首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pinecone-based biomass carbon (PC) is a potential anode material for potassium-ion batteries because it is abundant, cheap, renewable, and easy to obtain. However, because of inferior kinetics and the effects of volume expansion due to the large radius of the K+ ion, it does not meet commercial performance requirements. In this study, nitrogen-doped PC (NPC) was prepared by carbonization in molten ZnCl2 with urea as a nitrogen source. A strategy based on synergistic effects between N doping and ZnCl2 molten salt was used to produce a hierarchically porous pie-like NPC with abundant defects and active sites and an enlarged interlayer distance—properties that enhance K+ adsorption, promote K+ intercalation/diffusion, and reduce the effects of volume expansion. This NPC exhibited a high reversible capacity (283 mA h g−1 at 50 mA g−1) and superior rate performance and cyclic stability (110 mA h g−1 after 1000 cycles at 5 A g−1), demonstrating its potential for use in potassium-ion batteries.

Pinecone-based biomass carbon (PC) is a potential anode material for potassium-ion batteries because it is abundant, cheap, renewable, and easy to obtain.  相似文献   

2.
Herein, we present a simple and rapid method to synthesize porous silicon/carbon microtube composites (PoSi/CMTs) by adopting a unique configuration of acid etching solution. The CMTs can act as both conductive agent and buffer for Si volume change during the charge and discharge process. The highly reversible capacity and excellent rate capability can be ascribed to the structure, where porous silicon powders are wrapped by a network of interwoven carbon microtubes. The composites show specific capacities of more than 1712 mA h g−1 at a current density of 100 mA g−1, 1566 mA h g−1 at 200 mA g−1, 1407 mA h g−1 at 400 mA g−1, 1177 mA h g−1 at 800 mA g−1, 1107 mA h g−1 at 1000 mA g−1, 798 mA hg−1 at 2000 mA g−1, and 581 mA h g−1 at 3000 mA g−1 and maintain a value of 1127 mA h g−1 after 100 cycles at a current density of 200 mA g−1. Electrochemical impedance spectroscopy (EIS) measurements prove that charge transfer resistance of PoSi/CMT composites is smaller than that of pure PoSi. In this study, we propose a quick, economical and feasible method to prepare silicon-based anode materials for lithium-ion batteries.

We added additives to the acid etching solution and prepared the silicon/carbon microtubes composites using a simple and fast method.  相似文献   

3.
Nitrogen enriched carbon nanofibers have been obtained by one-step carbonization/activation of PAN-based nanofibers with various concentrations of melamine at 800 °C under a N2 atmosphere. As synthesised carbon nanofibers were directly used as electrodes for symmetric supercapacitors. The obtained PAN-MEL fibers with 5% melamine stabilised at 280 °C and carbonized at 800 °C under a nitrogen atmosphere showed excellent electrochemical performance with a specific capacitance of up to 166 F g−1 at a current density of 1A g−1 using 6 M KOH electrolyte and a capacity retention of 109.7% after 3000 cycles. It shows a 48% increase as compared to pristine carbon nanofibers. Two electrode systems of the CNFM5 sample showed high energy densities of 23.72 to 12.50 W h kg−1 at power densities from 400 to 30 000 W kg−1. When used as an anode for Li-ion battery application the CNFM5 sample showed a high specific capacity up to 435.47 mA h g−1 at 20 mA g−1, good rate capacity and excellent cycling performance (365 mA h g−1 specific capacity even after 200 cycles at 100 mA g−1). The specific capacity obtained for these nitrogen enriched carbon nanofibers is higher than that for pristine carbon nano-fibers.

Nitrogen enriched carbon nanofibers have been obtained by one-step carbonization/activation of PAN-based nanofibers with various concentrations of melamine at 800 °C under a N2 atmosphere.  相似文献   

4.
Salen-formaldehyde (SF) resin polymer spheres were synthesized by the Stöber method from 4,4′-dihydroxysalen (N,N′-bis-(4-hydroxysalicylidene)-ethylenediamine; a tetradentate N2O2 Schiff base ligand) and formaldehyde. The salen precursor was prepared by condensation of ethylenediamine with 2,4-dihydroxybenzaldehyde in methanol. The SF resin colloidal spheres were also prepared by using Pluronic F127 and ammonia as a porogenic agent and catalyst, respectively (SF-P). In addition, corresponding Mn(ii)-coordinated polymer spheres of the SF-P were synthesized (SF-P-Mn(ii)). Corresponding monodispersed carbon spheres of all of the abovementioned samples were also obtained by pyrolysis technique. All of the products were characterized with conventional microscopic and spectroscopic techniques, as well as other physical methods such as BET analysis. It was found that carbonization of the SF resin spheres results in carbon spheres with specific surface areas in the range of 499–528 m2 g−1 and average pore sizes in the range of 2.58–3.08 nm. Nitrogen content of the SF-MWHT (obtained hydrothermally in a methanol/water mixture), and SF-P-C@Mn (obtained from carbonization of SF-P-Mn(ii)) samples were as high as 27.5 wt% and 35.02 wt%, respectively. Finally, a glassy carbon electrode (GCE) modified with SF-P-C@Mn (SF-P-C@Mn/GCE) was prepared and its electrocatalytic activity was evaluated for oxygen reduction reaction (ORR) by linear sweep voltammetry (LSV). The LSV results showed that the SF-P-C@Mn/GCE has a higher current density and a lower negative potential in the ORR compared to GCE.

Stöber synthesis of salen-formaldehyde resin polymer- and carbon spheres.  相似文献   

5.
Diatomaceous earth (DE) is a naturally occurring silica source constituted by fossilized remains of diatoms, a type of hard-shelled algae, which exhibits a complex hierarchically nanostructured porous silica network. In this work, we analyze the positive effects of reducing DE SiO2 particles to the sub-micrometer level and implementing an optimized carbon coating treatment to obtain DE SiO2 anodes with superior electrochemical performance for Li-ion batteries. Pristine DE with an average particle size of 17 μm is able to deliver a specific capacity of 575 mA h g−1 after 100 cycles at a constant current of 100 mA g−1, and reducing the particle size to 470 nm enhanced the reversible specific capacity to 740 mA h g−1. Ball-milled DE particles were later subjected to a carbon coating treatment involving the thermal decomposition of a carbohydrate precursor at the surface of the particles. Coated ball-milled silica particles reached stable specific capacities of 840 mA h g−1 after 100 cycles and displayed significantly improved rate capability, with discharge specific capacities increasing from 220 mA h g−1 (uncoated ball-milled SiO2) to 450 mA h g−1 (carbon coated ball-milled SiO2) at 2 A g−1. In order to trigger SiO2 reactivity towards lithium, all samples were subjected to an electrochemical activation procedure prior to electrochemical testing. XRD measurements on the activated electrodes revealed that the initial crystalline silica was completely converted to amorphous phases with short range ordering, therefore evidencing the effective role of the activation procedure.

Diatomaceous earth SiO2 anodes with superior electrochemical performance are obtained by ball milling, carbon coating and electrochemical activation of SiO2 particles.  相似文献   

6.
Rechargeable aqueous zinc ion batteries (ZIBs), owing to their low-cost zinc metal, high safety and nontoxic aqueous electrolyte, have the potential to accelerate the development of large-scale energy storage applications. However, the desired development is significantly restricted by cathode materials, which are hampered by the intense charge repulsion of bivalent Zn2+. Herein, the as-prepared VO2(A) hollow spheres via a feasible hydrothermal reaction exhibit superior zinc ion storage performance, large reversible capacity of 357 mA h g−1 at 0.1 A g−1, high rate capability of 165 mA h g−1 at 10 A g−1 and good cycling stability with a capacity retention of 76% over 500 cycles at 5 A g−1. Our study not only provides the possibility of the practical application of ZIBs, but also brings a new prospect of designing high-performance cathode materials.

VO2(A) hollow spheres exhibit superior zinc ion storage performance, large reversible capacity of 357 mA h g−1 at 0.1 A g−1, and good cycling stability with a capacity retention of 76% over 500 cycles at 5 A g−1  相似文献   

7.
A chemical process was developed to prepare N-doped micro-nano carbon spheres with multi-scale pore structures via carbonization of N-PF/PMMA interpenetrating polymer networks, which contain melamine resin as the nitrogen source, PF as the carbon source, and polymethylmethacrylate (PMMA) as the pore-former. The N-content of N-doped micro-nano carbon spheres was controlled by adjusting the mass ratio of melamine and phenol before polymerization. The N-doped micro-nano carbon spheres as electrode materials possess appropriate pore size distribution, higher specific surface area (559 m2 g−1) and consistently dispersed nitrogen atoms with adjustable doping content. These distinct characteristics endow the prospective electrode materials with excellent performance in electrochemical capacitors. In particular, N-CS-IPN-4 exhibits the highest specific capacitance of 364 F g−1 at 0.5 A g−1 in 6 M KOH aqueous electrolyte in a three-electrode system. It also possesses superior rate capability (57.7% retention at current densities ranging from 0.5 to 50 A g−1) and excellent cycling performance at 2 A g−1 (100% retention after 10 000 cycles). All these results confirm that the N-doped micro-nano carbon spheres are promising electrochemical capacitor materials, which possesses the advantages of simple preparation procedure, multi-scale pore structures, higher specific surface areas, easy adjustment of N-content and excellent electrochemical properties.

The N-doped micro-nano carbon spheres with multi-scale pore structures was prepared via carbonization of N-PF/PMMA interpenetrating polymer networks, which contain melamine resin as nitrogen source, PF as carbon source, and PMMA as pore-former.  相似文献   

8.
Nowadays, designing heteroatom-doped porous carbons from inexpensive biomass raw materials is a very attractive topic. Herein, we propose a simple approach to prepare heteroatom-doped porous carbons by using nettle leaves as the precursor and KOH as the activating agent. The nettle leaf derived porous carbons possess high specific surface area (up to 1951 m2 g−1), large total pore volume (up to 1.374 cm3 g−1), and high content of nitrogen and oxygen heteroatom doping (up to 17.85 at% combined). The obtained carbon as an electrode for symmetric supercapacitors with an ionic liquid electrolyte can offer a superior specific capacitance of 163 F g−1 at 0.5 A g−1 with a capacitance retention ratio as high as 67.5% at 100 A g−1, and a low capacitance loss of 8% after 10 000 cycles. Besides, the as-built supercapacitor demonstrates a high specific energy of 50 W h kg−1 at a specific power of 372 W kg−1, and maintains 21 W h kg−1 at the high power of 40 kW kg−1. Moreover, the resultant carbon as a Li-ion battery anode delivers a high reversible capacity of 1262 mA h g−1 at 0.1 A g−1 and 730 mA h g−1 at 0.5 A g−1, and maintains a high capacity of 439 mA h g−1 after 500 cycles at 1 A g−1. These results demonstrate that the nettle leaf derived porous carbons offer great potential as electrodes for advanced supercapacitors and lithium ion batteries.

Nettle leaf derived nitrogen and oxygen dual-doped porous carbons exhibit great potential as anodes for high performance supercapacitors and lithium ion batteries.  相似文献   

9.
While Li2MnO3 as an over-lithiated layered oxide (OLO) shows a significantly high reversible capacity of 250 mA h g−1 in lithium-ion batteries (LIBs), it has critical issues of poor cycling performance and deteriorated high rate performance. In this study, modified OLO cathode materials for improved LIB performance were obtained by heating the as-prepared OLO at different temperatures (400, 500, and 600 °C) in the presence of polyvinylpyrrolidone (PVP) under an N2 atmosphere. Compared to the as-prepared OLO, the OLO sample heated at 500 °C with PVP exhibited a high initial discharge capacity of 206 mA h g−1 and high rate capability of 111 mA h g−1 at 100 mA g−1. The superior performance of the OLO sample heated at 500 °C with PVP is attributed to an improved electronic conductivity and Li+ ionic motion, resulting from the formation of the graphitic carbon structure and increased Mn3+ ratio during the decomposition of PVP.

The modified OLO cathode materials for improved LIB performance were obtained by heating the as-prepared OLO in the presence of polyvinylpyrrolidone (PVP) under an N2 atmosphere.  相似文献   

10.
We report an environmentally friendly strategy for the synthesis of Fe3C/Fe/graphitic carbon based on hydrothermal carbonization and graphitization of carbon spheres with potassium ferrate (K2FeO4) at 800 °C. The obtained sample consisting of Fe3C/Fe nanoparticles and graphitic carbon (FC-1-8) delivered an enhanced pseudocapacitance of 428.0 F g−1 at a current density of 1 A g−1. After removal of the Fe3C/Fe electroactive materials, the graphitic carbon (FC-1-8-HCl) possessed a large specific surface area (SSA) up to 2813.6 m2 g−1 with a capacity of 243.3 F g−1 at 1 A g−1, far outweighing the other amorphous carbon electrodes of FC-0-8 (carbon spheres annealed at 800 °C without the treatment of K2FeO4). The graphitic material with a porous structure could offer more electroactive sites and improved conductivity of the sample. This method provided guidelines for the synthesis of superior performance supercapacitors with synchronous graphitic carbon and electroactive species.

We report an environmentally friendly strategy for the synthesis of Fe3C/Fe/graphitic carbon based on hydrothermal carbonization and graphitization of carbon spheres with potassium ferrate (K2FeO4) at 800 °C.  相似文献   

11.
The C@GQD composite was prepared by the combination of metal–organic framework (ZIF-8)-derived porous carbon and graphene quantum dots (GQDs) by a simple method. The resulting composite has a high specific surface area of 668 m2 g−1 and involves numerous micro- and mesopores. As a supercapacitor electrode, the material showed an excellent double-layer capacitance and a high capacity retention of 130 F g−1 at 2 A g−1. The excellent long-term stability was observed even after ∼10 000 charge–discharge cycles. Moreover, the composite as an anode material for a lithium-ion battery exhibited a good reversible capacity and outstanding cycle stability (493 mA h g−1 at 100 mA g−1 after 200 cycles). The synergistic effect of a MOF-derived porous carbon and GQDs was responsible for the improvement of electrochemical properties.

The C@GQD composite was prepared by the combination of metal–organic framework (ZIF-8)-derived porous carbon and graphene quantum dots (GQDs) by a simple method.  相似文献   

12.
Tin-based anode materials have aroused interest due to their high capacities. Nevertheless, the volume expansion problem during lithium insertion/extraction processes has severely hindered their practical application. In particular, nano–micro hierarchical structure is attractive with the integrated advantages of nano-effect and high thermal stability of the microstructure. Herein, hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanospheres were successfully synthesized by a facile glucose-assisted hydrothermal method, in which the glucose served as both morphology-control agent and carbon source. The hierarchical Sn/SnO nanosheets exhibit excellent electrochemical performances owing to the unique configuration and carbon coating. Specifically, a reversible high capacity of 2072.2 mA h g−1 was observed at 100 mA g−1. Further, 964.1 mA h g−1 after 100 cycles at 100 mA g−1 and 820.4 mA h g−1 at 1000 mA g−1 after 300 cycles could be obtained. Encouragingly, the Sn/SnO also presents certain sodium ion storage properties. This facile synthetic strategy may provide new insight into fabricating high-performance Sn-based anode materials combining the advantages of both structure and carbon coating.

Hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanospheres with promising lithium and sodium storage performances.  相似文献   

13.
In this study, N-doped mesopore-dominant carbon (NMC) materials were prepared using bio-waste tortoise shells as a carbon source via a one-step self-activation process. With intrinsic hydroxyapatites (HAPs) as natural templates to fulfill the synchronous carbonization and activation of the precursor, this highly efficient and time-saving method provides N-doped carbon materials that represent a large mesopore volume proportion of 74.59%, a high conductivity of 4382 m S−1, as well as larger defects, as demonstrated by Raman and XRD studies. These features make the NMC exhibit a high reversible lithium-storage capacity of 970 mA h g−1 at 0.1 A g−1, a strong rate capability of 818 mA h g−1 at 2 A g−1, and a good capacity of 831 mA h g−1 after 500 cycles at 1 A g−1. This study provides a highly efficient and feasible method to prepare renewable biomass-derived carbons as advanced electrode materials for the application of energy storage.

A hydroxyapatite-induced self-activation method has been used to prepare nitrogen-doped mesopore-dominant carbon. The carbon has abundant macro/mesopores, high conductivity, and favorable defects and exhibited high-performance in LIBs.  相似文献   

14.
Thanks to their intrinsic merits of low cost and natural abundance, potassium-ion batteries have drawn intense interest and are regarded as a possible replacement for lithium-ion batteries. The larger radius of potassium, however, provides slow mobility, which normally leads to sluggish diffusion of host materials and eventual expansion of volume, typically resulting in electrode failure. To address these issues, we design and synthesize an effective micro-structure with Co9S8 nanoparticles segregated in carbon fiber utilizing a concise electrospinning process. The anode delivers a high K+ storage capacity of 721 mA h g−1 at 0.1 A g−1 and a remarkable rate performance of 360 mA h g−1 at a high current density of 3 A g−1. A small charge-transfer resistance and a high pseudocapacitive contribution that benefit fast potassium ion migration are indicated by quantitative analysis. The outstanding electrochemical performance can be attributed to the distinct architecture design facilitating high active electrode–electrolyte area and fast kinetics as well as controlled volume expansion.

Co9S8@carbon nanofibers with boosted highly active electrode–electrolyte area, fast kinetics and controlled volume expansion show an excellent cycling and rate performance in potassium ion batteries.  相似文献   

15.
SnO2/CNTs composites with core-tubule structure are prepared by a facile wet chemical method. The investigation of electrochemical characteristics of the SnO2/CNTs composites shows that the composites exhibit some advantages, such as stable core-tubule structure, small particle size of SnO2, low electron-transfer resistance and faster lithium ion migration speed. The final product synthesized under optimized conditions can release a stable capacity of about 743 mA h g−1 after 100 cycles at the current density of 0.4 A g−1, 598 mA h g−1 after 500 cycles at the current density of 4 A g−1. Even at a super high current density of 8 A g−1, the composite can still deliver a steady capacity of 457 mA h g−1, and the discharge capacity can be restored to 998 mA h g−1 when current density is decreased to 0.4 A g−1.

SnO2/CNTs composites with core-tubule structure are prepared by a facile wet chemical method.  相似文献   

16.
The electrochemical properties of ZrV2O7 (ZVO) and ZVO@C were investigated in lithium ion batteries. The first charge (or discharge) specific capacity of ZVO and ZVO@C are 279 mA h g−1, 392 mA h g−1, 208 mA h g−1 and 180 mA h g−1 for 0%, 3%, 5% and 9% of carbon, respectively. The capacity retention rates (with 0% 3%, 5% and 9% carbon content) are 33.0%, 52.5%, 56.4% and 76.1% after ten cycles, respectively. The low inner resistance relates to the good contact of the electrode rather than the high content of carbon, and the specific capacity retention rate increases with the increase of the carbon content.

The carbon content in the electrode is not the only factor that determines the internal resistance. The high capacity of lithium ion batteries is related to high conductivity. The lattice is stable (expect for shrinkage) when Li ions insert into ZVO.  相似文献   

17.
N/S co-doped porous carbon spheres (NSPCSs) were prepared by a simple ultrasonic spray pyrolysis (USP) using the mixed solution of coal oxide and l-cysteine, and without a subsequent activation process. The surface properties of carbon materials have been successfully modified by the concurrent incorporation of N and S. So the capacitive performance of NSPCSs was greatly enhanced. It is used as a supercapacitor electrode to achieve a high specific capacitance of 308 F g−1 at a current density of 1 A g−1 and 90.2% capacitance retention even after 10 000 cycles at 5 A g−1. These numerical results show that the supercapacitors based on coal-based carbon materials have great potential in high performance electrochemical energy storage.

N/S co-doped porous carbon spheres were prepared using one step strategy for high performance supercapacitors.  相似文献   

18.
The typical lithium-ion-battery positive electrode of “lithium-iron phosphate (LiFePO4) on aluminum foil” contains a relatively large amount of inactive materials of 29 wt% (22 wt% aluminum foil + 7 wt% polymeric binder and graphitic conductor) which limits its maximum specific capacity to 120.7 mA h g−1 (71 wt% LiFePO4) instead of 170 mA h g−1 (100 wt% LiFePO4). We replaced the aluminum current-collector with a multi-walled carbon nanotube (MWCNT) network. We optimized the specific capacity of the “freestanding MWCNT-LiFePO4” positive electrode. Through the optimization of our unique surface-engineered tape-cast fabrication method, we demonstrated the amount of LiFePO4 active materials can be as high as 90 wt% with a small amount of inactive material of 10 wt% MWCNTs. This translated to a maximum specific capacity of 153 mA h g−1 instead of 120.7 mA h g−1, which is a significant 26.7% gain in specific capacity compared to conventional cathode design. Experimental data of the freestanding MWCNT-LiFePO4 at a low discharge rate of 17 mA g−1 show an excellent specific capacity of 144.9 mA h g−1 which is close to its maximum specific capacity of 153 mA h g−1. Furthermore, the freestanding MWCNT-LiFePO4 has an excellent specific capacity of 126.7 mA h g−1 after 100 cycles at a relatively high discharge rate of 170 mA g−1 rate.

We optimized the specific capacity of freestanding MWCNT-LiFePO4 positive electrode. We demonstrated as high (low) as 90 wt% LiFePO4 active material (10 wt% MWCNTs inactive material). This corresponded to a maximum specific capacity of 153 mA h g−1.  相似文献   

19.
Carbon nanofibers (CNFs) with excellent electrochemical performance represent a novel class of carbon nanostructures for boosting electrochemical applications, especially sustainable electrochemical energy conversion and storage applications. This work builds on an earlier study where the CNFs were prepared from a waste biomass (walnut shells) using a relatively simple procedure of liquefying the biomass, and electrospinning and carbonizing the fibrils. We further improved the mass ratio of the liquefying process and investigated the effects of the high temperature carbonization process at 1000, 1500 and 2000 °C, and comprehensively characterized the morphology, structural properties, and specific surface area of walnut shell-derived CNFs; and their electrochemical performance was also investigated as electrode materials in Li-ion batteries. Results demonstrated that the CNF anode obtained at 1000 °C exhibits a high specific capacity up to 271.7 mA h g−1 at 30 mA g−1, good rate capacity (131.3 and 102.2 mA h g−1 at 1 A g−1 and 2 A g−1, respectively), and excellent cycling performance (above 200 mA h g−1 specific capacity without any capacity decay after 200 cycles at 100 mA g−1). The present work demonstrates the great potential for converting low-cost biomass to high-value carbon materials for applications in energy storage.

Carbon nanofibers (CNFs) with excellent electrochemical performance represent a novel class of carbon nanostructures for boosting electrochemical applications, especially sustainable electrochemical energy conversion and storage applications.  相似文献   

20.
“Turning waste into wealth” and sustainable development are bright themes of modern society. Semi-coke is mainly made up of coal but contains around 15 wt% impurities. Nevertheless, semi-coke powders with sizes smaller than 3 mm generally cannot be used in metallurgical industries and are abandoned as solid waste, resulting in environmental contamination. Herein, boron doping followed by facile one-step heat treatment in the range of 2100 to 2700 °C has been carried out to process semi-coke powder waste. Thereby, the semi-coke powders can be graphitized to give sample carbon content values of over 95%. The best product so-prepared delivered reversible capacities of 351.5 mA h g−1 at 0.1C, and 322 mA h g−1 at 1C. Surprisingly, the capacity was maintained at 314.3 mA h g−1 after 300 cycles at 1C, giving a decline rate of only 2.4% and presenting superior rate performance.

The processed SC can deliver a capacity of 314.3 mA h g−1 after 300 cycles at 1C with a decline rate of 2.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号