首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The distribution, morphology, and ionic conductances of Vicia villosa agglutinin (VVA)-labeled cells were examined in the rat hippocampal formation. The heaviest labeling and highest density of labeled neurons were found in the subicular complex. Lighter VVA-labeling and fewer labeled cells were found in hippocampal strata pyramidale, oriens, and alveus. VVA-labeled cells were found to be heterogeneous morphologically, including multipolar, bipolar, and basket-like shapes. The majority of VVA-labeled cells contained GABA and parvalbumin immunoreactivity; thus VVA-labeled cells in the hippocampal formation resemble previously described VVA-labeled neurons in cerebral cortex. Electrophysiological properties of subicular VVA-labeled cells were studied in an acutely dissociated neuron preparation. Dissociated cells were labeled in vitro with VVA coupled either to a fluorescent marker or to small beads. The viability of labeled dissociated cells was confirmed, and identified cells were partially characterized electrophysiologically using whole-cell voltage clamp recording. VVA-labeled cells were electrophysiologically similar to pyramidal cells from the same region, except that the VVA-labeled cells showed only small transient outward currents.  相似文献   

2.
The distribution of the metabotropic glutamate receptor mGluR1a was studied in the normal and kainate-lesioned rat hippocampus using a monoclonal (MAb) and a polyclonal antibody to mGluR1a. Many labeled nonpyramidal neurons were observed in the stratum oriens of CA1 in sections incubated with MAb. In comparison, fewer labeled neurons were observed in this layer in sections incubated with polyclonal antibody. Many nonpyramidal neurons were observed in the stratum lucidum of CA3 and the hilus of the dentate gyrus, with both antibodies. The cell bodies of pyramidal neurons were unlabeled. A dense network of labeled processes was observed in the neuropil of the CA fields at electron microscopy. Some dendrites were very densely labeled and did not contain dendritic spines. These were identified as dendrites of nonpyramidal neurons. Other dendrites contained lightly labeled dendritic shafts, but densely labeled dendritic spines, and were identified as dendrites of pyramidal neurons. Intravenous kainate injections resulted in destruction of pyramidal neurons and a massive decrease in mGluR1a immunoreactivity in the CA fields. This decrease was obvious even at 1–5 d postinjection, when the nonpyramidal neurons in the stratum oriens remained densely labeled, suggesting that pyramidal neurons contributed significantly to mGluR1a staining in the CA fields. We conclude that the dendritic spines of hippocampal pyramidal neurons contain mGluR1a, even though little staining is observed in their parent dendritic shafts or cell bodies.  相似文献   

3.
Morphological characteristics of the neurons of the auditory cortical areas of the rhesus monkey were investigated using Golgi and horseradish peroxidase methods. Neurons of the auditory cortices can be segregated into two categories, spinous and nonspinous, which can be further subclassified according to their dendritic arrays. The spinous neurons include pyramidal, "star pyramid," multipolar, and bipolar cells. As in other cortices, pyramidal cells are found in layers II-VI and appear to be the most numerous of all cortical neurons. The "star pyramids" have radially oriented dendrites with a less prominent apical shaft and are found mainly in the middle cortical layers. The spinous multipolar neurons are also found in the middle cortical layers and have their dendrites radially arrayed but have no apical dendrite. The spinous bipolar cells, found in the infragranular layers, occur most frequently in the lateral auditory association cortex. The nonspinous neurons include neurogliaform, multipolar, bitufted, and bipolar cells and are found in all cortical layers. The neurogliaform cells are the smallest of all neurons and have radially arrayed, recurving dendrites. The nonspinous multipolar cells also have radially arrayed dendrites but vary in size from being confined to one cortical layer to extending across four laminae. The bitufted neurons are subclassified into three groups: neurons whose primary dendrites arise radially from their somata, those whose dendrites arise from two poles of their somata, and those that have a single primary dendrite arising from one pole and multiple dendrites from another pole of their somata. The nonspinous bipolar cells also have several variants but usually have dendrites arising from two poles of the somata. The chemical characteristics of the auditory neurons were investigated using histochemical and immunocytochemical methods. Peptidergic neurons, i.e., cholecystokinin-, vasoactive intestinal polypeptide-, somatostatin-, and substance P-reactive neurons are found in the various subregions of the auditory cortices and are distributed differentially in the cortical laminae. These neurons are of the nonpyramidal type. Gamma aminobutyric acid-reactive neurons are also nonpyramidal cells and they are found in all cortical layers. Their numbers varied among the cortical laminae in the different auditory regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
As a starting point for understanding the development of the cerebral cortex in reptiles and for determining how reptilian cortical development compares to that in other vertebrate classes, we studied the appearance and morphological differentiation of cerebral cortical neurons in embryonic turtles. 3H-thymidine birthdate labeling and focal injections of horseradish peroxidase (HRP) in in vitro cortical slices revealed that replicating cells occupy the outer ventricular zone, and subsequently migrate to the ventricular surface where they divide. Postmitotic neurons begin differentiating and elaborating neurites while migrating back through the ventricular zone. On their arrival at the top of the ventricular zone, pyramidal and nonpyramidal neurons can be distinguished morphologically. Cells with multipolar apical dendritic tufts ascending in the marginal zone resemble immature pyramidal neurons. Neurons morphologically similar to these early pyramidal cells were retrogradely labeled by injections of the lipophilic tracer 1,1-dioctadecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (diI) in a known pyramidal cell target, the thalamus. Nonpyramidal neurons, resembling Cajal-Retzius cells, had horizontally oriented long axons and dendrites coursing in the plexiform primordium, the future marginal zone. With further development morphological differences between cell types became accentuated, and pyramidal cell somata were segregated into a single cellular layer flanked by zones containing predominantly nonpyramidal cells. Axon elaboration occurred early in embryonic development, as pyramidal cells sent axonal branches to the septum, thalamus, and cortical targets soon after their generation, and the intracortical axonal plexus became increasingly dense during embryonic life. Over a similar time course the distribution of projecting neurons labeled by thalamic diI injections changed from an initial homogeneous distribution to a preferential location in the superficial half of the cellular layer. Results from this study demonstrate several features of cortical differentiation that are conserved in reptiles and mammals, including similar early morphological differentiation events, the early distinction of principal cell types, and the parallel development of pyramidal and nonpyramidal neurons. The context in which these similar developmental events occur, however, differs profoundly in reptiles and mammals, with differences in the timing and location of neurite elaboration and differences in the appearance and architectonic organization of the cortex. Comparison of cortical developmental patterns between reptiles and mammals shows that similar functional cortical circuits with balanced excitation and inhibition can emerge in diverse cortical structures.  相似文献   

5.
Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex   总被引:4,自引:0,他引:4  
Golgi-Cox-impregnated neurons in the barrel cortex of the rat were studied qualitatively and quantitatively. Adult rat brains were sectioned perpendicular to or parallel to the cortical representation of the large facial vibrissae at 125 micron. Cortical laminar and barrel boundaries were identified from the Nissl counterstain. Over 200 well-impregnated neurons in cortical layers I-IV were selected for classification and further detailed study. Three broad classes of neurons were recognized: (1) pyramidal cells with conical somata, a stout apical dendrite, and spines; (2) class I nonpyramidal cells having small spherical somata and spiny dendrites; and (3) class II nonpyramidal cells having larger ellipsoid somata and smooth or beaded dendrites. The class I cells were further subdivided into "star pyramids" (cells with an apical dendrite) and spiny stellate cells (cells in which all dendrites were of similar length). The class II cells also were subdivided into multiform cells (with multiple dendrites radiating from the soma) and bipolar cells (with two principal dendritic trunks arising from the superficial and deep aspects of the soma). The position of these various cell types in the superficial cortical laminae was mapped in sections normal to the pia. Numerous examples of the class I and class II neurons were drawn with respect to the barrels in layer IV and the extent of their processes noted. Finally, approximately 250 barrel-related class I and II neurons were studied quantitatively using a computer-microscope and digitizing tablet. The density of the Golgi-impregnated neurons corresponds to the pattern of cell density seen with the Nissl counterstain. The various cell types are not uniformly distributed as a function of cortical depth. Cells with apical dendrites were found principally in the supragranular layers and star pyramids in the superficial one-half of layer IV. Spiny stellate cells are concentrated in layer IV and the smooth cells are present in greatest number in deep layer III and deeper layer IV. On the basis of these distributions we suggest that layer IV be subdivided into two sublaminae. The class I and class II neurons can be distinguished according to quantitative criteria which apply in either plane of section used. Class I neurons have smaller projected somal areas, more proximal dendritic branching, and shorter dendrites when class I and II neurons are measured in three dimensions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Functional imaging studies of the human brain have suggested the involvement of the cingulate gyrus in a wide variety of affective, cognitive, motor, and sensory functions. These studies highlighted the need for detailed anatomic analyses to delineate its many cortical fields more clearly. In the present study, neurofilament protein, and the calcium-binding proteins parvalbumin, calbindin, and calretinin were used as neurochemical markers to study the differences among areas and subareas in the distributions of particular cell types or neuropil staining patterns. The most rostral parts of the anterior cingulate cortex were marked by a lower density of neurofilament protein-containing neurons, which were virtually restricted to layers V and VI. Immunoreactive layer III neurons, in contrast, were sparse in the anterior cingulate cortex, and reached maximal densities in the posterior cingulate cortex. These neurons were more prevalent in dorsal than in ventral portions of the gyrus. Parvalbumin-immunoreactive neurons generally had the same distribution. Calbindin- and calretinin-immunoreactive nonpyramidal neurons had a more uniform distribution along the gyrus. Calbindin-immunoreactive pyramidal neurons were more abundant anteriorly than posteriorly, and a population of calretinin-immunoreactive pyramidal-like neurons in layer V was found largely in the most anterior and ventral portions of the gyrus. Neuropil labeling with parvalbumin and calbindin was most dense in layer III of the anterior cingulate cortex. In addition, parvalbumin-immunoreactive axonal cartridges were most dense in layer V of area 24a. Calretinin immunoreactivity showed less regional specificity, with the exception of areas 29 and 30. These chemoarchitectonic features may represent cellular reflections of functional specializations in distinct domains of the cingulate cortex. J. Comp. Neurol. 384:597–620, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The piriform cortex was studied in the adult opossum with rapid Golgi and Golgi-Cox techniques. Most pyramidal cells in the deep part of layer II and layer III resemble those in other parts of the cerebral cortex by virtue of a single apical dendritic trunk, multiple basal dendrites, a large number of small to medium dendritic spines, and a deeply directed axon. Pyramidal cells in the superficial part of layer II are similar with the exception that “secondary” apical dendrites often emerge directly from the cell body rather than from a single primary trunk. With conservative criteria for categorization, nine different types of nonpyramidal cells were distinguished, four of which have not been previously described. Layer I contains a small number of neurons with both smooth and spiny dendrites including distinctive fusiform cells with large somatic appendages. As in other species, the most common type of nonpyramidal neuron in layer II is the semilunar cell which has only apically directed dendrites. These cells have distinctive large spines confined to their distal dendritic segments. The mid to deep portion of layer III contains multipolar neurons with smooth dendrites that resemble the well-known large stellate cells in neocortex. In addition, layer III contains three non-pyramidal neuron types with spiny dendrites: (1) fusiform and multipolar cells with complex, branched dendritic appendages and somatic spines, (2) very large multipolar cells (up to 35 μm mean diameter) with large-diameter dendrites that give rise to abruptly tapering side branches and filiform spines, and (3) multipolar cells with profusely spiny dendrites. In all three layers, small neurons have been found with spherical cell bodies and “axoniform” dendrites that resemble the so called neurogliaform neurons described in a variety of brain areas. A striking feature of the organization of the piriform cortex is that, with the exception of the neurogliaform neurons, the different types of nonpyramidal cells tend to be segregated in individual layers or sublayers. Physiological implications of the results are discussed. Remarks are also made concerning the potential of the piriform cortex as a model cortical system.  相似文献   

8.
Neurons in the rat subiculum that are capable of producing nitric oxide were studied by using an antibody to the neuronal isoform of nitric oxide synthase (nNOS). In the light microscope, the staining pattern with the nNOS antibody closely resembled that seen following histochemical processing with nicotinamide adenine dinucleotide phosphate diaphorase. Immunostained neurons were found in all layers, and, in addition, large dendrites in the apical dendrite layer were also immunopositive. Although a few immunolabelled cells had the typical morphology of interneurons, most were found to have the characteristics of pyramidal neurons. In the subiculum, these immunoreactive pyramidal neurons were concentrated mainly in the most superficial cell layers and closest to the CA1 region, but pyramidal neurons in the CA1 layer of the hippocampus were consistently immunonegative. Immunopositive profiles in the subiculum were studied in the electron microscope and compared with unlabelled structures. Ultrastructural criteria suggest that both pyramidal and nonpyramidal subicular neurons are immunopositive for nNOS. Large, spiny dendrites and smaller, varicose dendrites were found to be immunoreactive for nNOS. Vesicle-containing profiles were probably presynaptic axons, and immunopositive boutons were seen to make symmetrical and asymmetrical synaptic contacts. J. Comp. Neurol. 395:195–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The dendritic field of pyramidal neurons in cortical layers IIIc and V of the prefrontal cortex in ageing humans was studied. The three-dimensional branching pattern of the basilar dendrites of Golgi–Cox impregnated neurons was analysed in the middle frontal gyrus (areas 9 and 46) in eight subjects between the ages of 49 and 90 years, all without a neurological or psychiatric disorder. The results revealed a significant regression of the layer V dendritic pattern with increasing age, but the layer IIIc neurons did not show any age-related changes. Together with our earlier data on the postnatal development of the same cell types in the prefrontal cortex, we hypothesize that the layer V neurons in the prefrontal cortex start to regress from the fifth decade onwards, in contrast to the layer IIIc neurons which remain stable from puberty on. We conclude that pyramidal cells in layer IIIc and V in a similar cortical region undergo a differential ageing effect.  相似文献   

10.
Immunocytochemical methods were used to perform a correlative light and electron microscopic study of neurons and axon terminals immunoreactive to the antiglutamate (Glu) serum of Hepler et al. ('88) in the visual and somatic sensory areas of cats. At the light microscopic level, numerous Glu-positive neurons were found in all layers except layer I of both cortical areas. On the basis of the dendritic staining of Glu-positive cells, two major morphological categories were found: pyramidal cells, which were the most frequent type of immunostained neuron, and multipolar neurons, which were more numerous in layer IV of area 17 than in any other layer. A large number of Glu-positive neurons, however, did not display dendritic labelling and were considered unidentified neurons. Counts of labelled neurons were performed in the striate cortex; approximately 40% were Glu-positive. Numerous lightly stained punctate structures were observed in all cortical layers: the majority of these Glu-positive puncta were in the neuropil. After resectioning the plastic sections for electron microscopy it was observed that: 1) the majority of neurons unidentifiable at light microscopic level were indeed pyramidal neurons except in layer IV of area 17, where many stained cells were probably spiny stellate neurons. Some Glu-positive neurons, however, exhibited clear ultrastructural features of nonspiny nonpyramidal cells; 2) all synaptic contacts made by Glu-positive axon terminals were of the asymmetric type, but not all asymmetric synaptic contacts were labelled. The vast majority of postsynaptic targets of Glu-positive axons were unlabelled dendritic spines and shafts. The present results provide further evidence that Glu (or a closely related compound) is probably the neurotransmitter of numerous excitatory neurons in the neocortex.  相似文献   

11.
The cytoarchitectonic organization and the structure of layer V neuronal populations in cat primary auditory cortex (AI) were analyzed in Golgi, Nissl, immunocytochemical, and plastic-embedded preparations from mature specimens. The major cell types were characterized as a prelude to identifying their connections with the thalamus, midbrain, and cerebral cortex using axoplasmic transport methods. The goal was to describe the structure and connections of layer V neurons more fully. Layer V has three sublayers based on the types of neuron and their sublaminar projections. Four types of pyramidal and three kinds of nonpyramidal cells were present. Classic pyramidal cells had a long apical dendrite, robust basal arbors, and an axon with both local and corticofugal projections. Only the largest pyramidal cell apical dendrites reached the supragranular layers, and their somata were found mainly in layer Vb. Three types departed from the classic pattern; these were the star, fusiform, and inverted pyramidal neurons. Nonpyramidal cells ranged from large multipolar neurons with radiating dendrites, to Martinotti cells, with smooth dendrites and a primary trunk oriented toward the white matter. Many nonpyramidal cells were multipolar, of which three subtypes (large, medium, and small) were identified; bipolar and other types also were seen. Their axons formed local projections within layer V, often near pyramidal neurons. Several features distinguish layer V from other layers in AI. The largest pyramidal neurons were in layer V. Layer V neuronal diversity aligns it with layer VI (Prieto and Winer [1999] J. Comp. Neurol. 404:332--358), and it is consistent with the many connectional systems in layer V, each of which has specific sublaminar and neuronal origins. The infragranular layers are the source for several parallel descending systems. There were significant differences in somatic size among these projection neurons. This finding implies that diverse corticofugal roles in sensorimotor processing may require a correspondingly wide range of neuronal architecture.  相似文献   

12.
Golgi-Stensaas and rapid-Golgi staining techniques are used to study neuronal differentiation in the developing human prefrontal cortex in fetuses, premature infants, and full-term newborns from 10.5 to 40 weeks of gestation. Horizontal neurons (Cajal-Retzius neurons) above the cortical plate (in the marginal zone) and randomly oriented neurons below the cortical plate (in the primordial subplate) are more differentiated than the immature bipolar cortical plate neurons in the 10.5-week fetus. During 13.5-15 weeks of gestation the fetal subplate zone can be clearly distinguished-between the cortical plate and the intermediate zone. This subplate zone contains more mature neurons than the cortical plate, especially polymorphous neurons. The basic features of the apical and basal dendrites of pyramidal neurons develop between 17 and 25 weeks of gestation, before the thalamocortical fibres invade the cortical plate. Intensive differentiation of the subplate neurons occurs in this period, when various types of afferent fibres reside in the subplate zone. At least five neuronal types can be distinguished in the subplate, i.e., polymorphous, fusiform, multipolar, normal, and inverted pyramidal neurons. The ingrowth of afferent fibres into the cortical plate between 26 and 34 weeks of gestation coincides with intensive dendritic differentiation and the appearance of spines on dendrites of the prospective layer III and V pyramidal neurons as well as with the differentiation of the double bouquet interneurons in the prospective supragranular layers and layer IV. Multipolar nonpyramidal neurons with the dendritic features of basket neurons are observed between 32 and 34 weeks of gestation in future layer V. They are less differentiated than the double bouquet neurons. The neurons of the subplate zone continue their dendritic differentiation after 26/27 weeks of gestation and are still observed in the full-term newborn. The axonal pattern of the subplate neurons suggests a possible functional role for them as either interneurons or projection neurons.  相似文献   

13.
Choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme and a definitive marker for cholinergic neurons, was localized immunocytochemically in the motor and somatic sensory regions of rat cerebral cortex with monoclonal antibodies. ChAT-positive (ChAT+) varicose fibers and terminal-like structures were distributed in a loose network throughout the cortex. Some immunoreactive cortical fibers were continuous with those in the white matter underlying the cortex, and many of these fibers presumably originated from subcortical cholinergic neurons. ChAT+ fibers appeared to be rather evenly distributed throughout all layers of the motor cortex, but a subtle laminar pattern was evident in the somatic sensory cortex, where lower concentrations of fibers in layer IV contrasted with higher concentrations in layer V. Electron microscopy demonstrated that immunoreaction product was concentrated in synaptic vesicle-filled profiles and that many of these structures formed synaptic contacts. ChAT+ synapses were present in all cortical layers, and the majority were of the symmetric type, although a few asymmetric ones were also observed. The most common postsynaptic elements were small to medium-sized dendritic shafts of unidentified origin. In addition, ChAT+ terminals formed synaptic contacts with apical and, probably, basilar dendrites of pyramidal neurons, as well as with the somata of ChAT-negative nonpyramidal neurons. ChAT+ cell bodies were present throughout cortical layers II-VI, but were most concentrated in layers II-III. The somata were small in size, and the majority of ChAT+ neurons were bipolar in form, displaying vertically oriented dendrites that often extended across several cortical layers. Electron microscopy confirmed the presence of immunoreaction product within the cytoplasm of small neurons and revealed that they received both symmetric and asymmetric synapses on their somata and proximal dendrites. These observations support an identification of ChAT+ cells as nonpyramidal intrinsic neurons and thus indicate that there is an intrinsic source of cholinergic innervation of the rat cerebral cortex, as well as the previously described extrinsic sources.  相似文献   

14.
The neuronal population of area 17 of rat visual cortex has been examined by using tissue from brains fixed by perfusion. The tissue was osmicated and embedded in plastic so that the same neurons could be examined by both light and electron microscopy. In these preparations area 17 was 1.49 mm thick and by stereological procedures it was calculated that there are about 120,000 neurons beneath 1 mm2 of cortical surface. If one assumes area 17 in each hemisphere of the rat to occupy between 7.1 and 9.4 mm2 of cortical surface, then in each hemisphere the area contains between 850,000 and 1,128,000 neurons. Of these neurons 85% are pyramidal cells and 15% are nonpyramidal cells. About one-third of the nonpyramidal cells occur in layers I and VIb, both of which contain only this kind of neuron. The remaining two-thirds of the nonpyramidal cells are in layers II-VIa. Within these layers it has been possible to differentiate bipolar cells from other types of nonpyramidal cells and in each of these two nonpyramidal cell groups to recognize both small and large neurons. The greatest concentration of nonpyramidal cells occurs in layer II/III. To confirm the validity of the stereologically derived data direct counts were made of the medium and large pyramidal cells in layer V.  相似文献   

15.
A study of the morphometry and laminar distribution of spine-free nonpyramidal neurons in electrophysiologically verified primary auditory cortex was carried out in adult rabbits. By using image-combining computer microscopy, the locations of all impregnated neurons in 300-μm Golgi-Cox Nissl sections through the auditory cortex were determined. Spine-free non-pyramidal neurons constitute nearly 72% of the nonpyramidal neurons present. They are distributed in a band extending from 450 to 750 μm beneath the pial surface corresponding to laminae III and IV. A combination of dendritic stick, Fourier, and statistical analyses revealed a highly significant spatial orientation of their dendrite systems along a vertical axis parallel to the apical dendrites of pyramidal neurons. A significant tangential orientation of dendrites along a dorsal-ventral axis was also found. A radial analysis of the dendrite systems revealed that the pronounced vertical orientation of spine-free nonpyramidal neurons is due to (1) directed dendritic growth along the vertical axis, (2) decreased branching and rapid termination of tangentially oriented dendrites, and (3) increased branching of vertically growing dendrites. The radial analysis also revealed that the longest branches are those directed toward the white matter.  相似文献   

16.
Although calcium/calmodulin-dependent protein kinase II (CaMK) has been shown to play a critical role in long-term potentiation (LTP) and emotional learning mediated by the basolateral amygdala, little is known about its cellular localization in this region. We have utilized immunohistochemical methods to study the neuronal localization of CaMK, and its relationship to gamma-aminobutyric acid (GABA)-ergic structures, in the rat basolateral amygdala (ABL). Light microscopic observations revealed dense CaMK staining in the ABL. Although the cell bodies and proximal dendrites of virtually every pyramidal cell appeared to be CaMK(+), the cell bodies of small nonpyramidal neurons were always unstained. Dual localization of CaMK and GABA immunoreactivity with confocal immunofluorescence microscopy revealed that CaMK and GABA were found in different neuronal populations in the ABL. CaMK was contained only in pyramidal neurons; GABA was contained only in nonpyramidal cells. At the ultrastructural level, it was found that CaMK was localized to pyramidal cell bodies, thick proximal dendrites, thin distal dendrites, most dendritic spines, axon initial segments, and axon terminals forming asymmetrical synapses. These findings suggest that all portions of labeled pyramidal cells, with the exception of some dendritic spines, can exhibit CaMK immunoreactivity. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, GABA(+) axon terminals were seen to innervate all CaMK(+) postsynaptic domains, including cell bodies (22%), thick (>1 microm) dendrites (34%), thin (<1 microm) dendrites (22%), dendritic spines (17%), and axon initial segments (5%). These findings indicate that CaMK is a useful marker for pyramidal neurons in ultrastructural studies of ABL synaptology and that the activity of pyramidal neurons in the ABL is tightly controlled by a high density of GABAergic terminals that target all postsynaptic domains of pyramidal neurons.  相似文献   

17.
The ultrastructural features and synaptic relationships of cholecystokinin (CCK)-immunoreactive cells of rat and cat hippocampus were studied using the unlabeled antibody immunoperoxidase technique and correlated light and electron microscopy. CCK-positive perikarya of variable shape and size were distributed in all layers and were particularly concentrated in stratum pyramidale and radiatum: the CCK-immunoreactive neurons were nonpyramidal in shape and the three most common types had the morphological features of tufted, bipolar, and multipolar cells. Electron microscopic examination revealed that all the CCK-positive boutons established symmetrical (Gray's type II) synaptic contacts with perikarya and dendrites of pyramidal and nonpyramidal neurons. The origin of some of the boutons was established by tracing fine collaterals that arose from the main axon of two CCK-immunostained cells and terminated in the stratum pyramidale; these collaterals were then examined in the electron microscope. The axon of one such neuron exhibited a course parallel to the pyramidal layer and formed pericellular nets of synaptic boutons upon the perikarya of pyramidal neurons. This pattern of axonal arborization is very similar to that of some of the basket cells, previously suggested to be the anatomical correlate for pyramidal cell inhibition. Typical dendrites of pyramidal cells also received symmetrical synaptic contacts from CCK-immunoreactive boutons, and some of these boutons could be shown to originate from a local neuron in stratum radiatum. Many CCK-immunoreactive cells received CCK-labeled boutons upon their soma and dendritic shafts. Synaptic relationship, established by multiple "en passant" boutons, was observed between CCK-positive interneurons of the stratum lacunosum-moleculare and radiatum. The soma and dendrites of the CCK-immunostained neurons also received symmetrical and asymmetrical synapses from nonimmunoreactive boutons. These results indicate that the CCK-immunoreactive neurons participate in complex local synaptic interactions in the hippocampus.  相似文献   

18.
BACKGROUND: Elderly depressed patients have more vascular hyperintensities in frontal white matter and basal ganglia than elderly control subjects. Cell pathology that might be related to increased vascular hyperintensities has not been examined. METHODS: Postmortem samples from the orbitofrontal cortex (ORB) were collected in 15 elderly subjects with major depressive disorder (MDD) and 11 age-matched control subjects. Cell packing density of neurons and glia, density of pyramidal and nonpyramidal neurons, and cortical and laminar width were measured. RESULTS: The overall (layers I-VI) packing density of ORB neurons with pyramidal morphology was markedly decreased in MDD (by 30%) as compared with control subjects. Further laminar analysis of pyramidal neurons density revealed significant reductions in layers IIIc and V in MDD. In contrast, in MDD the density of nonpyramidal neurons and glia and cortical and laminar width were comparable to control values. CONCLUSIONS: In elderly subjects with depression, the density of pyramidal neurons in the ORB was particularly low in cortical layers V and III, the origin of prefronto-striatal and prefronto-cortical and prefronto-amygdalar projections. Degeneration of neurons furnishing these projections might be related to the white matter hyperintensities previously observed. Neuronal pathology seems to be more severe in elderly than in younger subjects with MDD.  相似文献   

19.
Connections of layer III pyramidal neurons to corticospinal neurons of layer V and corticothalamic neurons of layer VI in the rat primary motor cortex were examined in brain slices by combining intracellular staining with Golgi-like retrograde labeling of corticofugal neurons. Forty layer III pyramidal neurons stained intracellularly were of the regular-spiking type, showed immunoreactivity for glutaminase, and emitted axon collaterals arborizing locally in layers II/III and/or V. Nine of them were reconstructed for morphologic analysis; 15.2% or 3.8% of varicosities of axon collaterals of the reconstructed neurons were apposed to dendrites of corticospinal or corticothalamic neurons, respectively. By confocal laser scanning and electron microscopy, some of these appositions were revealed to make synapses. These findings suggest that corticospinal neurons receive information from the superficial cortical layers four times more frequently than corticothalamic neurons. The connections were further examined by intracellular recording of excitatory postsynaptic potential (EPSP) that were evoked in layer V and layer VI pyramidal neurons by stimulation of layer II/III. EPSPs evoked in layer V pyramidal neurons showed short and constant onset latencies, suggesting their monosynaptic nature. In contrast, most EPSPs evoked in layer VI pyramidal neurons had long onset latencies, showed double-shock facilitation of onset latency, and were largely suppressed by an N-methyl-D-aspartic acid receptor blocker, suggesting that they were polysynaptic. The results suggest that information from the superficial cortical layers is transferred directly and efficiently to corticospinal neurons in layer V and thereby exerts an important influence on cortical motor output. Corticothalamic neurons are, in contrast, considered relatively independent of, or indirectly related to, information processing of the superficial cortical layers.  相似文献   

20.
Past observations revealed a relationship between mammalian retinal ganglion cell distribution and cortical and subcortical projection of the rabbit's visual field. High ganglion cell density sectors of the retina claimed larger areas in their cortical and subcortical projections (with a high magnification factor) than retinal areas with low ganglion cell density. In this study, it was observed that distribution of nonpyramidal neurons in laminae IV and VI of the pigmented rabbit's visual cortex was not uniform. The nonuniformity in layer IV roughly followed the variation in the magnification factor in the cortical projection of the animal's visual field. The highest density of nonpyramidal neurons in layer IV was observed in the cortical area with the highest magnification factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号