA topoisomer we showed that the linking number changes by steps of 2, which characterizes the enzyme as a type II topoisomerase. The enzyme can catenate supercoiled DNA molecules, unknot DNA, and cleave double-stranded DNA. The enzyme has no ATPase activity. The native enzyme has an Mr of about 200,000. Crude extracts and partially purified fractions contain an aggregating factor that can substitute spermidine in catenating reactions. Because of the presence of this factor, the kinetoplast DNA can only be decatenated by purified fractions. The enzyme is inhibited by certain drugs and provides a potential target for chemotherapy. Such an enzyme was also characterized in Trypanosoma equiperdum.  相似文献   

6.
7.
The nucleotides in a tRNA that specifically interact with the cognate aminoacyl-tRNA synthetase have been found largely located in the helical stems, the anticodon, or the discriminator base, where they vary from one tRNA to another. The conserved and semiconserved nucleotides that are responsible for the tRNA tertiary structure have been shown to have little role in synthetase recognition. Here we report that aminoacylation of Escherichia coli tRNA(Cys) depends on the anticodon, the discriminator base, and a tertiary interaction between the semiconserved nucleotides at positions 15 and 48. While all other tRNAs contain a purine at position 15 and a complementary pyrimidine at position 48 that establish the tertiary interaction known as the Levitt pair, E. coli tRNA(Cys) has guanosine -15 and -48. Replacement of guanosine -15 or -48 with cytidine virtually eliminates aminoacylation. Structural analyses with chemical probes suggest that guanosine -15 and -48 interact through hydrogen bonds between the exocyclic N-2 and ring N-3 to stabilize the joining of the two long helical stems of the tRNA. This tertiary interaction is different from the traditional base pairing scheme in the Levitt pair, where hydrogen bonds would form between N-1 and O-6. Our results provide evidence for a role of RNA tertiary structure in synthetase recognition.  相似文献   

8.
A messenger RNA fragment about 220 nucleotides long has been isolated from 32-P-labeled tryptophan operon mRNA of Escherichia coli. When point mutations at the end of trpB and the beginning of trpA were introduced, the resulting nucleotide changes were found; hence the mRNA fragment must include the trpB-trpA intercistronic region. Most of the nucleotide sequences can be assigned to specific locations in the structural genes, based on the amino-acid sequences of the trpB and trpA proteins. In vitro, ribosomes bind to this piece of mRNA and protect from nuclease attack a region about 40 nucleotides long, containing a central AUG codon. The triplet codons to the 3' side of this AUG correspond to the first seven amino acids of the trpA protein; the codons to the 5' side correspond to the last six amino acids of the trpB protein. Translation of trpB is terminated by single UGA codon, which overlaps the trpA AUG initiation codon: UGAUG. Thus the untranslated "intercistronic" region consists of only two nucleotides. The RNA sequence spanning this region undoubtedly fulfills two functions, specifying ribosome recognition signals as well as encoding amino-acid sequences.  相似文献   

9.
10.
While the Escherichia coli Su-3 (tyrT) tyrosine tRNA suppressor inserts only tyrosine at amber codons in E. coli, we show here that in Saccharomyces cerevisiae this tRNA inserts leucine and no significant amounts of any other amino acid. Thus, the E. coli tyrosine tRNA is functionally a leucine tRNA in yeast cytoplasm. This functional identity may correlate with a structural relationship between the E. coli tyrosine and yeast leucine tRNAs, which are both members of the uncommon type II class of tRNA structures. The results raise the possibility that in evolution a tRNA may be more closely related to a tRNA of different acceptor specificity, but of the same type class, than to one with the same amino acid specificity, but of a different type class.  相似文献   

11.
We show that, despite differences in primary structure, substrate preference, and mechanism of catalysis, yeast DNA topoisomerase I can functionally substitute for Escherichia coli DNA topoisomerase I. A family of plasmids expressing the yeast TOP1 gene or 5'-deletion mutations of it were used to complement the temperature-sensitive phenotype of an E. coli topA mutant. These plasmids were then isolated from the cells by a rapid lysis procedure and examined for their degrees of supercoiling. Functional complementation of a conditional-lethal mutation in topA, which encodes E. coli DNA topoisomerase I, correlates with the expression of a catalytically active yeast enzyme that reduces the degree of negative supercoiling of intracellular DNA. We also show that approximately 130 amino acids of the amino-terminal portion of the yeast enzyme can be deleted without affecting its activity in vitro; activity of the enzyme inside E. coli, however, is more sensitive to such deletions.  相似文献   

12.
Adenovirus infection elevates levels of cellular topoisomerase I.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have developed a specific, sensitive, and quantitative assay for topoisomerase I, which is based on the formation of a covalent enzyme-DNA intermediate. Our assay measures the quantitative transfer of 32P radioactivity from 32P-labeled DNA to topoisomerase I. Since 32P-labeled topoisomerase molecules are resolved by NaDodSO4/PAGE, HeLa topoisomerase I (100 kDa) and calf thymus topoisomerase I (82 kDa) can be quantitatively assayed in the same reaction mixture. The assay can detect at least 0.3 ng (3 fmol) of topoisomerase I. We have used our assay to measure the levels of topoisomerase I activity in crude extracts of nuclei prepared from uninfected, adenovirus-infected, and adenovirus-transformed human cells. The evidence suggests that an adenovirus early gene product, presumably a protein encoded in early region 1A (E1A), increases cellular topoisomerase I activity at least 10-fold. Immunoblotting analysis with antiserum against calf thymus topoisomerase I shows that the increase in activity is due to an increase in the amount of enzyme.  相似文献   

13.
14.
The phosphorylation of Drosophila melanogaster DNA topoisomerase II by purified casein kinase II was characterized in vitro. Under the conditions used, the kinase incorporated a maximum of 2-3 molecules of phosphate per homodimer of topoisomerase II. No autophosphorylation of the topoisomerase was observed. The only amino acid residue modified by casein kinase II was serine. Apparent Km and Vmax values for the phosphorylation reaction were 0.4 microM topoisomerase II and 3.3 mumol of phosphate incorporated per min per mg of kinase, respectively. Phosphorylation stimulated the DNA relaxation activity of topoisomerase II by 3-fold over that of the dephosphorylated enzyme, and the effects of modification could be reversed by treatment with alkaline phosphatase. Therefore, this study demonstrates that post-translational enzymatic modifications can be used to modulate the interaction between topoisomerase II and DNA.  相似文献   

15.
16.
Rabbit antibodies specific to yeast DNA topoisomerase I were used in immunological screening of a Saccharomyces cerevisiae genomic DNA library in Escherichia coli. One of the clones identified by its expression of antigenic determinants of the yeast enzyme is shown to contain the coding sequence of the enzyme: no active DNA topoisomerase I is detectable in cell extracts when insertion or deletion mutations are introduced into a 2-kilobase-pair (kb) region of the sequence in a haploid yeast genome. Blot hybridizations show that there is a single copy of the cloned sequence per haploid and that the sequence is transcribed to give a 2.7-kb poly(A)+ message. Mutants in which 1.7 kb of the sequence is deleted are viable. Temperature-shift experiments using synchronously grown cells of a delta top1 top2 temperature-sensitive (ts) double mutant and its isogenic top2 ts strain show that, whereas mitotic blocks can prevent killing of the top2 ts mutant at a nonpermissive temperature, the same treatments are ineffective in preventing cell death of the delta top1 top2 ts double mutant. These experiments suggest that in yeast DNA topoisomerase I serves a role auxiliary to DNA topoisomerase II.  相似文献   

17.
18.
19.
Many cytotoxic anticancer drugs act at topoisomerase II (topo II) by stabilizing cleavable complexes with DNA formed by this enzyme. Several cell lines, selected for resistance to topo II-interactive drugs, show decreased expression or activity of topo II, suggesting that such a decrease may be responsible for drug resistance. In the present study, etoposide resistance was used as the selection strategy to isolate genetic suppressor elements (GSEs) from a retroviral library expressing random fragments of human topo II (alpha form) cDNA. Twelve GSEs were isolated, encoding either peptides corresponding to short segments of the topo II alpha molecule (2.4-6.5% of the protein) or 163- to 220-bp-long antisense RNA sequences. Expression of a GSE encoding antisense RNA led to decreased cellular expression of the topo II alpha protein. Both types of GSE induced resistance to several topo II poisons but not to drugs that do not act at topo II. These results provide direct evidence that inhibition of topo II results in resistance to topo II-interactive drugs, indicate structural domains of topo II capable of independent functional interactions, and demonstrate that expression selection of random fragments constitutes an efficient approach to the generation of GSEs in mammalian cells.  相似文献   

20.
Effects of yeast DNA topoisomerase III on telomere structure.   总被引:2,自引:2,他引:0       下载免费PDF全文
The yeast TOP3 gene, encoding DNA topoisomerase III, and EST1 gene, encoding a putative telomerase, are shown to be abutted head-to-head on chromosome XII, with the two initiation codons separated by 258 bp. This arrangement suggests that the two genes might share common upstream regulatory sequences and that their products might be functionally related. A comparison of isogenic pairs of yeast TOP3+ and delta top3 strains indicates that the G1-3T repetitive sequence tracks in delta top3 cells are significantly shortened, by about 150 bp. Cells lacking topoisomerase III also show a much higher sequence fluidity in the subtelomeric regions. In delta top3 cells, clusters of two or more copies of tandemly arranged Y' elements have a high tendency of disappearing due to the loss or dispersion of the elements; similarly, a URA3 marker embedded in a Y' element close to the chromosomal tip shows a much higher rate of being lost relative to that in TOP3+ cells. These results suggest that yeast DNA topoisomerase III might affect telomere stability, and plausible mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号