首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclin-dependent kinase inhibitors (CDKIs) are considered as novel anticancer agents because of their ability to induce growth arrest or apoptosis in tumour cells. It has not yet been fully determined, however, which CDKI is the best candidate for the treatment of malignant gliomas and whether normal brain tissues are affected by CDKI expression. Using recombinant adenoviral vectors that express CDKIs (p16(INK4A), p18(INK4C), p19(INK4D), p21(WAF1/CIP1) and p27(KIP1)), we compared the antitumour effect of CDKIs on malignant glioma cell lines (A172, GB-1, T98G, U87-MG, U251-MG and U373-MG). p27(KIP1) showed higher ability to suppress the growth of all tumour cells tested than other CDKIs. Interestingly, overexpression of p27(KIP1) induced autophagic cell death, but not apoptosis in tumour cells. On the other hand, p27(KIP1) overexpression did not inhibit the viability of cultured astrocytes (RNB) nor induced autophagy. Overall, our findings suggest that gene transfer of p27(KIP1) may be a promising approach for the therapy of malignant gliomas.  相似文献   

2.
3.
Alterations of the cyclin D1/pRb/p16(INK4A) pathway in multiple myeloma.   总被引:8,自引:0,他引:8  
The retinoblastoma protein (pRb), p16(INK4A), D-type cyclins, and their partners cyclin-dependent kinase (CDK) 4 and 6 constitute a G(1) regulatory pathway commonly targeted in tumorigenesis. Several malignancies show a reciprocal correlation between genetic alterations of single members of the pRb pathway. Therefore, we determined the frequency of Rb deletions and cyclin D1 alterations by fluorescence in situ hybridization as well as 5' CpG island hypermethylation of the p16(INK4A)gene using methylation-specific polymerase chain reaction in bone marrow mononuclear cells from 82 individuals with plasma cell disorders. Alterations in at least one of the components of the pathway were found in 75%. Cyclin D1 translocations or amplifications were detected in 14/82 (17.1%), Rb deletions at 13q14 in 23/82 (28%) of the cases, including three (3.6%) homozygous deletions. p16(INK4A) was hypermethylated in 33/57 (57.9%) of the samples. Further analysis revealed a highly significant correlation between cyclin D1 alterations and extramedullar or leukemic myeloma manifestations (P = 0.014; Fisher's test). Whereas Rb deletions seemed to occur alternatively to cyclin D1 alterations, no reciprocal correlation was found between p16(INK4A) hypermethylations and cyclin D1 or Rb locus aberrations. Cyclin D1 locus alterations and Rb deletions were associated with a significantly worse prognosis whereas p16(INK4A) hypermethylation had no impact on survival. We conclude that cyclin D1 and Rb aberrations seem to occur as alternative events in plasma cell malignancies and contribute to clinical course and prognosis. In contrast, although p16(INK4A) hypermethylation is frequent, inactivation of p16(INK4A) seems not to be involved in the pathogenesis of plasma cell disorders.  相似文献   

4.
Glioblastoma with primitive neuroectodermal tumor-like component (GBM-PNET) is a rare variant of glioblastoma, which was renamed as glioblastoma with a primitive neuronal component (GBM-PN) in new WHO classification of tumours of the central nervous system in 2016. There are few publications on the investigation of GBM-PN. In this study, PCR mRNA arrays on 6 cases of conventional GBM and 10 cases of GBM-PN showed high mRNA level of CDK4 in GBM-PN and low mRNA level of EGFR in GBM-PN. Immunohistochemical stains on tissue microarrays with 28 cases of conventional GBM and 13 cases of GBM-PN demonstrated that CDK4 was selectively expressed in the primitive neuronal component of all GBM-PN cases while EGFR was positive in conventional GBM and glial component of GBM-PN, but was negative in the primitive neuronal component of all GBM-PN cases. Immunohistochemical stains with antibodies against proteins that interact with CDK4 in cell cycle regulation, such as CDK6, cyclin D1 and p16(INK4a), were performed on these GBM-PN and GBM cases. CDK6 was patchily positive in rare cases of GBM-PN and cyclin D1 was negative in GBM-PN cases. p16(INK4a) is traditionally known as an inhibitor of CDK4 and CDK6. p16(INK4a) might not be the inhibitor of CDK4 in GBM-PN cases because seven GBM-PN cases were positive for both CDK4 and p16(INK4a). It indicates that CDK4 and p16(INK4a) might play a crucial role in GBM-PN pathogenesis. Since CDK4 and EGFR are highly expressed in the primitive neuronal component and in the glial component of GBM-PN respectively, the combination of CDK4/6 inhibitor and targeted therapy against EGFR might be potential effective therapeutic regimen for GBM-PN. CDK4 and EGFR immuohistochemical stain patterns make the diagnosis of GBM-PN much easier.  相似文献   

5.
6.
Molecular parameters involved in the prediction of response of childhood acute lymphoblastic leukemia (ALL) are still unclear. We have evaluated the expression and mutational status of p53 and the expression of bcl-x(L) and bax in a series of 62 consecutive children (median age: 4 years; 38 males and 24 females) affected by de novo ALL. Alterations and overexpression of p53 were uncommon events (9/62, 14.5%) while bcl-x(L) and bax overexpression were frequent (about 70%). EFS was directly correlated to age<6 years (p=0.0178), nonT phenotype (p=0.0470), WBC at diagnosis相似文献   

7.
In the search for new risk factors at the molecular and cellular levels, clinical data [lymph-node involvement (LN) and stage] were used and 104 squamous-cell lung carcinomas were analyzed by immuno-histochemistry for expression of cyclin D1, cyclin A, cdk2, cdk4, RB, and E2F1. The results of the univariate analysis of all 8 factors showed that cyclin A and cdk2 gave the best prognostic information, while no prognostic value could be found associated with cyclin D1, cdk4, RB and E2F1. The subsequent multivariate analysis of all possible combinations of the important factors showed that the pairs LN/cyclin A, LN/cdk2 and cyclin A/cdk2, and the triplet LN/cyclin A/cdk2 yielded the best prognostic information. It was essentially better than the information given by a single factor. Int. J. Cancer (Pred. Oncol.) 79:294–299, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

8.
The p16 gene encoding a specific inhibitor of cyclin-dependent kinases 4 and 6 has been reported to be inactivated at a variety of rates in malignant tumors. We studied frequency and mechanism of inactivation of the p16 gene in various types of childhood acute lymphoblastic leukemia (ALL) using 36 leukemic cell lines established from children (B precursor-ALL, 28; B-ALL/Burkitt's lymphoma, 3; and T-ALL, 5). On Southern blot, homozygous deletions or hemizygous deletions with rearrangement were detected in 14 cell lines. The expression of p16 protein was not observed on Western blot in 18 of 22 cell lines with intact p16 gene, but induced in 16 cell lines after treatment with the demethylating agent, indicating the silencing of the p16 gene by hypermethylation. Of note, the p16 gene was inactivated by hypermethylation of the 5' CpG island in nine of nine cell lines with 11q23 translocation, but was restored with the treatment of the demethylating agent. Partial methylation of the p16 gene was also demonstrated in three of eight primary leukemia samples with this translocation, suggesting that the p16 gene inactivation by hypermethylation might play a role in the leukemogenesis and disease progression of ALL with 11q23 translocation.  相似文献   

9.
We investigated the alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia (T-ALL) and T-ALL cell lines by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis and direct sequencing. Mutations of the p53 gene were found in three of 57 (5%) patients at diagnosis, one of 14 (7%) patients at relapse and in 12 of 18 (67%) cell lines. In these 12 cell lines, four had more than two mutations of the p53 gene. The p53 mutations were found in four of five cell lines whose original fresh leukemic cells were simultaneously examined original fresh leukemic cells. However, only one of the four fresh leukemic cells had the same mutation. All patients with p53 mutations in the course of disease died. Mutations of the p21 gene were not identified in 71 fresh samples and in 18 cell lines. N-RAS mutations were found in two of 57 (4%) fresh T-ALL patients at diagnosis, and four of 18 cell lines (22%), whereas no mutations were detected in any samples at relapse. Alterations of the p16 gene were found in 18 of 47 (38%) patients at diagnosis and in seven of 14 (50%) at relapse. These differences were not statistically significant. There were no differences in the frequency of alteration of the p16 and p15 genes between event-free patients and the remaining patients. Furthermore, we found the methylation of p16 gene in three of seven patients lacking homozygous deletions, suggesting higher frequency of p16 inactivation than previous reports in T-ALL. Interestingly, we found that one allele is inactivated by methylation and another allele had nonsense mutation in one cell line (KOPT-KI), resulting in loss of protein expression of p16. This type of p16 inactivation has not been so far reported in leukemia. We conclude that, (1) p53 mutations are infrequent at diagnosis but tend to be associated with poor clinical outcome; (2) RAS and p21 mutations may not be involved in the pathogenesis of T-ALL; (3) not only frequent alterations of p16 and p15 genes but also methylation of p16 gene are involved in initiating the leukemogenesis of T-ALLs, and (4) these 5 genes are independently involved in T-ALL.  相似文献   

10.
The retinoblastoma protein pathway (pRb1-cyclin D1-cdk4/6-p16(INK4A)) participates in the regulation of the cellular processes at the transition of G1/S phases of the cell-cycle. Derailments of this pathway, caused either by lack of pRb1 or p16(INK4A) expression or overexpression of cyclin D1 and/or cdk4/6, are implicated in the deregulation of the cell-cycle machinery, resulting in uncontrolled cell proliferation, tumor heterogeneity, invasion and metastasis. Several studies conducted so far have assessed the deregulation of the pRb1-pathway components in various human tumors and cell-lines, provided these pathway alterations play an obligatory role in tumorigenesis. This review briefly summarizes the current information on the pRb1-cyclin D1-cdk4/6-p16(INK4A) alterations in sporadic uterine cancer, placing emphasis on the influence on the dualistic model of endometrial carcinogenesis.  相似文献   

11.
Cytogenetic/molecular abnormalities significantly influence the prognosis of patients with acute leukemia. Recently, two genes, p16INK4a and p15INK4b, encoding two cyclin-dependent kinase inhibitor proteins of the INK4 family of Mr 15,000 and 16,000, respectively, have been localized to 9p21. Remarkably, the p16INK4a locus has been found to encode a second protein, p14ARF, known as p19ARF in mice, with a distinct reading frame. Like p16INK4a, p14ARF is involved in cell cycle regulation, blocking cells at the G1 restriction point through the activity of MDM-2 and p53. We studied bone marrow samples of 42 newly diagnosed and untreated patients with acute lymphoblastic leukemia for the incidence of deletions of p16INK4a/p14ARF and p15INK4b using Southern blot analysis and determined the clinical outcome with regard to complete remission (CR) duration, event-free survival, and overall survival. We found deletions of p16INK4a/p14ARF in 17 of 42 patients (40%), with homozygous deletions in 11 of 42 patients (26%) and hemizygous deletions in 6 of 42 patients (14%). The gene for p15INK4b was codeleted in most, but not all, cases and was never deleted without deletion of p16INK4a/ p14ARF. No correlation was observed between molecular studies and karyotype abnormalities as determined by conventional cytogenetics. Furthermore, no difference was found in the CR rate, CR duration, event-free survival, and overall survival in patients with homozygous gene deletions compared to patients with no deletions or loss of only one allele.  相似文献   

12.
13.
Not only genomic mutations but also abnormal epigenetic methylation can significantly contribute to gene silencing and carcinogenesis. Methylation is particularly often observed in the CpG islands of the promoter regions in the regulatory genes. However, there are considerable differences in the incidence of methylation e.g. in the tumor suppressor genes, so that aberrant methylation of p16(INK4a) is relatively frequently observed in tumors, p27(Kip1) methylation is rare, and the incidence of E-cadherin methylation occurs at an intermediate rate. Although true genomic defects are generally much less common than methylation, parallel tendencies for both are often observed, probably reflecting the different levels of evolutionary advantage for tumor cells from inactivation of different genes. This also suggests that loss of p27 expression could be more a consequence of carcinogenesis, while lost p16 expression is a true oncogenic event. Due to the role of p27 in maintaining cellular quiescence, however, loss of its expression can still be a useful partial indicator of the aggressiveness of cancer. Loss of E-cadherin or its catenin partners of cellular adhesion will result in increasing invasiveness and metastatic potential of neoplastic cells but, because of several alternative routes to the same effect, incidence of lost expression for one component gene like E-cadherin does not need to be very high. Similarly, there must be a relatively high number of genes with modest or low incidence of aberrant silencing by methylation, to reflect multiple alternatives for the multistep process of carcinogenesis. Nevertheless, methylation of different genes also shows characteristic differences between different cancer and tumor types, and the epigenetic methylation patterns therefore have considerable diagnostic and prognostic potential. Realising this potential requires efficient methods for profiling the status of methylation. Such profiling methods have only recently become available and are still under relatively rapid development.  相似文献   

14.
15.
p21 (p21WAF1/CIP1) is involved in cell cycle regulation, as an inhibitor of cyclin dependent kinases (CDK2, CDK4 and CDK6). However, subsequent in vitro studies have suggested that p21 may influence this process by an additional mechanism, in particular through the regulation of cyclin D1 subcellular localisation. This study of primary resectable non-small cell lung cancer (NSCLC) was designed to examine p21 functions in association with the expression of cyclin D1 (including its subcellular localisation), p16INK4a and pRb. p21 expression was examined in 50 NSCLC (stage I-IIIA) and in several normal lung samples all of which had previously been studied for cyclin D1 (DNA, RT-PCR, immunostaining), p16INK4a (DNA, RT-PCR, immunostaining), and pRb (immunostaining). As assessed by immunoblotting and immunostaining, p21 was expressed at low levels in normal lung tissue with immunoreactivity seen in a small number of bronchial epithelial cells only. In NSCLC, p21 expression (> or =10% of positive cells) was observed in 42% (21/50) of cases. High p21 expression was associated with well differentiated tumours (p = 0.01) and cyclin D1 nuclear staining (p = 0.02). Furthermore, we found an inverse correlation with p16INK4a (p = 0.004) and a direct correlation with pRb expression (p = 0.02). Risk of relapse was associated with p16INK4a and p21 status with no relapse in patients with normal p16INK4a and p21. Our results confirm that a large number of NSCLC have a low level of p21 expression. The associations of p21 and nuclear cyclin D1, pRb, p16INK4a support the relevance of pathways linked to lung carcinogenesis that involve p21 but may act in addition to direct CDK inhibition.  相似文献   

16.
Actinic keratosis (AK) is a well-established pre-cancerous skin lesion that has the potential to progress to squamous cell carcinoma (SCC). We investigated the involvement of the CDKN2A, CDKN2B and p53 genes in AK and in the progression of AK to SCC. Mutational analysis on exons 1a, 1b and 2 of the CDKN2A locus and exon 1 of the CDKN2B locus as well as allelic imbalance was performed in 26 AK specimens. Expression levels of the genes p14(ARF), p15(INK4b), p16(INK4a) and p53 were examined in 16 AKs and 12 SCCs by real-time RT-PCR. A previously described polymorphism of p16(INK4a) (Ala148Thr) was detected at an allelic frequency of 12%. Six samples carried novel mutations at codon 71 of the CDKN2A locus and one sample presented an additional mutation at codon 65. Two AK samples carried a not-previously described non-UV type missense mutation at codon 184 (Val184Glu) of exon 1b in the p14(ARF) gene. Regarding the CDKN2B locus a new mutation at codon 50 (Ala50Thr) and another at codon 24 (Arg24Arg), were detected. Microsatellite instability (MSI) was found in 15% of AKs in at least one marker, indicating that genetic instability has some implication in the development of AK. Down-regulation of p16(INK4a) and p53 mRNA levels was noted in SCC compared to AK. TSGs expression levels in sun-exposed morphologically normal-appearing skin, suggests that abnormal growth stimuli might exist in these tissues as well. Furthermore, we suggest a possible role of p15(INK4b), independently from the intracellular pathway mediated by p16(INK4a), and of p14(ARF) in AK development, as well as in the progression of AK to SCC. The deregulation of the expression profiles of the CDKN2A, CDKN2B and p53 genes may, independently of mutations and LOH at 9p21, play a significant role in AK and progression of AK to SCC.  相似文献   

17.
To examine the association of cell cycle regulatory gene inactivation with human cell immortalization, we determined the expression status of INK4a, Rb, and WAF1/ CIP1, in eleven in vitro immortalized human cell lines, including fibroblasts and keratinocytes. Two human papillomavirus type 16 E6 expressing cell lines with telomerase activity, including a fibroblast cell line and a keratinocyte cell line, expressed no detectable p16(INK4a). These cell lines had a hyperphosphorylated pRb and reduced expression of p21(WAF1/CIP1). All of seven fibroblast cell lines immortalized either spontaneously or by (60)Co, X-rays, 4-nitroquinoline 1-oxide or aflatoxin B(1), maintaining their telomeres by the ALT (alternative lengthening of telomeres) pathway, displayed loss of expression of p16(INK4a) and hyperphosphorylation of pRb. Levels of p21(WAF1/CIP1) expression varied among the cell lines. Two fibroblast cell lines that became immortalized following infection with a retrovirus vector encoding human telomerase catalytic subunit (hTERT) cDNA were also accompanied by inactivation of p16(INK4a) and pRb pathways. Acquisition of telomerase activity alone was not sufficient for immortalization of these cell lines. Taken together, all the cell lines including fibroblasts and keratinocytes, with either telomerase activity or the ALT pathway for telomere maintenance showed loss of expression of p16(INK4a) and hyperphosphorylation of pRb. These demonstrate the association of inactivation of both p16(INK4a) and pRb with immortalization of human cells including fibroblasts and epithelial cells and telomerase-positive cells and ALT-positive cells.  相似文献   

18.
The p14(ARF), p15(INK4B) and p16(INK4A) genes were localized to 9p21, where genetic alterations have been reported frequently in various human tumors. We performed a molecular analysis of the mechanism of inactivation in cell lines and 32 oral squamous cell carcinoma (OSCC), using deletion screening, PCR-SSCP, methylation-specific-PCR and cycle sequencing. We detected homozygous deletion of p14(ARF)-1Ebeta in 9 (26.5%), of p15(INK4B) in one (3.1%), and of p16(INK4A) in 22 (56.3%) tumor samples. Three mutations were detected in the p16(INK4A) genes. We detected aberrant methylation of the p14(ARF) genes in 14 (43.8%), of the p15(INK4B) gene in 9 (28.1%), and of the p16(INK4A) gene in 16 (50.0%) tumor samples. Altogether, 87.5% of the samples harbored at least one of the alterations in the p14(ARF), p15(INK4B), and p16(INK4A) genes, indicating that the frequent inactivation of these genes may be an important mechanism during OSCC development.  相似文献   

19.
20.
Hypermethylation of CpG island is a common mechanism by which tumor suppressor genes are inactivated. The tumor suppressor genes p16(INK4a) and p15(INK4b) are important components of the cell cycles. We have studied the feasibility of detecting tumor-associated aberrant p16(INK4a) and p15(INK4b) methylation in non-small cell lung cancer (NSCLC) using methylation-specific PCR. We found a high frequency of hypermethylation of the p16(INK4a) gene in 17 of 45 cases of NSCLC. In this study, there was no difference between the clinicopathological features or overall survival of patients with and without p16(INK4a) methylation. On the other hand, p15(INK4b) promoter hypermethylation is rare (5/45) in lung cancer and occurs in association with p16(INK4a) methylation. The overall survival of patients with p15(INK4b) methylation was markedly shortened in this series. We also analyzed cells in bronchial washings, and p16(INK4a) methylation was detected in 4 of 17 cases of NSCLC. Moreover, 1 of 10 plasma samples from patients with NSCLC was positive for p16(INK4a) methylation. Our results suggest a possible prognostic role of p15(INK4b) methylation in NSCLC, and that the detection of aberrant p16(INK4a) methylation in both bronchial washings and plasma may be useful for cancer diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号