共查询到20条相似文献,搜索用时 0 毫秒
1.
Calcite is the most stable crystalline phase of calcium carbonate. It is applied or found in composite products, the food industry, biomineralization, archaeology, and geology, and its mechanical properties have attracted more and more attention. In this paper, the mechanical behaviors of single-crystal calcite under uniaxial tension in different directions were simulated with the molecular dynamics method. The obtained elastic moduli are in good agreement with the experimental results. It has been found from further research that single-crystal calcite has typical quasi-brittle failure characteristics, and its elastic modulus, fracture strength, and fracture strain are all strongly anisotropic. The tensile failure is caused by dislocation emission, void formation, and phase transition along the and directions, but by continuous dislocation glide and multiplication along the direction. The fracture strength, fracture strain, and elastic modulus are all sensitive to temperature, but only elastic modulus is not sensitive to strain rate. The effects of temperature and logarithmic strain rate on fracture strength are in good agreement with the predictions of fracture dynamics. 相似文献
2.
The effect of vacancy defects on the structure and mechanical properties of semiconductor silicon materials is of great significance to the development of novel microelectronic materials and the processes of semiconductor sensors. In this paper, molecular dynamics is used to simulate the atomic packing structure, local stress evolution and mechanical properties of a perfect lattice and silicon crystal with a single vacancy defect on heating. In addition, their influences on the change in Young’s modulus are also analyzed. The atomic simulations show that in the lower temperature range, the existence of vacancy defects reduces the Young’s modulus of the silicon lattice. With the increase in temperature, the local stress distribution of the atoms in the lattice changes due to the migration of the vacancy. At high temperatures, the Young’s modulus of the silicon lattice changes in anisotropic patterns. For the lattice with the vacancy, when the temperature is higher than 1500 K, the number and degree of distortion in the lattice increase significantly, the obvious single vacancy and its adjacent atoms contracting inward structure disappears and the defects in the lattice present complex patterns. By applying uniaxial tensile force, it can be found that the temperature has a significant effect on the elasticity–plasticity behaviors of the Si lattice with the vacancy. 相似文献
3.
The molecular dynamics method was used to simulate the fracture process of monocrystalline silicon with different sizes of point defect under a constant strain rate. The mechanism of the defect size on the mechanical properties of monocrystalline silicon was also investigated. The results suggested that the point defect significantly reduces the yield strength of monocrystalline silicon. The relationships between the yield strength variation and the size of point defect fitted an exponential function. By statistically analyzing the internal stress in monocrystalline silicon, it was found that the stress concentration induced by the point defect led to the decrease in the yield strength. A comparison between the theoretical strength given by the four theories of strength and actual strength proved that the Mises theory was the best theory of strength to describe the yield strength of monocrystalline silicon. The dynamic evolution process of Mises stress and dislocation showed that the fracture was caused by the concentration effect of Mises stress and dislocation slip. Finally, the fractured microstructures were similar to a kind of two-dimensional grid which distributed along the cleavage planes while visualizing the specimens. The results of this article provide a reference for evaluating the size effects of point defects on the mechanical properties of monocrystalline silicon. 相似文献
4.
Rosario G. Merodio-Perea Isabel Lado-Tourio Alicia Pez-Pavn Carlos Talayero Andrea Galn-Salazar Omar Aït-Salem 《Materials》2022,15(21)
Concrete is well known for its compression resistance, making it suitable for any kind of construction. Several research studies show that the addition of carbon nanostructures to concrete allows for construction materials with both a higher resistance and durability, while having less porosity. Among the mentioned nanostructures are carbon nanotubes (CNTs), which consist of long cylindrical molecules with a nanoscale diameter. In this work, molecular dynamics (MD) simulations have been carried out, to study the effect of pristine or carboxyl functionalized CNTs inserted into a tobermorite crystal on the mechanical properties (elastic modulus and interfacial shear strength) of the resulting composites. The results show that the addition of the nanostructure to the tobermorite crystal increases the elastic modulus and the interfacial shear strength, observing a positive relation between the mechanical properties and the atomic interactions established between the tobermorite crystal and the CNT surface. In addition, functionalized CNTs present enhanced mechanical properties. 相似文献
5.
Molecular dynamics simulation is one kinds of important methods to research the nanocrystalline materials which is difficult to be studied through experimental characterization. In order to study the effects of Sn content and strain rate on the mechanical properties of nanopolycrystalline Cu–Sn alloy, the tensile simulation of nanopolycrystalline Cu–Sn alloy was carried out by molecular dynamics in the present study. The results demonstrate that the addition of Sn reduces the ductility of Cu–Sn alloy. However, the elastic modulus and tensile strength of Cu–Sn alloy are improved with increasing the Sn content initially, but they will be reduced when the Sn content exceeds 4% and 8%, respectively. Then, strain rate ranges from 1 × 109 s−1 to 5 × 109 s−1 were applied to the Cu–7Sn alloy, the results show that the strain rate influence elastic modulus of nanopolycrystalline Cu–7Sn alloy weakly, but the tensile strength and ductility enhance obviously with increasing the strain rate. Finally, the microstructure evolution of nanopolycrystalline Cu–Sn alloy during the whole tensile process was studied. It is found that the dislocation density in the Cu–Sn alloy reduces with increasing the Sn content. However, high strain rate leads to stacking faults more easily to generate and high dislocation density in the Cu–7Sn alloy. 相似文献
6.
Although carbon materials, particularly graphene and carbon nanotubes, are widely used to reinforce metal matrix composites, understanding the fabrication process and connection between morphology and mechanical properties is still not understood well. This review discusses the relevant literature concerning the simulation of graphene/metal composites and their mechanical properties. This review demonstrates the promising role of simulation of composite fabrication and their properties. Further, results from the revised studies suggest that morphology and fabrication techniques play the most crucial roles in property improvements. The presented results can open up the way for developing new nanocomposites based on the combination of metal and graphene components. It is shown that computer simulation is a possible and practical way to understand the effect of the morphology of graphene reinforcement and strengthening mechanisms. 相似文献
7.
The work approaches new theoretical and experimental studies in the elastic characterization of materials, based on the properties of the intrinsic transfer matrix. The term ‘intrinsic transfer matrix’ was firstly introduced by us in order to characterize the system in standing wave case, when the stationary wave is confined inside the sample. An important property of the intrinsic transfer matrix is that at resonance, and in absence of attenuation, the eigenvalues are real. This property underlies a numerical method which permits to find the phase velocity for the longitudinal wave in a sample. This modal approach is a numerical method which takes into account the eigenvalues, which are analytically estimated for simple elastic systems. Such elastic systems are characterized by a simple distribution of eigenmodes, which may be easily highlighted by experiment. The paper generalizes the intrinsic transfer matrix method by including the attenuation and a study of the influence of inhomogeneity. The condition for real eigenvalues in that case shows that the frequencies of eigenmodes are not affected by attenuation. For the influence of inhomogeneity, we consider a case when the sound speed is varying along the layer’s length in the medium of interest, with an accompanying dispersion. The paper also studies the accuracy of the method in estimating the wave velocity and determines an optimal experimental setup in order to reduce the influence of frequency errors. 相似文献
8.
Graphene foams (GrFs) have been widely used as structural and/or functional materials in many practical applications. They are always assembled by thin and thick graphene sheets with multiple thicknesses; however, the effect of this basic structural feature has been poorly understood by existing theoretical models. Here, we propose a coarse-grained bi-modal GrF model composed of a mixture of 1-layer flexible and 8-layer stiff sheets to study the mechanical properties and deformation mechanisms based on the mesoscopic model of graphene sheets (Model. Simul. Mater. Sci. Eng. 2011, 19, 54003). It is found that the modulus increases almost linearly with an increased proportion of 8-layer sheets, which is well explained by the mixture rule; the strength decreases first and reaches the minimum value at a critical proportion of stiff sheets ~30%, which is well explained by the analysis of structural connectivity and deformation energy of bi-modal GrFs. Furthermore, high-stress regions are mainly dispersed in thick sheets, while large-strain areas mainly locate in thin ones. Both of them have a highly uneven distribution in GrFs due to the intrinsic heterogeneity in both structures and the mechanical properties of sheets. Moreover, the elastic recovery ability of GrFs can be enhanced by adding more thick sheets. These results should be helpful for us to understand and further guide the design of advanced GrF-based materials. 相似文献
9.
Eduard Mareni? Adnan Ibrahimbegovic Jurica Sori? Pierre-Alain Guidault 《Materials》2013,6(9):3764-3782
In this paper, we provide the quantification of the linear and non-linear elastic mechanical properties of graphene based upon the judicious combination of molecular mechanics simulation results and homogenization methods. We clarify the influence on computed results by the main model features, such as specimen size, chirality of microstructure, the effect of chosen boundary conditions (imposed displacement versus force) and the corresponding plane stress transformation. The proposed approach is capable of explaining the scatter of the results for computed stresses, energy and stiffness and provides the bounds on graphene elastic properties, which are quite important in modeling and simulation of the virtual experiments on graphene-based devices. 相似文献
10.
Mechanical properties of gallium nitride (GaN) single crystals upon carbon ion irradiation are examined using nanoindentation analysis at room temperature. Pop-in events in the load-depth curves are observed for unirradiated and irradiated GaN samples. A statistical linear relationship between the critical indentation load for the occurrence of the pop-in event and the associated displacement jump is exhibited. Both the slope of linear regression and the measured hardness increase monotonically to the ion fluence, which can be described by logistic equations. Moreover, a linear relationship between the regression slope as a micromechanical characterization and the hardness as a macroscopic mechanical property is constructed. It is also found that the maximum resolved shear stress of the irradiated samples is larger than that of the unirradiated samples, as the dislocation loops are pinned by the irradiation-induced defects. Our results indicate that the nanoindentation pop-in phenomenon combined with a statistical analysis can serve as a characterization method for the mechanical properties of ion-irradiated materials. 相似文献
11.
Uniaxial tension tests were performed for amorphous SiO2 nanowires using molecular dynamics simulation to probe the size effect on the mechanical properties and plastic deformation by varying the length of nanowires. The simulation results showed that the Young’s modulus of SiO2 nanowires increased with the decrease of nanowires length due to its higher surface stress. The corresponding deformation of SiO2 nanowires during tension exhibited two periods: atomic arrangement at small strain and plastic deformation at large strain. During the atomic arrangement period, the percentage variations of atom number of 2-coordinated silicon and 3-coordinated silicon (PCN2 and PCN3) decreased, while the percentage variations of atom number of 4-coordinated silicon, 5-coordinated silicon (PCN4 and PCN5) and the Si–O bond number (PCB) rose slightly with increasing strain, as the strain was less than 22%. The situation reversed at the plastic deformation period, owing to the numerous breakage of Si–O bonds as the strain grew beyond 22%. The size effect of nanowires radius was considered, finding that the Young’s modulus and fracture stress were higher for the larger nanowire because of fewer dangling bonds and coordinate defeats in the surface area. The elastic deformation occurred at a small strain for the larger nanowire, followed by the massive plastic deformation during tension. A brittle mechanism covers the fracture characteristics, irrespective of the nanowire size. 相似文献
12.
《Clinical and experimental hypertension (New York, N.Y. : 1993)》2013,35(8):1013-1034
The purpose of the study was to compare the mechanical properties of small femoral arteries from spontaneously hypertensive rats (SHR) and normotensive control Wistar-Kyoto rats (WKY) to determine whether these could contribute to the narrowed lumens and thicker medial layers observed during the development of hypertension. Rats were used at either 5,12, or 24 weeks of age. Third order branches of the right femoral artery were mounted in a myograph for morphological measurement and determination of wall mechanical properties. At 5 weeks SHR and WKY arteries were structurally similar but progressive medial thickening and hypertrophy in conjunction with lumenal narrowing was observed in SHR compared with those from WKY in the older rats. However, stress-strain and incremental elastic modulus-stress relationships were similar between strains at all three ages. These data indicate that modifications of arterial wall mechanical properties do not contribute to these progressive arterial structural modifications. 相似文献
13.
The deformation mechanisms of Mg, Zr, and Ti single crystals with different orientations are systematically studied by using molecular dynamics simulations. The affecting factors for the plasticity of hexagonal close-packed (hcp) metals are investigated. The results show that the basal <a> dislocation, prismatic <a> dislocation, and pyramidal <c + a> dislocation are activated in Mg, Zr, and Ti single crystals. The prior slip system is determined by the combined effect of the Schmid factor and the critical resolved shear stresses (CRSS). Twinning plays a crucial role during plastic deformation since basal and prismatic slips are limited. The twinning is popularly observed in Mg, Zr, and Ti due to its low CRSS. The twin appears in Mg and Ti, but not in Zr because of the high CRSS. The stress-induced hcp-fcc phase transformation occurs in Ti, which is achieved by successive glide of Shockley partial dislocations on basal planes. More types of plastic deformation mechanisms (including the cross-slip, double twins, and hcp-fcc phase transformation) are activated in Ti than in Mg and Zr. Multiple deformation mechanisms coordinate with each other, resulting in the higher strength and good ductility of Ti. The simulation results agree well with the related experimental observation. 相似文献
14.
Mariana Domnica Stanciu Mihaela Cosnita Constantin Nicolae Cretu Horatiu Draghicescu Teodorescu Mihai Trandafir 《Materials》2022,15(15)
Music should be integrated into our daily activities due to its great effects on human holistic health, through its characteristics of melody, rhythm and harmony. Music orchestras use different instruments, with strings, bow, percussion, wind, keyboards, etc. Musical triangles, although not so well known by the general public, are appreciated for their crystalline and percussive sound. Even if it is a seemingly simple instrument being made of a bent metal bar, the problem of the dynamics of the musical triangle is complex. The novelty of the paper consists in the ways of investigating the elastic and dynamic properties of the two types of materials used for musical triangles. Thus, to determine the mechanical properties, samples of material from the two types of triangles were obtained and tested by the tensile test. The validation of the results was carried out by means of another method, based on the modal analysis of a ternary system; by applying the intrinsic transfer matrix, the difference between the obtained values was less than 5%. As the two materials behaved differently at rupture, one having a ductile character and the other brittle, the morphology of the fracture surface and the elementary chemical composition were investigated by scanning electron microscopy (SEM) and analysis by X-ray spectroscopy with dispersion energy (EDX). The results were further transferred to the finite element modal analysis in order to obtain the frequency spectrum and vibration modes of the musical triangles. The modal analysis indicated that the first eigenfrequency differs by about 5.17% from one material to another. The first mode of vibration takes place in the plane of the triangle (transverse mode), at a frequency of 156 Hz and the second mode at 162 Hz, which occurs due to vibrations of the free sides of the triangle outside the plane, called the torsion mode. The highest dominant frequency of 1876 Hz and the sound speed of 5089 m/s were recorded for the aluminum sample with the ductile fracture in comparison with the dominant frequency of 1637 Hz and the sound speed of 4889 m/s in the case of the stainless steel sample, characterized by brittle fracture. 相似文献
15.
Nanthakishore Makeswaran Cristian Orozco Anil K. Battu Eva Deemer C. V. Ramana 《Materials》2022,15(3)
Molybdenum (Mo), which is one among the refractory metals, is a promising material with a wide variety of technological applications in microelectronics, optoelectronics, and energy conversion and storage. However, understanding the structure–property correlation and optimization at the nanoscale dimension is quite important to meet the requirements of the emerging nanoelectronics and nanophotonics. In this context, we focused our efforts to derive a comprehensive understanding of the nanoscale structure, phase, and electronic properties of nanocrystalline Mo films with variable microstructure and grain size. Molybdenum films were deposited under varying temperature (25–500 °C), which resulted in Mo films with variable grain size of 9–22 nm. The grazing incidence X-ray diffraction analyses indicate the (110) preferred growth behavior the Mo films, though there is a marked decrease in hardness and elastic modulus values. In particular, there is a sizable difference in maximum and minimum elastic modulus values; the elastic modulus decreased from ~460 to 260–280 GPa with increasing substrate temperature from 25–500 °C. The plasticity index and wear resistance index values show a dramatic change with substrate temperature and grain size. Additionally, the optical properties of the nanocrystalline Mo films evaluated by spectroscopic ellipsometry indicate a marked dependence on the growth temperature and grain size. This dependence on grain size variation was particularly notable for the refractive index where Mo films with lower grain size fell in a range between ~2.75–3.75 across the measured wavelength as opposed to the range of 1.5–2.5 for samples deposited at temperatures of 400–500 °C, where the grain size is relatively higher. The conductive atomic force microscopy (AFM) studies indicate a direct correlation with grain size variation and grain versus grain boundary conduction; the trend noted was improved electrical conductivity of the Mo films in correlation with increasing grain size. The combined ellipsometry and conductive AFM studies allowed us to optimize the structure–property correlation in nanocrystalline Mo films for application in electronics and optoelectronics. 相似文献
16.
Injection molding is a polymer processing technology used for manufacturing parts with elastic hinges. Elastic hinges are widely used in FMCG (Fast Moving Consumer Goods) packaging (e.g., bottle closures of shampoos, sauces) and in the electrical engineering industry. Elastic hinge is a thin film that connect two regions of the injection molded part, where significant shear rates are present, which can lead to the degradation of polymers and the decrease in mechanical properties. Selective induction heating is the method that improves the flow of the polymer melt through thin regions by the local increase in mold temperature. In this study, selective induction heating was used to improve mechanical properties of elastic hinges by the reduction of material degradation due to high shear rates. To verify the change of shear rates, selective induction heating simulation and injection molding simulations were performed. The linear relation between mold temperature and maximum shear rate in the cross-section was identified and the mechanical tests showed significant differences in hinge stiffness, tensile strength and elongation at break. 相似文献
17.
Exploring and modifying the C-S-H structure at a micro–nano level is an effective solution to improve the performance of Portland cement. Compared with organics inserting C-S-H, the research on the performance of a polymer-binding C-S-H structure from nanoscale to macroscale is limited. In this work, the mechanical properties of a modified C-S-H, using hydroxyl-terminated polydimethylsiloxane (PDMS) as the binders, are evaluated. The PDMS-modified C-S-H structures are introduced into macro-defect-free cement to obtain stress–strain curves changes at a macro scale. The AFM–FM was adopted to measure the morphology and elastic modulus of C-S-H at a nano scale. The molecular dynamics (MD) simulation was performed to assess the toughness, tensile properties, and failure mechanism. The results show that the PDMS-modified C-S-H powders change the break process and enhance ductility of MDF cement. The elastic modulus of PDMS-modified C-S-H is lower than pure C-S-H. When PDMS molecules are located between the stacking crystal units, it can enhance the toughness of C-S-H aggregates. The PDMS-modified C-S-H stacking structure has better plasticity, and its tensile strains are higher than the pure C-S-H. PDMS molecules hinder the initial crack expansion, leading to the branching of the initial crack. In addition, the measurement of AFM–FM can identify and obtain the mechanical properties of basic units of C-S-H. This paper enhances the understanding of cement strength sources and modification methods. 相似文献
18.
Stabilized soils are commonly used as part of pavement construction in highway engineering. The everyday use of this material makes it necessary to classify it. One of the basic methods of determining the mechanical properties of a material is the unconfined compressive strength (UCS) test, from which the material elasticity can be determined. The scope of the research included the design and making of soil mixtures stabilized with polypropylene fibers modified cement. This paper presents the effect of the amount of dispersed reinforcement on the maximum compressive strength, the secant modulus at half the ultimate stress (), the secant modulus at the ultimate stress (), and the tangent modulus (). The materials chapter characterizes the soil, cement, and dispersed reinforcement used. The test methods section describes the tests performed and the procedure for interpreting the results. The results section describes the relationship between elastic modulus and compressive strength. The discussion section compares the obtained results with the works of other authors. The work is concluded with a summary containing the most important conclusions resulting from the work. 相似文献
19.
Soheil Jahandari Masoud Mohammadi Aida Rahmani Masoumeh Abolhasani Hania Miraki Leili Mohammadifar Mostafa Kazemi Mohammad Saberian Maria Rashidi 《Materials》2021,14(22)
In this study, the impact of steel fibres and Silica Fume (SF) on the mechanical properties of recycled aggregate concretes made of two different types of Recycled Coarse Aggregates (RCA) sourced from both low- and high-strength concretes were evaluated through conducting 60 compressive strength tests. The RCAs were used as replacement levels of 50% and 100% of Natural Coarse Aggregates (NCA). Hook-end steel fibres and SF were also used in the mixtures at the optimised replacement levels of 1% and 8%, respectively. The results showed that the addition of both types of RCA adversely affected the compressive strength of concrete. However, the incorporation of SF led to compressive strength development in both types of concretes. The most significant improvement in terms of comparable concrete strength and peak strain with ordinary concrete at 28 days was observed in the case of using a combination of steel fibres and SF in both recycled aggregate concretes, especially with RCA sourced from high strength concrete. Although using SF slightly increased the elastic modulus of both recycled aggregate concretes, a substantial improvement in strength was observed due to the reinforcement with steel fibre and the coexistence of steel fibre and SF. Moreover, existing models to predict the elastic modulus of both non-fibrous and fibrous concretes are found to underestimate the elastic modulus values. The incorporation of SF changed the compressive stress-strain curves for both types of RCA. The addition of steel fibre and SF remarkably improved the post-peak ductility of recycled aggregates concretes of both types, with the most significant improvement observed in the case of RCA sourced from a low-strength parent concrete. The existing model to estimate the compressive stress-strain curve for steel fibre-reinforced concrete with natural aggregates was found to reasonably predict the compressive stress-strain behaviour for steel fibres-reinforced concrete with recycled aggregate. 相似文献
20.
In this work, the advanced all solid-state block copolymer electrolytes (SBCPEs) for lithium-ion batteries with double conductive phases, poly(ethylene oxide)-b-poly(trimethyl-N-((2-(dimethylamino)ethyl methacrylate)-7-propyl)-ammonium bis(trifluoromethanesulfonyl) imide) (PEO-b-PDM-dTFSI)/LiTFSI, were fabricated, in which the charged PDM-dTFSI block contained double quaternary ammonium cations and the PEO block was doped with LiTFSI. The disordered (DIS) and ordered lamellae (LAM) phase structures were achieved by adjusting the composition of the block copolymer and the doping ratio r. In addition, the presence of the hard PDM-dTFSI block and the formation of the LAM phase structure resulted in a good mechanical strength of the solid PEO-b-PDM-dTFSI/LiTFSI electrolyte, and it could maintain a high level of 104 Pa at 100 °C, which was around 10,000 times stronger than that of the PEO/LiTFSI electrolyte. Based on the good mechanical and electrochemical properties, the PEO-b-PDM-dTFSI/LiTFSI SBCPE exhibited excellent long-term galvanostatic cycle performance, indicating the strong ability to suppress lithium dendrites. 相似文献