首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synchronous neurotransmission depends on the tight coupling between Ca(2+) influx and fusion of neurotransmitter-filled vesicles with the plasma membrane. The vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein synaptobrevin 2 and the plasma membrane SNAREs syntaxin 1 and synaptosomal protein of 25 kDa (SNAP-25) are essential for calcium-triggered exocytosis. However, the link between calcium triggering and SNARE function remains elusive. Here we describe mutations in two sites on the surface of the SNARE complex formed by acidic and hydrophilic residues of SNAP-25 and synaptobrevin 2, which were found to coordinate divalent cations in the neuronal SNARE complex crystal structure. By reducing the net charge of the site in SNAP-25 we identify a mutation that interferes with calcium triggering of exocytosis when overexpressed in chromaffin cells. Exocytosis was elicited by photorelease of calcium from a calcium cage and evaluated by using patch-clamp capacitance measurements at millisecond time resolution. We present a method for monitoring the dependence of exocytotic rate upon calcium concentration at the release site and demonstrate that the mutation decreased the steepness of this relationship, indicating that the number of sequential calcium-binding steps preceding exocytosis is reduced by one. We conclude that the SNARE complex is linked directly to calcium triggering of exocytosis, most likely in a complex with auxiliary proteins.  相似文献   

2.
Munc18-1 binds directly to the neuronal SNARE complex   总被引:1,自引:0,他引:1  
Both SM proteins (for Sec1/Munc18-like proteins) and SNARE proteins (for soluble NSF-attachment protein receptors) are essential for intracellular membrane fusion, but the general mechanism of coupling between their functions is unclear, in part because diverse SM protein/SNARE binding modes have been described. During synaptic vesicle exocytosis, the SM protein Munc18-1 is known to bind tightly to the SNARE protein syntaxin-1, but only when syntaxin-1 is in a closed conformation that is incompatible with SNARE complex formation. We now show that Munc18-1 also binds tightly to assembled SNARE complexes containing syntaxin-1. The newly discovered Munc18-1/SNARE complex interaction involves contacts of Munc18-1 with the N-terminal H(abc) domain of syntaxin-1 and the four-helical bundle of the assembled SNARE complex. Together with earlier studies, our results suggest that binding of Munc18-1 to closed syntaxin-1 is a specialization that evolved to meet the strict regulatory requirements of neuronal exocytosis, whereas binding of Munc18-1 to assembled SNARE complexes reflects a general function of SM proteins involved in executing membrane fusion.  相似文献   

3.
Secretion of neurotransmitters is initiated by voltage-gated calcium influx through presynaptic, voltage-gated N-type calcium channels. These channels interact with the SNARE proteins, which are core components of the exocytosis process, via the synaptic protein interaction (synprint) site in the intracellular loop connecting domains II and III of their α1B subunit. Interruption of this interaction by competing synprint peptides inhibits fast, synchronous transmitter release. Here we identify a voltage-dependent, but calcium-independent, enhancement of transmitter release that is elicited by trains of action potentials in the presence of a hyperosmotic extracellular concentration of sucrose. This enhancement of transmitter release requires interaction of SNARE proteins with the synprint site. Our results provide evidence for a voltage-dependent signal that is transmitted by protein–protein interactions from the N-type calcium channel to the SNARE proteins and enhances neurotransmitter release by altering SNARE protein function.  相似文献   

4.
Synaptic vesicle secretion requires the assembly of fusogenic SNARE complexes. Consequently proteins that regulate SNARE complex formation can significantly impact synaptic strength. The SNARE binding protein tomosyn has been shown to potently inhibit exocytosis by sequestering SNARE proteins in nonfusogenic complexes. The tomosyn-SNARE interaction is regulated by protein kinase A (PKA), an enzyme implicated in learning and memory, suggesting tomosyn could be an important effector in PKA-dependent synaptic plasticity. We tested this hypothesis in Drosophila, in which the role of the PKA pathway in associative learning has been well established. We first determined that panneuronal tomosyn knockdown by RNAi enhanced synaptic strength at the Drosophila larval neuromuscular junction, by increasing the evoked response duration. We next assayed memory performance 3 min (early memory) and 3 h (late memory) after aversive olfactory learning. Whereas early memory was unaffected by tomosyn knockdown, late memory was reduced by 50%. Late memory is a composite of stable and labile components. Further analysis determined that tomosyn was specifically required for the anesthesia-sensitive, labile component, previously shown to require cAMP signaling via PKA in mushroom bodies. Together these data indicate that tomosyn has a conserved role in the regulation of synaptic transmission and provide behavioral evidence that tomosyn is involved in a specific component of late associative memory.  相似文献   

5.
Synaptic exocytosis requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 1, SNAP-25, and synaptobrevin (VAMP). Assembly of the SNAREs into a stable core complex is supposed to catalyze membrane fusion, and proteoliposomes reconstituted with synaptic SNARE proteins spontaneously fuse with each other. We now show that liposome fusion mediated by synaptic SNAREs is inhibited by botulinum neurotoxin E (BoNT/E) but can be rescued by supplementing the C-terminal portion of SNAP-25. Furthermore, fusion is prevented by a SNAP-25-specific antibody known to block exocytosis in chromaffin cells, and it is competed for by soluble fragments of the R-SNAREs synaptobrevin 2, endobrevin/VAMP-8, and tomosyn. No accumulation of clustered vesicles is observed during the reaction. Rapid artificial clustering of SNARE-containing proteoliposomes enhances the fusion rate at low but not at saturating liposome concentrations. We conclude that the rate of liposome fusion is dominated by the intrinsic properties of the SNAREs rather than by the preceding docking step.  相似文献   

6.
Neurotransmission depends on the exo-endocytosis of synaptic vesicles at active zones. Synaptobrevin 2 [also known as vesicle-associated membrane protein 2 (VAMP2)], the most abundant synaptic vesicle protein and a major soluble NSF attachment protein receptor (SNARE) component, is required for fast calcium-triggered synaptic vesicle fusion. In contrast to the extensive knowledge about the mechanism of SNARE-mediated exocytosis, little is known about the endocytic sorting of synaptobrevin 2. Here we show that synaptobrevin 2 sorting involves determinants within its SNARE motif that are recognized by the ANTH domains of the endocytic adaptors AP180 and clathrin assembly lymphoid myeloid leukemia (CALM). Depletion of CALM or AP180 causes selective surface accumulation of synaptobrevin 2 but not vGLUT1 at the neuronal surface. Endocytic sorting of synaptobrevin 2 is mediated by direct interaction of the ANTH domain of the related endocytic adaptors CALM and AP180 with the N-terminal half of the SNARE motif centered around M46, as evidenced by NMR spectroscopy analysis and site-directed mutagenesis. Our data unravel a unique mechanism of SNARE motif-dependent endocytic sorting and identify the ANTH domain proteins AP180 and CALM as cargo-specific adaptors for synaptobrevin endocytosis. Defective SNARE endocytosis may also underlie the association of CALM and AP180 with neurodevelopmental and cognitive defects or neurodegenerative disorders.  相似文献   

7.
Soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE)-mediated fusion of synaptic vesicles with the presynaptic-plasma membrane is essential for communication between neurons. Disassembly of the SNARE complex requires the ATPase N-ethylmaleimide-sensitive fusion protein (NSF). To determine where in the synaptic-vesicle cycle NSF functions, we have undertaken a genetic analysis of comatose (dNSF-1) in Drosophila. Characterization of 16 comatose mutations demonstrates that NSF mediates disassembly of SNARE complexes after synaptic-vesicle fusion. Hypomorphic mutations in NSF cause temperature-sensitive paralysis, whereas null mutations result in lethality. Genetic-interaction studies with para demonstrate that blocking evoked fusion delays the accumulation of assembled SNARE complexes and behavioral paralysis that normally occurs in comatose mutants, indicating NSF activity is not required in the absence of vesicle fusion. In addition, the entire vesicle pool can be depleted in shibire comatose double mutants, demonstrating that NSF activity is not required for the fusion step itself. Multiple rounds of vesicle fusion in the absence of NSF activity poisons neurotransmission by trapping SNAREs into cis-complexes. These data indicate that NSF normally dissociates and recycles SNARE proteins during the interval between exocytosis and endocytosis. In the absence of NSF activity, there are sufficient fusion-competent SNAREs to exocytose both the readily released and the reserve pool of synaptic vesicles.  相似文献   

8.
SNARE-mediated exocytosis is a multistage process central to synaptic transmission and hormone release. Complexins (CPXs) are small proteins that bind very rapidly and with a high affinity to the SNARE core complex, where they have been proposed recently to inhibit exocytosis by clamping the complex and inhibiting membrane fusion. However, several other studies also suggest that CPXs are positive regulators of neurotransmitter release. Thus, whether CPXs are positive or negative regulators of exocytosis is not known, much less the stage in the vesicle life cycle at which they function. Here, we systematically dissect the vesicle stages leading up to exocytosis using a knockout-rescue strategy in a mammalian model system. We show that adrenal chromaffin cells from CPX II knockout mice exhibit markedly diminished releasable vesicle pools (comprising the readily and slowly releasable pools), while showing no change in the kinetics of fusion pore dilation or morphological vesicle docking. Overexpression of WT CPX II—but not of SNARE-binding-deficient mutants—restores the size of the the releasable pools in knockout cells, and in WT cells it markedly enlarges them. Our results show that CPXs regulate the size of the primed vesicle pools and have a positive role in Ca2+-triggered exocytosis.  相似文献   

9.
10.
Gaisano HY 《Pancreas》2000,20(3):217-226
The pancreatic acinar cell has been a classic model to study regulated exocytosis occurring at the apical plasma membrane. The acinar cell is also an excellent model with which to study pathologic membrane fusion events, including aberrant zymogen granule fusion with the lysosome and basolateral exocytosis, which are the earliest cellular events of acute pancreatitis. However, despite much effort, little is known about the precise mechanisms that mediate these physiologic and pathologic membrane fusion events until recently. Over the past 5 years, there has been a major advance in the fundamental understanding of vesicle fusion based on the SNARE hypothesis. A basic tenet of the SNARE hypothesis is that the minimal machinery for membrane fusion is a cognate set of v- and t-SNAREs on opposing membranes. A corollary to this hypothesis is that these SNARE proteins are prevented from spontaneous assembly by clamping proteins. Here, the recent developments in the identification of cognate v- and t-SNAREs and clamping proteins are reviewed, which are strategically located to mediate these physiologic exocytic and pathologic fusion events in the pancreatic acinar cell.  相似文献   

11.
The synaptic vesicle protein synaptobrevin engages with syntaxin and SNAP-25 to form the SNARE complex, which drives membrane fusion in neuronal exocytosis. In the SNARE complex, the SNARE motif of synaptobrevin forms a 55-residue helix, but it has been assumed to be mostly unstructured in its prefusion form. NMR data for full-length synaptobrevin in dodecylphosphocholine micelles reveals two transient helical segments flanked by natively disordered regions and a third more stable helix. Transient helix I comprises the most N-terminal part of the SNARE motif, transient helix II extends the SNARE motif into the juxtamembrane region, and the more stable helix III is the transmembrane domain. These helices may have important consequences for SNARE complex folding and fusion: helix I likely forms a nucleation site, the C-terminal disordered SNARE motif may act as a folding arrest signal, and helix II likely couples SNARE complex folding and fusion.  相似文献   

12.
The synaptic vesicle membrane protein synaptotagmin (tagmin) is essential for fast, calcium-dependent, neurotransmitter release and is likely to be the calcium sensor for exocytosis, because of its many calcium-dependent properties. Polyphosphoinositides are needed for exocytosis, but it has not been known why. We now provide a possible connection between these observations with the finding that the C2B domain of tagmin I binds phosphatidylinositol-4,5-bisphosphate (PIns-4,5-P2), its isomer phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate (PIns-3,4,5-P3). Calcium ions switch the specificity of this binding from PIns-3,4,5-P3 (at calcium concentrations found in resting nerve terminals) to PIns-4,5-P2 (at concentration of calcium required for transmitter release). Inositol polyphosphates, known blockers of neurotransmitter release, inhibit the binding of both PIns-4,5-P2 and PIns-3,4,5-P3 to tagmin. Our findings imply that tagmin may operate as a bimodal calcium sensor, switching bound lipids during exocytosis. This connection to polyphosphoinositides, compounds whose levels are physiologically regulated, could be important for long-term memory and learning.  相似文献   

13.
The neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for synaptic vesicle exocytosis, but its study has been limited by the neonatal lethality of murine SNARE knockouts. Here, we describe a viable mouse line carrying a mutation in the b-isoform of neuronal SNARE synaptosomal-associated protein of 25 kDa (SNAP-25). The causative I67T missense mutation results in increased binding affinities within the SNARE complex, impaired exocytotic vesicle recycling and granule exocytosis in pancreatic beta-cells, and a reduction in the amplitude of evoked cortical excitatory postsynaptic potentials. The mice also display ataxia and impaired sensorimotor gating, a phenotype which has been associated with psychiatric disorders in humans. These studies therefore provide insights into the role of the SNARE complex in both diabetes and psychiatric disease.  相似文献   

14.
Prolonged exposure of beta-cells to high glucose (glucotoxicity) diminishes insulin secretion in response to glucose and has been linked to altered generation of metabolism-secretion coupling factors. We have investigated whether glucotoxicity may also alter calcium handling and late steps in secretion such as exocytosis. Clonal INS-1E beta-cells cultured at high glucose (20 or 30 mM vs. 5.5 mM) for 72 h exhibited elevated basal intracellular calcium ([Ca2+]i), which was KATP-channel dependent and due to long-term activation of protein kinase A. An increased amplitude and shortened duration of depolarization-evoked rises in [Ca2+]i were apparent. These changes were probably linked to the observed increased filling of intracellular stores and to short-term activation of protein kinase A. Insulin secretion was reduced not only by acute stimulation with either glucose or KCl but more importantly by direct calcium stimulation of permeabilized cells. These findings indicate a defect in the final steps of exocytosis. To confirm this, we measured expression levels of some 30 proteins implicated in trafficking/exocytosis of post-Golgi vesicles. Several proteins required for calcium-induced exocytosis of secretory granules were down-regulated, such as the soluble N-ethylmaleimide-sensitive factor-sensitive factor attachment receptor (SNARE) proteins VAMP-2 [vesicle (v)-SNARE, vesicle-associated membrane protein 2] and syntaxin 1 as well as complexin. VAMP-2 was also reduced in human islets. In contrast, cell immunostaining and expression levels of several fluorescent proteins suggested that other post-trans-Golgi trafficking steps and compartments are preserved and that cells were not degranulated. Thus, these studies indicate that, in addition to known metabolic changes, glucotoxicity impedes generation of signals for secretion and diminishes the efficiency of late steps in exocytosis.  相似文献   

15.
In the olfactory bulb, synaptic transmission between dendrites plays an important role in the processing of olfactory information. Glutamate released from the dendrites of principal mitral cells excites the dendritic spines of granule cells, which in turn release gamma-aminobutyric acid (GABA) back onto mitral cell dendrites. Slow N-methyl-d-aspartate (NMDA) receptors on granule dendrites are particularly effective in driving this reciprocal dendrodendritic inhibition (DDI), raising the possibility that calcium influx through NMDA receptors may trigger GABA exocytosis directly. In this study, I show that NMDA receptor activation is not an absolute requirement and that DDI can be evoked solely by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors when granule cell excitability is increased or under conditions that slow AMPA receptor kinetics. In physiological extracellular Mg(2+), DDI elicited by photolysis of caged calcium in mitral dendrites is blocked by cadmium and toxins to N- and P/Q-type voltage-gated calcium channels. DDI is largely unaffected after granule dendrites have been loaded with the slow calcium chelator EGTA, suggesting a tight coupling between the site of calcium influx and the release machinery governing GABA exocytosis. These results indicate that voltage-gated calcium channels play an essential role in dendritic GABA release during reciprocal feedback inhibition in the olfactory bulb.  相似文献   

16.
The three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, syntaxin, SNAP25 (synaptosome-associated protein of 25 kDa), and synaptobrevin, constitute the minimal machinery for exocytosis in secretory cells such as neurons and neuroendocrine cells by forming a series of complexes prior to and during vesicle fusion. It was subsequently found that these SNARE proteins not only participate in vesicle fusion, but also tether with voltage-dependent Ca(2+) channels to form an excitosome that precisely regulates calcium entry at the site of exocytosis. In pancreatic islet beta-cells, ATP-sensitive K(+) (K(ATP)) channel closure by high ATP concentration leads to membrane depolarization, voltage-dependent Ca(2+) channel opening, and insulin secretion, whereas subsequent opening of voltage-gated K(+) (Kv) channels repolarizes the cell to terminate exocytosis. We have obtained evidence that syntaxin-1A physically interacts with Kv2.1 (the predominant Kv in beta-cells) and the sulfonylurea receptor subunit of beta-cell K(ATP) channel to modify their gating behaviors. A model has proposed that the conformational changes of syntaxin-1A during exocytosis induce distinct functional modulations of K(ATP) and Kv2.1 channels in a manner that optimally regulates cell excitability and insulin secretion. Other proteins involved in exocytosis, such as Munc-13, tomosyn, rab3a-interacting molecule, and guanyl nucleotide exchange factor II, have also been implicated in direct or indirect regulation of beta-cell ion channel activities and excitability. This review discusses this interesting aspect that exocytotic proteins not only promote secretion per se, but also fine-tune beta-cell excitability via modulation of ion channel gating.  相似文献   

17.
The membrane protein syntaxin participates in several protein–protein interactions that have been implicated in neurotransmitter release. To probe the physiological importance of these interactions, we microinjected into the squid giant presynaptic terminal botulinum toxin C1, which cleaves syntaxin, and the H3 domain of syntaxin, which mediates binding to other proteins. Both reagents inhibited synaptic transmission yet did not affect the number or distribution of synaptic vesicles at the presynaptic active zone. Recombinant H3 domain inhibited the interactions between syntaxin and SNAP-25 that underlie the formation of stable SNARE complexes in vitro. These data support the notion that syntaxin-mediated SNARE complexes are necessary for docked synaptic vesicles to fuse.  相似文献   

18.
19.
Intracellular membrane fusion requires not only SNARE proteins but also other regulatory proteins such as the Rab and Sec1/Munc18 (SM) family proteins. Although neuronal SNARE proteins alone can drive the fusion between synthetic liposomes, it remains unclear whether they are also sufficient to induce the fusion of biological membranes. Here, through the use of engineered yeast vacuoles bearing neuronal SNARE proteins, we show that neuronal SNAREs can induce membrane fusion between yeast vacuoles and that this fusion does not require the function of the Rab protein Ypt7p or the SM family protein Vps33p, both of which are essential for normal yeast vacuole fusion. Although excess vacuolar SNARE proteins were also shown to mediate Rab-bypass fusion, this fusion required homotypic fusion and vacuole protein sorting complex, which bears Vps33p and was accompanied by extensive membrane lysis. We also show that this neuronal SNARE-driven vacuole fusion can be stimulated by the neuronal SM protein Munc18 and blocked by botulinum neurotoxin serotype E, a well-known inhibitor of synaptic vesicle fusion. Taken together, our results suggest that neuronal SNARE proteins are sufficient to induce biological membrane fusion, and that this new assay can be used as a simple and complementary method for investigating synaptic vesicle fusion mechanisms.Membrane fusion mediates a variety of biological processes, such as fertilization and cell growth, hormone secretion, neurotransmission, nutrient uptake, and viral infection (1). Vesicle trafficking between organelles, a major tool for intracellular transport of materials, is also regulated by membrane fusion: Membrane fusion between transport vesicles and target compartments releases the cargo stored in the vesicles into the lumen of the compartments. To maintain the unique chemical environment of each organelle, biological membrane fusion occurs with spatiotemporal precision but without leakage of the luminal contents. This nature of biological membrane fusion may be achieved through the cooperation of various proteins, such as Rab GTPases and their effectors, SNARE [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor] proteins, and SNARE chaperones (2, 3). SNARE proteins bring two membrane bilayers into close proximity, which promotes the fusion of the apposed membranes (4, 5). The molecular mechanism by which SNARE proteins mediate membrane fusion has been intensively studied in synaptic vesicle fusion, which mediates neurotransmission at the synapse, whereby neurotransmitters released by presynaptic neurons are recognized by their receptors on postsynaptic neurons (6, 7). Depolarization of presynaptic nerve terminals by an action potential opens Ca2+ channels in the presynaptic membrane. Ca2+ influx into the presynaptic cell then triggers membrane fusion between the presynaptic plasma membrane and synaptic vesicles, leading to the release of neurotransmitter. Synaptic vesicle fusion is mediated by three neuronal SNARE proteins: syntaxin, SNAP25, and synaptobrevin (also referred to as VAMP). Synaptobrevin and syntaxin-1 each contain one SNARE motif, whereas SNAP25 contains two. One SNARE motif from synaptobrevin (v-SNARE) on a synaptic vesicle and three SNARE motifs provided by syntaxin-1 and SNAP25 (t-SNAREs) from the plasma membrane assemble into a tight trans-SNARE complex that brings the two membranes into close apposition. This close apposition, in turn, induces lipid bilayer merging, thus releasing neurotransmitter into the synaptic cleft.In addition to the neuronal SNARE proteins, many other regulatory proteins, such as Munc18 and synaptotagmin, are required for synaptic vesicle fusion in vivo (8, 9). Munc18, a member of the Sec1/Munc18 (SM) protein family, seems to play a variety of roles in synaptic vesicle fusion. First, Munc18 binds to free syntaxin molecules and keeps them in a closed, inactive state, helping to prevent the formation of premature SNARE complexes (10, 11). Additionally, Munc18 interacts with the syntaxin molecule within assembled t-SNARE complexes, guiding them in a manner conducive to productive trans-SNARE complex formation, which triggers membrane fusion (12). Neuronal synaptotagmin, anchored to synaptic vesicles, functions as a calcium sensor for synaptic vesicle fusion (9, 13, 14). Although its mode of action is not yet fully defined, calcium binding to synaptotagmin triggers synaptic vesicle fusion. Despite the importance of these and many other proteins for synaptic vesicle fusion, the three neuronal SNARE proteins are thought to constitute the minimal components sufficient to drive membrane fusion: On their own, they can induce fusion between proteoliposomes carrying both syntaxin and SNAP25 and those reconstituted with synaptobrevin (15). Although these reconstitution experiments strongly support the concept that neuronal SNARE proteins suffice to induce membrane fusion, it is still unclear whether they can also induce fusion between biological membranes for the following reasons: (i) Liposome fusion, unlike biological membrane fusion, is intrinsically promiscuous: Even protein-free liposomes can fuse under certain conditions (16). (ii) Liposome fusion assays often rely on detection of lipid mixing, which can occur without content mixing. Liposome rupture (17) or clustering without fusion (18) can generate false-positive signals. (iii) Finally, because detergent is used to reconstitute SNARE proteins into liposomes, the potential presence of residual detergent, which affects the integrity of liposomes and their lipid mixing, cannot be completely excluded.Homotypic yeast vacuole fusion has been used to study membrane fusion mechanisms (1921). In vitro assays using isolated yeast vacuoles have been established that measure the mixing of vacuole luminal compartments (22, 23). The fusion of isolated yeast vacuoles in vitro is mediated by evolutionarily conserved membrane fusion machinery, which involves not only SNARE proteins but also Rab and SM proteins. In this study, to address whether neuronal SNARE proteins are sufficient to induce biological membrane fusion, we engineered the budding yeast Saccharomyces cerevisiae to express neuronal SNARE proteins in vacuoles. Using these yeast vacuoles, we then show that neuronal SNARE proteins can induce vacuole fusion in a Rab- and SM protein-independent manner.  相似文献   

20.
Exocytosis of synaptic vesicles (SVs) during fast synaptic transmission is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly formed by the coil-coiling of three members of this protein family: vesicle SNARE protein, synaptobrevin 2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25. However, it is controversially debated how many SNARE complexes are minimally needed for SV priming and fusion. To quantify this effective number, we measured the fluorescence responses from single fusing vesicles expressing pHluorin (pHl), a pH-sensitive variant of GFP, fused to the luminal domain of the vesicular SNARE syb2 (spH) in cultured hippocampal neurons lacking endogenous syb2. Fluorescence responses were quantal, with the unitary signals precisely corresponding to single pHluorin molecules. Using this approach we found that two copies of spH per SV fully rescued evoked fusion whereas SVs expressing only one spH were unable to rapidly fuse upon stimulation. Thus, two syb2 molecules and likely two SNARE complexes are necessary and sufficient for SV fusion during fast synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号