首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Pascual M  Pozas E  Soriano E 《Hippocampus》2005,15(2):184-202
In examining the role of Class 3 secreted semaphorins in the prenatal and postnatal development of the septohippocampal pathway, we found that embryonic (E14-E16) septal axons were repelled by the cingulate cortex and the striatum. We also found that the hippocampus exerts chemorepulsion on dorsolateral septal fibers, but not on fibers arising in the medial septum/diagonal band complex, which is the source of septohippocampal axons. These data indicate that endogenous chemorepellents prevent the growth of septal axons in nonappropriate brain areas and direct septohippocampal fibers to the target hippocampus. The embryonic septum expressed np-1 and np-2 mRNAs, and the striatum and cerebral cortex expressed sema 3A and sema 3F. Experiments with recombinant semaphorins showed that Sema 3A and 3F, but not Sema 3C or 3E, induce chemorepulsion of septal axons. Sema 3A and 3F also induce growth cone collapse of septal axons. This indicates that these factors are endogenous cues for the early guidance of septohippocampal fibers, including cholinergic and gamma-aminobutyric acid (GABA)ergic axons, during the embryonic stages. During postnatal stages, when target cell selection and synaptogenesis take place, np-1 and np-2 were expressed by septohippocampal neurons at all ages tested. In the target hippocampus, pyramidal and granule cells expressed sema 3E and sema 3A, whereas most interneurons expressed sema 3C, but few expressed sema 3E or 3A. Combined tracing and expression studies showed that GABAergic septohippocampal fibers terminated preferentially onto sema 3C-positive interneurons. In contrast, cholinergic septohippocampal fibers terminated onto sema 3E and sema 3A-expressing pyramidal and granule cells. The data suggest that Class 3 secreted semaphorins are involved in postnatal development. Moreover, because GABAergic and cholinergic axons terminate onto neurons expressing distinct, but overlapping, patterns of semaphorin expression, semaphorin functions may be regulated by different signaling mechanisms at postnatal stages.  相似文献   

2.
Elevating target-derived levels of nerve growth factor (NGF) in peripheral organs of postnatal mammals is known to enhance the survival of postganglionic sympathetic neurons and to promote the terminal arborization of sympathetic axons within such NGF-rich target tissues. Although increasing levels of NGF in the central nervous system can ameliorate cholinergic function of damaged and aged neurons of the medial septum, it remains undetermined whether the postnatal development of this neuronal population and their projections that innervate the hippocampus are likewise affected by elevated levels of target-derived NGF. To address this question, the cholinergic septohippocampal pathway was examined in adult transgenic mice which display elevated levels of NGF protein production in the dorsal hippocampus during postnatal development. Adult transgenic mice possessed a cholinergic population of septal neurons ≈ 15% larger than that seen in age-matched control animals. Despite increased numbers of cholinergic septal neurons, as well as elevated levels of hippocampal NGF, the density of cholinergic septal axons in the outer molecular layer of the hippocampal dentate gyrus of adult transgenic animals was comparable with that found in wild-type controls. These results reveal that elevating levels of target-derived NGF during postnatal development can increase the population size of the cholinergic septal neurons but does not alter their pattern of afferent innervation in the hippocampus of adult mice.  相似文献   

3.
We analyzed the development of the hippocamposeptal projection and the morphology of the neurons giving rise to this projection. The fluorescent tracer Dil was injected into the septal region or the hippocampus in fixed brains of embryonic and early postnatal rats. Anterogradely labeled hippocampal axons first reached the septal region at E16. They ran along the midline of the brain, thereby approaching the medial septum. Axons to the lateral septum were first observed around E18/19. The lateral septum is partly innervated by collaterals of axons that travel to the medial septum. The projection to the lateral septal nuclei becomes more massive during early postnatal stages, whereas that to the medial septum becomes smaller. Cells in the medial septum retrogradely labeled by injection into the hippocampus were first observed at E18. Thus, the hippocamposeptal projection is established earlier than the septohippocampal projection. The first hippocampal projection neurons are nonpyramidal neurons that appear to pioneer the pathway to the septum. Pyramidal cell axons follow this first cohort of axons into the medial septum. Pyramidal cells could be retrogadely labeled from the medial septum during the perinatal period but then diminished in number. At P10, only nonpyramidal cells were labeled by medial septal injections. This indicates that the pyramidal component of this projection is transient and is removed shortly after birth. However, as is known from ther studies, hippocampal pyramidal cells give rise to a powerful projection to the lateral septum in adult animals. Our results show that there is a considerable remodeling of the projection from the hippocampus to the septum during ontogenetic development. © 1995 Willy-Liss, Inc.  相似文献   

4.
In the present study, we have investigated the developmental expression of the transmitter-synthesizing enzymes choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD) in rat medial septal neurons by using in situ hybridization histochemistry. In addition, we have employed immunostaining for ChAT and the calcium-binding protein parvalbumin, known to be contained in septohippocampal GABAergic neurons. A large number of GAD67 mRNA-expressing neurons were already observed in the septal complex on embryonic day (E) 17, the earliest time point studied. During later developmental stages, there was mainly an increase in the intensity of labeling. Neurons expressing ChAT mRNA were first recognized at E 20, and their number slowly increased during postnatal development of the septal region. The adult pattern of ChAT mRNA-expressing neurons was observed around postnatal day (P) 16. By using a monoclonal ChAT antibody, the first immunoreactive cells were not seen before P 8. Similarly, the first weakly parvalbumin-immunoreactive neurons were seen in the septal complex by the end of the 1st postnatal week. These results indicate that in situ hybridization histochemistry may be an adequate method to monitor the different development of transmitter biosynthesis in cholinergic and GABAergic septal neurons. Moreover, the late onset of ChAT mRNA expression would be compatible with a role of target-derived factors for the differentiation of the cholinergic phenotype. © 1996 John Wiley-Liss, Inc.  相似文献   

5.
6.
We have found previously that brain IL-2 receptors are enriched in the hippocampal formation, and that loss of this cytokine results in cytoarchitectural alterations in the hippocampus and septum and related behavioral changes in IL-2 knockout (IL-2 KO) mice. These alterations included decreased cholinergic somata in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) and decreased distance across the infrapyramidal (IP) granule cell layer (GCL) of the dentate gyrus (DG). To extend our previous findings, several experiments were conducted comparing IL-2 KO mice and wild-type littermates to determine (1) whether the GABAergic projection neurons of IL-2 KO mice in this region were also affected; (2) if the reduction in septal cholinergic projection neurons found in adult IL-2 KO mice is present at weaning (and prior to the development of peripheral autoimmune disease); and (3) if loss of IL-2 may result in changes in the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), involved in maintenance of hippocampal neurons. No differences in GABAergic neurons in the MS/vDB were found in adult mice, and the reduction in cholinergic neurons seen in adult IL-2 KO mice was not found in animals at postnatal day 21. The number of neurons in the IP-GCL was also significantly reduced. Compared to wild-type mice, IL-2 KO mice had significantly reduced concentration of BDNF protein and increased concentrations of NGF. These data suggest that the septohippocampal neuronal loss in IL-2 KO mice is selective for the cholinergic neurons and appears to be due to a failure in neuronal maintenance/survival that may be, in part, associated with changes in neurotrophins.  相似文献   

7.
Hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from the young rat hippocampus, enhances the cholinergic phenotype development of the medial septal nucleus in vitro. In this study, we examined the HCNP-antigen distribution and the age-related changes in the number of positive cells in the hippocampus (obtained at autopsy from 74 subjects with no known neurological disorders). Immunohistochemical assay revealed that the immunopositive cells were GABAergic neurons and oligodendrocytes. They were first identified in the fetus at around 25 to 30 weeks and their number increased rapidly with advancing postconceptional age to reach maximal at the perinatal stage and in early postnatal life; it then decreased to the adult level by 10 years old. These results suggest that HCNP-related antigen may play important roles in the development and/or differentiation of the human hippocampus.  相似文献   

8.
The presence of interconnections between cholinergic and parvalbumin (PARV)-containing gamma aminobutyric acid (GABA)ergic septohippocampal projection neurons is still a matter of debate. To search for contacts of cholinergic collateral axon terminals in the septal-diagonal band region the immunotoxin 192IgG-saporin was applied, which was proved to selectively destroy cholinergic basal forebrain neurons. Seven and 10 days after administration of the immunotoxin, choline acetyltransferase immunoreactivity had disappeared, and numerous neuronal somata and dendrites as well as axonal terminals revealed characteristics of electron-lucent degeneration. Electron-dense degeneration was never observed in dendrites and synaptic boutons. Degenerating terminals were found in contact with PARV-immunopositive and PARV-negative neurons. Because only cholinergic cells were degenerating, the terminals should be collaterals from cholinergic neurons. In addition to such contacts, PARV-immunoreactive boutons were seen in contact with PARV-positive and PARV-negative cells, but were not identified at degenerating postsynaptic profiles. As suggested in other studies, cholinergic boutons contacting GABAergic PARV-containing septal projection cells may influence hippocampal theta activity. Furthermore, multiple synaptic connections of both neuronal populations forming the septohippocampal pathway may contribute to their high rate of survival after fimbria-fornix transection. J. Neurosci. Res. 54:248–253, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The effects of perinatal lead exposure on choline acetyltransferase-immunoreactive (ChAT-IR) cell counts in the medial septum and AChE-positive fiber counts in the hippocampus were examined in relation to changes in cholinergic markers in the septohippocampal pathway of the rat. Maternal exposure to 0.2% lead acetate in drinking water from gestational day 16 through weaning at post-natal day 21 (P21) induced in the offspring a 30% reduction in septal ChAT activity and a 20% reduction in ChAT-IR cell profile counts in the medial septum/vertical diagonal band (MS/vDB). These changes were seen as early as P7, persisted through 2 months post-exposure (P81), and were followed by recovery of ChAT activity but not the ChAT-IR cell numbers, at 3 months post-exposure (P112). The loss of ChAT activity and ChAT-IR neurons in the septum was temporally associated with a reduction of ChAT activity (30%), hemicholinium-3 (HC-3) binding (40%), and AChE-positive fiber counts (13–15%) in the hippocampus. The hippocampal ChAT activity and AChE-positive fiber counts returned to control levels by P112 whereas HC-3 binding was restored to normal levels by P200. These results indicate that perinatal, low-level lead exposure induces loss of septohippocampal cholinergic projection neurons in neonate animals, resulting in a deficit in hippocampal cholinergic innervation that persists into young adulthood. The disruption of cholinergic septohippocampal system may be an important factor in lasting cognitive impairments associated with early Pb exposure.  相似文献   

10.
The septohippocampal pathway contains two separate components: the cholinergic and the GABAergic. Whereas cholinergic fibers terminate on many hippocampal cell types, GABAergic septohippocampal fibers selectively contact the cell bodies of hippocampal interneurons. We examined whether the GABAergic septohippocampal system was altered in reeler mice. First, we found that both components of the septohippocampal pathway in mice present a distribution and target-cell specificity similar to that described in rats. We also show that GABAergic septohippocampal axons terminate on subpopulations of interneurons expressing reelin, which may implicate this extracellular matrix protein in the targeting of septohippocampal axons. We thus examined the septohippocampal pathway in reeler mice defective in Reelin. In contrast to wild-type animals, reeler mice displayed an ectopic location of both cholinergic and GABAergic fibers, which accumulate close to the hippocampal fissure. Despite their altered distribution, GABAergic septal axons maintain their target-cell selectivity innervating exclusively the perisomatic region of hippocampal interneurons. Thus, as in wild type, GABAergic septal fibers formed complex baskets around the cell body of GAD-positive hippocampal neurons in reeler mice. In addition, we found that reeler hippocampi have an altered distribution of hippocampal interneurons expressing PARV or CALB, many of which are located close to the hippocampal fissure. We thus conclude that although reeler mice have an altered distribution of hippocampal interneurons, GABAergic septohippocampal axons nevertheless terminate on their specific target interneurons. Thus, whereas target layer termination of septal fibers is severely impaired in reeler mice, our data indicate that the cell-specific targeting of GABAergic septohippocampal axons is governed by Reelin-independent signals.  相似文献   

11.
Volkensin, a ribosome-inactivating toxic lectin which has been proposed as a 'suicide transport' agent in the CNS, was unilaterally injected in the rat dorsal hippocampus at a dose of 1.2 ng. Three to 5 days after the injection, degenerating neurons were observed at the electron microscope in the medial septum-diagonal band area ipsilateral to the injection. Ten days after the injection, the number of pyramidal neurons in the CA3 region of the contralateral hippocampus, which are the major source of hippocampal commissural fibers, was obviously decreased. At the same survival time, the number of choline acetyltransferase (ChAT) immunoreactive neurons in the ipsilateral medial septum-diagonal band area was moderately but significantly decreased. These neurons are known to be the major source of the septohippocampal cholinergic projection. Concomitantly, microchemical assays of ChAT levels revealed a 25% decrease of enzyme activity in the medial septum-diagonal band area ipsilateral to the injection. This was accompanied by a 33% decrease of ChAT in the ipsilateral ventral hippocampus which was interpreted to be due, at least in part, to the degeneration of cholinergic septal neurons projecting to both the dorsal and the ventral hippocampus. Taken together, these results provide clear evidence that volkensin is taken up by nerve terminals in the injected area of the brain and retrogradely transported to the cell bodies originating the projection, which are killed by the toxin. The usefulness of the strategy of 'suicide transport' in the CNS is, therefore, confirmed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The two neuronal populations that have been typically investigated in the septum use acetylcholine and GABA as neurotransmitters. The existence of noncholinergic, non-GABAergic, most likely glutamatergic septal neurons has recently been reported. However, their morphological characteristics, numbers, distribution, and connectivity have not been determined. Furthermore, the projection of septal glutamatergic neurons to the hippocampus has not been characterized. To address these issues, subpopulations of cholinergic and GABAergic neurons were identified by immunohistochemistry. In addition, the retrograde tracer fluorogold was injected into the hippocampus to determine the characteristics of a glutamatergic septo-hippocampal projection. Our work revealed that although glutamatergic neurons are found throughout the septum, they concentrate in medial septal regions. Using stereological probes, approximately 16,000 glutamatergic neurons were estimated in the medial septal region. Triple immunostaining showed that most glutamatergic neurons do not immunoreact with cholinergic or GABAergic neuronal markers (anti-ChAT or anti-GAD67 antibodies, respectively). Fluorogold injections into CA1, CA3, and dentate gyrus of the hippocampus showed that septal glutamatergic neurons project to each of these hippocampal regions, forming approximately 23% of the septo-hippocampal projection. Most cell bodies of septo-hippocampal glutamatergic neurons were located in the medial septum. The remaining cell bodies were found in the diagonal band. This data shows that glutamatergic neurons constitute a significant neuronal population in the septum and that a subpopulation of these neurons projects to hippocampal regions. Thus, the septo-hippocampal projection needs to be reconsidered as a three neurotransmitter pathway.  相似文献   

13.
Recently, we demonstrated a survival-promoting effect of nerve growth factor (NGF) on cultured hippocampus-projecting neurons from developing septum/diagonal band region using fluorescent latex microspheres as a retrograde neuronal marker (Arimatsu et al., 1989). In the present study, we characterized these projection neurons by combining the retrograde cell labeling and histochemical stainings for acetylcholinesterase (AChE) activity and NGF receptor-, choline acetyltransferase- (ChAT-) and gamma-aminobutyric acid- (GABA-) immunoreactivities. The surviving microsphere-labeled neurons were, for the most part, immunoreactive for NGF receptor in the culture. A great majority (about 90%) of the microsphere-labeled neurons showed strong AChE activity and ChAT-immunoreactivity. The number of strongly AChE-positive neurons and that of ChAT-immunoreactive neurons in the culture supplemented with NGF was much greater with than without exogenous NGF. In addition, a major part (about 70%) of the microsphere-labeled neurons exhibited GABA-immunoreactivity in the presence of NGF. The number was also much greater than that without NGF. A considerable portion of cultured septal cholinergic neurons were shown to express GABA-immunoreactivity by a two-color immunofluorescence labeling experiment for ChAT and GABA. These findings are consistent with the assumption that NGF plays an important role in the development and organization of the cholinergic and GABAergic septohippocampal systems by supporting the neuronal survival, and raise a possibility that cholinergic and GABAergic fractions of the septohippocampal neurons may be developmentally correlated.  相似文献   

14.
A cholinergically disrupted laboratory animal has been produced by administration of the cholinotoxin ethylcholine aziridinium mustard (AF64A), which produced a dysfunction in the cholinergic forebrain system. After AF64A treatment, a reduction of choline acetyl transferase (ChAT) activity was measured in the hippocampal regions. ChAT activity was preferentially reduced in tissue samples of the dorsal with respect to the ventral hippocampus, and concomitantly with this reduction, a compensatory increase in ChAT activity in the medial septum was found. Tissue gamma‐aminobutyric acid (GABA) content in the hippocampal and septal brain areas was not affected by AF64A, indicating a specific effect on the cholinergic septohippocampal projection. The rate of GABA accumulation induced by aminooxyacetic acid administration was higher in the dorsal hippocampus and medial septum of AF64A‐treated animals, but not in their ventral hippocampus and lateral septum, where significant changes occurred in ChAT activity. Concomitantly with the changes in GABA metabolism, a significant Bmax increase and Kd reduction of 3H‐flunitrazepam binding in the hippocampus of AF64A‐treated animals were associated with changes in the ChAT activity. This finding suggests an increase of GABA input on the cholinergic somas of the medial septum and an uncompensated GABAergic interneuron activity in the hippocampus. In this study, we present an adaptive mechanism of homotypic compensatory metabolism by cholinergic somas, and a heterotypic response of the GABAergic septohippocampal projection system, which was elicited by AF64A administration. J. Neurosci. Res. 55:178–186, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
This study deals with two characteristic cell types in the rat septal complex i.e., cholinergic and GABAergic neurons, and their synaptic connections. Cholinergic elements were labeled with a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme. Antiserum against glutamate decarboxylase (GAD), the GABA synthesizing enzyme, was employed to identify GABAergic perikarya and terminals, by using either the peroxidase-antiperoxidase (PAP) technique or a biotinylated second antiserum and avidinated gold or ferritin. With these contrasting immunolabels we have studied the cholinergic-GABAergic interconnections in double-labeled sections of intact septal regions and the GABAergic innervation of medial septal area cholinergic neurons in sections taken from animals 1 week following lateral septal area lesion. In other electron microscopic experiments we have studied cholinergic and GABAergic neurons in the septal complex for synaptic contacts with hippocamposeptal fibers, which were identified by anterograde degeneration following fimbria-fornix transection. Our results are summarized as follows: (1) GAD-positive terminals form synaptic contacts on ChAT-immunoreactive dendrites in the medial septum/diagonal band complex (MSDB), (2) surgical lesion of the lateral septal area resulted in a dramatic decrease of the number of GABAergic boutons on MSDB cholinergic neurons, (3) cholinergic terminals establish synaptic contacts with GAD immunoreactive cell bodies and proximal dendrites in the MSDB as well as in the lateral septum (LS), (4) degenerated terminals of hippocampo-septal fibers were mainly observed in the LS, where they formed asymmetric synaptic contacts on dendrites of GABAergic neurons and on nonimmunoreactive spines. We did not observe degenerated boutons in contact with ChAT-positive dendrites or cell bodies in the MSDB. From these results and from data in the literature we conclude that excitatory hippocampo-septal fibers activate GABAergic cells, and as yet unidentified spiny neurons in the LS, which may control the discharge of medial septal cholinergic neurons known to project back to the hippocampal formation.  相似文献   

16.
The medial septum/vertical limb of the diagonal band of Broca (MSDB) provides a major input to the hippocampus and is important for spatial memory. Both cholinergic and GABAergic MSDB neurons project to the hippocampus, and nonselective lesions of the MSDB or transections of the septohippocampal pathway impair spatial memory. However, selective lesions of cholinergic MSDB neurons using 192-IgG saporin (SAP) do not impair or only mildly impair spatial memory. Previously, intraseptal kainic acid was found to reduce levels of glutamic acid decarboxylase, a marker of GABAergic neurons, but not to alter the levels of choline acetyltransferase, a marker of cholinergic neurons. The present study further characterized the effects of kainic acid on GABAergic MSDB neurons and examined the effects of intraseptal kainic acid on spatial memory. Saline, kainic acid, SAP, or the combination of kainic acid and SAP was administered into the MSDB of rats. Spatial memory was assessed in an eight-arm radial maze and a water maze. Kainic acid destroyed GABAergic septohippocampal neurons, but spared cholinergic neurons. SAP eliminated MSDB cholinergic neurons, sparing noncholinergic neurons. Coadministration of kainic acid and SAP destroyed GABAergic and cholinergic MSDB neurons. Acquisition of the radial maze task and performance on this task with 4-h delays were unimpaired by intraseptal kainic acid or SAP, but were impaired by coadministration of kainic acid and SAP. Acquisition of the water maze task was unaffected by intraseptal kainic acid, delayed slightly by SAP, and impaired severely by coadministration of kainic acid and SAP. These results provide evidence that kainic acid at appropriate concentrations effectively destroys GABAergic septohippocampal neurons, while sparing cholinergic MSDB neurons. Furthermore, lesions of the GABAergic septohippocampal neurons do not impair spatial memory. While lesions of cholinergic MSDB neurons may mildly impair spatial memory, the combined lesion of GABAergic and cholinergic septohippocampal neurons resulted in a memory impairment that was greater than that observed after a selective lesion to either population. Thus, damage of GABAergic or cholinergic MSDB neurons, which together comprise the majority of the septohippocampal pathway, cannot totally account for the spatial memory impairment that is observed after nonselective lesions of the MSDB.  相似文献   

17.
We investigated the effect of dysfunctional teeth on age-related changes in the septohippocampal cholinergic system by assessing acetylcholine (ACh) release and choline acetyltransferase (ChAT) activity in the hippocampus and ChAT immunohistochemistry in the medial septal nucleus and the vertical limb of the diagonal band in young-adult and aged SAMP8 mice after removal of their upper molar teeth (molarless condition). Aged molarless mice showed decreased ACh release and ChAT activity in the hippocampus and a reduced number of ChAT-immunopositive neurons in the medial septal nucleus compared to age-matched control mice, whereas these effects were not seen in young-adult mice. The results suggest that the molarless condition in aged SAMP8 mice may enhance an age-related decline in the septohippocampal cholinergic system.  相似文献   

18.
Reconstruction of the septohippocampal pathways by axons extending from embryonic cholinergic neuroblasts grafted into the neuron-depleted septum has been explored in the neonatal rat by using a novel lesioning and grafting protocol. Neonatal ablation of the basal forebrain cholinergic projection neurons, accompanied by extensive bilateral cholinergic denervation of the hippocampus and neocortex, was produced at postnatal day (PD) 4 by 192 immunoglobulin (IgG)-saporin intraventricularly. Four days later, cholinergic neuroblasts (from embryonic day 14 rats) were implanted bilaterally into the neuron-depleted septum by using a microtransplantation approach. The results show that homotopically implanted septal neurons survive and integrate well into the developing septal area, extending axons caudally along the myelinated fimbria-fornix and supracallosal pathways that are able to reach the appropriate targets in the denervated hippocampus and cingulate cortex as early as 4 weeks postgrafting. Moreover, the laminar innervation patterns established by the graft-derived axons closely resembled the normal ones and remained essentially unchanged up to at least 6 months, which was the longest postoperative time studied. The reinnervating fibers restored tissue choline acetyltransferase activity (up to 50% of normal) in the dorsal hippocampus and the parietooccipital cortex. Retrograde labeling with Fluoro-Gold from the host hippocampus combined with immunocytochemistry confirmed that most of the projecting neurons, indeed, were cholinergic. The results suggest that the graft-host interactions that are necessary for target-directed axon growth are present in the septohippocampal system during early postnatal maturation. Thus, the present approach may contribute to overcome the functional limitations inherent in the use of ectopically placed intrahippocampal transplants. © 1996 Wiley-Liss, Inc.  相似文献   

19.
The factors determining the development of specific fiber tracts in the central nervous system as well as the interactions of growth cones with the surrounding micromilieu are largely unknown. Here we investigated the ontogenetic development of the septohippocampal projection in the rat with the lipophilic carbocyanine dye DiI which is transported anterogradely and retrogradely in neurons and can be applied to fixed embryonic tissue. Photoconversion of anterogradely labeled fibers allowed us to study individual growth cones by electron microscopy. The first axons originating from the septal complex were found in the hippocampus as early as on embryonic day (ED) 19, reaching the fimbrial pole of the hippocampus on ED 18. However, on ED 17 we consistently found retrogradely labeled cells in the hippocampus, indicating that the development of the hippocamposeptal projection precedes that of the septohippocampal projection. On ED 19, the majority of the axons directed toward the hippocampal formation passed the hippocampus and grew further into the subicular complex and entorhinal cortex. These axons gave off collaterals that invaded the hippocampus proper. A fairly adult pattern of the septohippocampal projection was reached on postnatal day 10, although many growth cones were still found. A comparative analysis of individual growth cones found in the fimbria and the hippocampus proper revealed no striking differences in their morphology. Electron microscopic analysis showed that growth cones in the fimbria were mainly contacted by other axons, whereas growth cones in the hippocampus had contact with all available elements. This may indicate that growing septohippocampal fibers are guided by axons of the earlier formed hippocamposeptal projection. In the hippocampus proper, other cues, probably derived from the target itself, may guide the septhippocampal axons to their appropriate target cells. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Hippocampal learning and memory tasks are tightly coupled to the hippocampal theta rhythm, which is critically dependent on the medial septum/diagonal band of Broca (MSDB) although the underlying mechanisms remain unclear. The MSDB sends both cholinergic and GABAergic projections to the hippocampus. Here we show that: (i) septo-hippocampal GABAergic but not cholinergic neurons have a pacemaking current, the H-current, and that its selective blockade by ZD7288 reduces their spontaneous firing in rat brain slices; and (ii), local infusions of ZD7288 into the MSDB reduce exploration and sensory evoked hippocampal theta bursts in behaving rats. Thus, the H-current in septohippocampal GABAergic neurons modulates the hippocampal theta rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号