首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent anatomical and electrophysiological studies have expanded our knowledge of the auditory cortical system in primates and have described its organization as a series of concentric circles with a central or primary auditory core, surrounded by a lateral and medial belt of secondary auditory cortex with a tertiary parabelt cortex just lateral to this belt. Because recent studies have shown that rostral and caudal belt and parabelt cortices have distinct patterns of connections and acoustic responsivity, we hypothesized that these divergent auditory regions might have distinct targets in the frontal lobe. We, therefore, placed discrete injections of wheat germ agglutinin-horseradish peroxidase or fluorescent retrograde tracers into the prefrontal cortex of macaque monkeys and analyzed the anterograde and retrograde labeling in the aforementioned auditory areas. Injections that included rostral and orbital prefrontal areas (10, 46 rostral, 12) labeled the rostral belt and parabelt most heavily, whereas injections including the caudal principal sulcus (area 46), periarcuate cortex (area 8a), and ventrolateral prefrontal cortex (area12vl) labeled the caudal belt and parabelt. Projections originating in the parabelt cortex were denser than those arising from the lateral or medial belt cortices in most cases. In addition, the anterior third of the superior temporal gyrus and the dorsal bank of the superior temporal sulcus were also labeled after prefrontal injections, confirming previous studies. The present topographical results suggest that acoustic information diverges into separate streams that target distinct rostral and caudal domains of the prefrontal cortex, which may serve different acoustic functions. J. Comp. Neurol. 403:141–157, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

2.
Thalamic connections of the insula in the rhesus monkey were studied with axonal transport methods. Tritiated amino acid injections limited to the insula revealed autoradiographic label in the principal and parvicellular components of the ventroposterior medial nucleus, the ventroposterior inferior nucleus, the oral and medial pulvinar nuclei, the nucleus reuniens, the parvicellular and magnocellular components of the medial dorsal nucleus, the centromedian-parafasicularis nuclei, and the reticular nucleus. In additional animals, tritiated amino acids and horseradish perioxidase injections were made within different regions of the insula. Although the injection sites in these additional cases may have included minor extensions into claustrum and adjacent structures, several tentative conclusions emerged with respect to the antero-posterior gradient in insulothalamic connectivity. The anterior insula appears to have a more extensive relationship with the ventroposterior medial complex, the medial dorsal nucleus, the centromedian-parafasicularis nuclei and with some midline nuclei. In contrast, the posterior insula is more extensively connected with the ventroposterior inferior nucleus, the oral and medial pulvinar nuclei, and the suprageniculate nucleus. The patterns of insulothalamic connections support conclusions derived from observations on the cortical connectivity of the primate insular cortex indicating that the anterior insula is related to olfactory, gustatory, and viscero-autonomic behavior, whereas the posterior insula is related to auditory-somesthetic-skeletomotor function (Mesulam and Mufson, '82b). The medial pulvinar nucleus has extensive connections with many paralimbic cortical regions including the insula as well as with high order polymodal association cortex. These findings suggest that the medial pulvinar may provide a region for the convergence of multisensory association input with limbic information.  相似文献   

3.
Sensory and premotor inputs to the orbital and medial prefrontal cortex (OMPFC) were studied with retrograde axonal tracers. Restricted areas of the lateral and posterior orbital cortex had specific connections with visual-, somatosensory-, olfactory-, gustatory-, and visceral-related structures. More medial areas received few direct sensory inputs. Within the lateral and posterior orbital cortex, area 121 received a substantial projection from visual areas in the inferior temporal cortex (TE). Area 12m received somatosensory input from face, digit, or forelimb regions in the opercular part of area 1–2, in area 7b, in the second somatosensory area (SII), and in the anterior infraparietal area (AIP). Areas 13m and 131 also received a projection from the opercular part of areas 1–2 and 3b. The posteromedial and lateral agranular insular areas (Iapm and Ial, respectively) received fibers from the ventral part of the parvicellular division of the ventroposterior medial nucleus of the thalamus (VPMpc) that may represent a visceral afferent system. The dorsal part of VPMpc projected to the adjacent gustatory cortex. These restricted inputs from several sensory modalities and the convergent corticocortical connections to orbital areas 13l and 13m suggest a network related to feeding. The OMPFC was also connected to premotor cortex in ventral area 6 (areas 6va and 6vb), in cingulate area 24c, and probably in the supplementary eye field. Area 6va projected to area 12m, whereas a region of area 6vb projected to area 131. The region of the supplementary eye field projected to areas 121, 120, and 12r. Area lal received fibers from area 24c. Lighter and more diffuse projections also reached wider areas of the OMPFC. For example, injections in several orbital areas labeled a few cells scattered through the anterior part of area TE and the superior temporalrus. There was also a projection to the intermediate agranular insular area (Iai) and to areas 13a and 12o from the apparently multimodal areas in the superior temporal sulcus and gyrus. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Prefrontal cortices have been implicated in autonomic function, but their role in this activity is not well understood. Orbital and medial prefrontal cortices receive input from cortical and subcortical structures associated with emotions. Thus, the prefrontal cortex may be an essential link for autonomic responses driven by emotions. Classic studies have demonstrated the existence of projections between prefrontal cortex and the hypothalamus, a central autonomic structure, but the topographic organization of these connections in the monkey has not been clearly established. We investigated the organization of bidirectional connections between these areas in the rhesus monkey by using tracer injections in orbital, medial, and lateral prefrontal areas. All prefrontal areas investigated received projections from the hypothalamus, originating mainly in the posterior hypothalamus. Differences in the topography of hypothalamic projection neurons were related to both the location and type of the target cortical area. Injections in lateral eulaminate prefrontal areas primarily labeled neurons in the posterior hypothalamus that were equally distributed in the lateral and medial hypothalamus. In contrast, injections in orbitofrontal and medial limbic cortices labeled neurons in the anterior and tuberal regions of the hypothalamus and in the posterior region. Projection neurons targeting orbital limbic cortices were more prevalent in the lateral part of the hypothalamus, whereas those targeting medial limbic cortices were more prevalent in the medial hypothalamus. In comparison to the ascending projections, descending projections from prefrontal cortex to the hypothalamus were highly specific, originating mostly from orbital and medial prefrontal cortices. The ascending and descending connections overlapped in the hypothalamus in areas that have autonomic functions. These results suggest that specific orbitofrontal and medial prefrontal areas exert a direct influence on the hypothalamus and may be important for the autonomic responses evoked by complex emotional situations. J. Comp. Neurol. 398:393–419, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Convergence of sensory modalities in the nonhuman primate cerebral cortex is still poorly understood. We present an anatomical tracing study in which polysensory association cortex located at the fundus and upper bank of the rostral superior temporal sulcus presents reciprocal connections with primary olfactory structures. At the same time, projections from this polysensory area reach multiple primary olfactory centres. Retrograde (Fast Blue) and anterograde (biotinylated dextran-amine and 3H-amino acids) tracers were injected into primary olfactory structures and rostral superior temporal sulcus. Retrograde tracers restricted to the anterior olfactory nucleus resulted in labelled neurons in the rostral portion of the upper bank and fundus of superior temporal sulcus. Injections of biotinylated dextran-amine at the fundus and upper bank of the superior temporal sulcus confirmed this projection by labelling axons in the dorsal and lateral portions of the anterior olfactory nucleus, as well as piriform, periamygdaloid and entorhinal cortices. Retrograde tracer injections at the rostral superior temporal sulcus resulted in neuronal labelling in the anterior olfactory nucleus, piriform, periamygdaloid and entorhinal cortices, thus providing confirmation of the reciprocity between primary olfactory structures and the cortex at the rostral superior temporal sulcus. The reciprocal connections between the rostral part of superior temporal sulcus and primary olfactory structures represent a convergence for olfactory and other sensory modalities at the cortex of the rostral temporal lobe.  相似文献   

6.
Auditory cortex of macaque monkeys can be divided into a core of primary or primary-like areas located on the lower bank of the lateral sulcus, a surrounding narrow belt of associated fields, and a parabelt region just lateral to the belt on the superior temporal gyrus. We determined patterns of ipsilateral cortical connections of the parabelt region by placing injections of four to seven distinguishable tracers in each of five monkeys. Results were related to architectonic subdivisions of auditory cortex in brain sections cut parallel to the surface of artificially flattened cortex (four cases) or cut in the coronal plane (one case). An auditory core was clearly apparent in these sections as a 16- to 20-mm rostrocaudally elongated oval, several millimeters from the lip of the sulcus, that stained darkly for parvalbumin, myelin, and acetylcholinesterase. These features were most pronounced caudally in the cortex assigned to auditory area I, only slightly reduced in the rostral area, and most reduced in the narrower rostral extension we define as the rostrotemporal area. A narrow band of cortex surrounding the core stained more moderately for parvalbumin, acetylcholinesterase, and myelin. Two regions of the caudal belt, the caudomedial area, and the mediolateral area, stained more darkly, especially for parvalbumin. Rostromedial and medial rostrotemporal, regions of the medial belt stained more lightly for parvalbumin than the caudomedial area or the lateral belt. The parabelt region stained less darkly than the core and belt fields. Injections confined to the parabelt region labeled few neurons in the core, but large numbers in parts of the belt, the parabelt, and adjacent portions of the temporal lobe. Injections that encroached on the belt labeled large numbers of neurons in the core and helped define the width of the belt. Caudal injections in the parabelt labeled caudal portions of the belt, rostral injections labeled rostral portions, and both caudal and rostral injections labeled neurons in the rostromedial area of the medial belt. These observations support the concept of dividing the auditory cortex into core, belt, and parabelt; provide evidence for including the rostral area in the core; suggest the existence of as many as seven or eight belt fields; provide evidence for at least two subdivisions of the parabelt; and identify regions of the temporal lobe involved in auditory processing. J. Comp. Neurol. 394:475–495, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
We have conducted a systematic comparison of the ipsilateral (uncrossed) and contralateral (crossed) thalamic connections of prefrontal cortex in macaque monkeys, using cortical implants of horseradish peroxidase pellets and tetramethyl benzidine histochemistry to demonstrate anterograde and retrograde thalamic labeling. Contrary to the prevailing belief that thalamocortical projections are entirely uncrossed, our findings indicate that a modest crossed projection to prefrontal cortex arises from the mesial thalamus, principally the anteromedial and midline nuclei. Also, while confirming that corticothalamic projections are bilateral, we found that the pattern of crossed projections differs from that of uncrossed projections. Projections to mesial thalamic nuclei, specifically to the anteromedial nucleus, the midline nuclei, and the magnocellular part of the mediodorsal nucleus are bilateral, the contralateral projection being nearly as dense as the ipsilateral projection. Projections to the parvicellular part of the mediodorsal and ventral anterior nuclei are also bilateral, but the contralateral projection is much weaker than the ipsilateral projection. Prefrontal projections to the reticular nucleus, medial pulvinar, suprageniculate nucleus, and limitans nucleus appear to be exclusively ipsilateral. These results indicate that prefrontal cortex has prominent bilateral and reciprocal connections with the nuclei of the mesial thalamic region. As this region of the diencephalon has been implicated by anatomical and behavioral studies in memory functions, our findings suggest that prefrontal cortex, through its connections with this region, may be involved in the bilateral integration of mnemonic systems.  相似文献   

8.
The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient of laminar differentiation, there is also a progressive shift in the pattern of corticocortical connections. Cingulate areas have widespread connections with limbic, parietotemporal, and frontal association areas, whereas parietal area 3 has more restricted connections with adjacent somatosensory and motor cortices. TSA is primarily related to the somatosensory-motor areas and has limited connections with the parietotemporal and frontal association cortices.  相似文献   

9.
An investigation of the architectonic organization and intrinsic connections of the prefrontal cortex was conducted in rhesus monkeys. Cytoarchitectonic analysis indicates that in the prefrontal cortex there are two trends of gradual change in laminar characteristics that can be traced from limbic periallocortex towards isocortical areas. The stepwise change in laminar features is characterized by the emergence and gradual increase in the width of granular layer IV, by an increase in the size of pyramidal cells in layers III and V, and by a higher cell-packing density in the supragranular layers. Myeloarchitectonic analysis reveals that the limbic areas are poorly myelinated, adjacent areas have a diffuse myelin content confined to the deep layers, and in isocortices the myelinated fibers are distributed in organized horizontal bands (of Baillarger) and a vertical plexus. Using the above architectonic criteria, we observed that one of the architectonic trends takes a radial basoventral course from the periallocortex in the caudal orbitofrontal region to the adjacent proisocortex and then to area 13. The next stage of architectonic regions includes orbital areas 12, 11, and 14, which is followed by area 10, lateral area 12, and the rostral part of ventral area 46. The last group includes the caudal part of ventral area 46 and ventral area 8. The other trend takes a mediodorsal course from the periallocortex around the rostral portion of the corpus callosum to the adjacent proisocortical areas 24, 25, and 32 and then to the medially situated isocortical areas 9, 10, and 14. The next stage includes lateral areas 10 and 9 and the rostral part of dorsal area 46. The last group includes the caudal part of dorsal area 46 and dorsal area 8. The interconnections of subdivisions of the basoventral and mediodorsal cortices were studied with the aid of anterograde and retrograde tracers. Within each trend a given area projects in two directions: to adjoining regions belonging to succeeding architectonic stages on the one hand, and to nearby regions from the preceding architectonic stage on the other. In each direction there is more than one region involved in this projection system, paralleling the radial nature of architectonic change. Periallo- and proisocortices have widespread intrinsic connections, whereas isocortices situated at a distance from limbic areas, such as area 8, have restricted connections. Most interconnections are limited to areas within the same architectonic trend. However, there are links between cortices from the two trends, and these seem to occur between areas that are at a similar stage of architectonic differentiation. The results suggest that there are two architectonically, and perhaps functionally, distinct axes within the prefrontal cortex. The earliest stages within each axis, which have widespread connections, may have a global role in neural processing. On the other hand, the latest stages, which have restricted connections, may have a more specific role in processes associated with the frontal lobe.  相似文献   

10.
It is widely held that the frontal cortex plays a critical part in certain aspects of spatial and non-spatial working memory. One unresolved issue is whether there are functionally distinct subdivisions of the lateral frontal cortex that subserve different aspects of working memory. The present study used positron emission tomography (PET) to demonstrate that working memory processes within the human mid-dorsolateral and mid-ventrolateral frontal regions are organized according to the type of processing required rather than according to the nature (i.e. spatial or non-spatial), of the information being processed, as has been widely assumed. Two spatial working memory tasks were used which varied in the extent to which they required different executive processes. During a 'spatial span' task that required the subject to hold a sequence of five previously remembered locations in working memory a significant change in blood-flow was observed in the right mid-ventrolateral frontal cortex, but not in the anatomically and cytoarchitectonically distinct mid-dorsolateral frontal-lobe region. By contrast, during a '2-back' task that required the subject to continually update and manipulate an ongoing sequence of locations within working memory, significant blood flow increases were observed in both mid-ventrolateral and mid-dorsolateral frontal regions. When the two working memory tasks were compared directly, the one that emphasized manipulation of information within working memory yielded significantly greater activity in the right mid-dorsolateral frontal cortex only. This dissociation provides unambiguous evidence that the mid-dorsolateral and mid-ventrolateral frontal cortical areas make distinct functional contributions to spatial working memory and corresponds with a fractionation of working memory processes in psychological terms.  相似文献   

11.
Medial agranular cortex (AGm) is a narrow, longitudinally oriented region known to have extensive corticortical connections. The rostral and caudal portions of AGm exhibit functional differences that may involve these connections. Therefore we have examined the rostrocaudal organization of the afferent cortical connections of AGm by using fluorescent tracers, to determine whether there are significant differences between rostral and caudal AGm. Mediolateral patterns have also been examined in order to compare the pattern of corticocortical connections of AGm to those of the laterally adjacent lateral agranular cortex (AGl) and medially adjacent anterior cingulate area (AC). In the rostrocaudal domain, there are notable patterns in the connections of AGm with somatic sensorimotor, visual, and retrosplenial cortex. Rostral AGm receives extensive afferents from the caudal part of somatic sensorimotor area Par I, whereas caudal AGm receives input largely from the hindlimb cortex (area HL). Middle portions of AGm show an intermediate condition, indicating a continuously changing pattern rather than the presence of sharp border zones. The whole of the second somatic sensorimotor area Par II projects to rostral AGm, whereas caudal AGm receives input only from the caudal portion of Par II. Visual cortex projections to AGm originate in areas Oc1, Oc2L and Oc2M. Connections of rostral AGm with visual cortex are noticeably less dense than those of mid and caudal AGm, and are focused in area Oc2L. The granular visual area Oc1 projects almost exclusively to mid and caudal AGm. Retrosplenial cortex has more extensive connections with caudal AGm than with rostral AGm, and the agranular and granular retrosplenial subregions are both involved. Other cortical connections of AGm show little or no apparent rostrocaudal topography. These include afferents from orbital, perirhinal, and entorhinal cortex, all of which are bilateral in origin. In the mediolateral dimension, AGm has more extensive corticocortical connections than either AGl or AC. Of these three neighboring areas, only AGm has connections with the somatic sensorimotor, visual, retrosplenial and orbital cortices. In keeping with its role as primary motor cortex, AGl is predominantly connected with area Par I of somatic sensorimotor cortex, specifically rostral Par I. AGl receives no input from visual or retrosplenial cortex. Anterior cingulate cortex has connections with visual area Oc2 and with retrosplenial cortex, but none with somatic sensorimotor cortex. Orbital cortex projections are sparse to AGl and do not appear to involve AC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
By using fluorescent retrograde tracers, we compared efferent projections of the medial frontal cortex to two subcortical areas: the superior colliculus, a somatic motor area, and the laterodorsal tegmental nucleus, a visceral motor area. Neurons projecting to the superior colliculus originated in layer V of the cingulate (Cg1 area) and medial agranular cortex, while neurons projecting to the laterodorsal tegmental nucleus originated in layers V and VI of the cingulate (Cg3 area) and infralimbic cortex. Thus, within the medial frontal cortex, the ventral portion (the Cg3 and infralimbic areas) may be a visceral motor area while the dorsal portion is a somatic motor region.  相似文献   

13.
The histochemical and morphological maturation of the mediodorsal nucleus (MD) and its connections were compared in human and rhesus monkey using acetylthiocholine iodide and Nissl methods. Histochemical analysis in fetuses, neonates, and adults of both primate species revealed that MD passes through three major stages of cholinesterase (ChE) reactivity. In Stage I (up to about 16 fetal weeks in man; 9 fetal weeks in monkey), ChE staining gradually increases in the MD nucleus and is intense in axons directed toward the frontal lobe through the internal and external capsules. In Stage II (about 16-28 fetal weeks in man; about 9-14 weeks in monkey), ChE staining in MD reaches peak intensity so that reaction product in the neurons and neuropil blackens the entire nucleus in both species. In favorable planes of section, ChE-positive fibers appear to connect MD and the basal forebrain both of which stain intensely. ChE-positive fibers can also be traced from the lateral margins of MD to the subplate zone beneath the developing frontal cortical plate where they continue to accumulate before later invading the cortex with heaviest concentration in presumptive layers 3 and 5. In Stage III (after 28 weeks of gestation to 6 postnatal months in man; from about 14 fetal weeks until 2 postnatal months in monkey), except for scattered positive cells, ChE staining gradually disappears in MD and the formerly dense laminar pattern in the cortex begins to lighten. The dramatic but transient increase in ChE staining in MD during fetal development as well as the sequentially related changes in its projections indicate that this early appearing enzyme may play a role in the development of the frontal lobe by influencing the differentiation of thalamoprefrontal connections.  相似文献   

14.
The efferent association fibers from the caudal part of the prefrontal cortex to posterior cortical areas course via several pathways: the three components of the superior longitudinal fasciculus (SLF I, SLF II, and SLF III), the arcuate fasciculus (AF), the fronto-occipital fasciculus (FOF), the cingulate fasciculus (CING F), and the extreme capsule (Extm C). Fibers from area 8Av course via FOF and SLF II, merging in the white matter of the inferior parietal lobule (IPL) and terminating in the caudal intraparietal sulcus (IPS). A group of these fibers turns ventrally to terminate in the caudal superior temporal sulcus (STS). Fibers from the rostral part of area 8Ad course via FOF and SLF II to the IPS and IPL and via the AF to the caudal superior temporal gyrus and STS. Some fibers from the rostral part of area 8Ad are conveyed to the medial parieto-occipital region via FOF, to the STS via Extm C, and to the caudal cingulate gyrus via CING F. Fibers from area 8B travel via SLF I to the supplementary motor area and area 31 in the caudal dorsal cingulate region and via the CING F to cingulate areas 24 and 23 and the cingulate motor areas. Fibers from area 9/46d course via SLF I to the superior parietal lobule and medial parieto-occipital region, via SLF II to the IPL. Fibers from area 9/46v travel via SLF III to the rostral IPL and the frontoparietal opercular region and via the CING F to the cingulate gyrus.  相似文献   

15.
The topographical distribution of the cortical afferent connections of the prefrontal cortex (PFC) in adult cats was studied by using the retrograde axonal transport of horseradish peroxidase technique. Small single injections of the enzyme were made in different locations of the PFC, and the areal location and density of the subsequent neuronal labeling in neocortex and allocortex were evaluated in each case. The comparison of the results obtained in the various cases revealed that four prefrontal sectors (rostral, dorsolateral, ventral, and dorsomedial) can be distinguished, each exhibiting a particular pattern of cortical afferents. All PFC sectors receive projections from the ipsilateral insular (agranular and granular subdivisions) and limbic (infralimbic, prelimbic, anterior limbic, cingular, and retrosplenial areas) cortices. These cortices provide the most abundant cortical projections to the PFC, and their various subdivisions have different preferential targets within the PFC. The premotor cortex and the following neocortical sensory association areas project differentially upon the various ipsilateral PFC sectors: the portion of the somatosensory area SIV in the upper bank of the anterior ectosylvian sulcus, the visual area in the lower bank of the same sulcus, the auditory area AII, the temporal area, the perirhinal cortex, the posterior suprasylvian area, area 20, the posterior ectosylvian area, the suprasylvian fringe, the lateral suprasylvian area (anterolateral and posterolateral subdivisions), area 5, and area 7. The olfactory peduncle, the prepiriform cortex, the cortico-amygdaloid transition area, the entorhinal cortex, the subiculum (ventral, posteroventral, and posterodorsal sectors), the caudomedial band of the hippocampal formation and the postsubiculum are the allocortical sources of afferents to the PFC. The dorsolateral PFC sector is the target of the largest insular, limbic, and neocortical sensory association projections. The dorsomedial and rostral sectors receive notably less abundant cortical afferents than the dorsolateral sector. Those to the dorsomedial sector arise from the same areas that project to the dorsolateral sector and are more abundant to the dorsal part, where the medial frontal eye field cortex is located. The rostral sector receives projections principally from all other PFC sectors, and from the limbic and insular cortices. The projections from the allocortex reach preferentially the ventral PFC sector. Intraprefrontal connections are most abundant within each PFC sector. Commissural interprefrontal connections are largest from the site homotopic to the HRP injection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The intrinsic cortico-cortical connections within the orbital and medial prefrontal cortex (OMPFC) were demonstrated with retrograde and anterograde tracers injected into each of the architectonic areas that constitute this region. Although many of the connections linked neighboring areas, others selectively connected relatively distant areas. Most, but not all, of the connections were reciprocal. Altogether, the connections formed at least two distinct networks within the OMPFC. The “orbital” prefrontal network linked most of the areas within the orbital cortex, with very few connections to medial prefrontal areas. Areas Iam, Iapm, Ial, 121, 12m, and 12r in the caudal and lateral parts of the orbital cortex (which received inputs from several sensory modalities) had convergent connections with areas 13l, 13m, and 13b in the central orbital cortex, with further connections to the rostral orbital area 11l. For the connections between areas Iapm, Iam, Ial, 13m, 13l, and 11l, rostrally directed fibers arose mainly in layer V, whereas caudally directed fibers originated mainly in layer III. The “medial” prefrontal network selectively involved medial areas 14r, 14c, 24, 25, 32, and 10m, rostral orbital areas 10o and 11m, and agranular insular area Iai in the posterior orbital cortex. Two orbital areas, 13a and 12o, had substantial connections to both networks and may serve as points of interaction between them; otherwise there were relatively few interconnections. The two networks also had distinct connections with other cortical regions, with limbic structures, and with the mediodorsal thalamic nucleus. Their role in guidance of affective behavior is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Because of the sharp curvature of the retrosplenial region around the splenium of the corpus callosum, standard coronal sections are not appropriate for architectonic analysis of its posteroventral part. In the present study, examination of the posteroventral retrosplenial region of the rhesus monkey in sections that were orthogonal to its axis of curvature (and therefore appropriate for architectonic analysis) has permitted definition of its architecture and precise extent. This analysis demonstrated that areas 29 and 30 of the retrosplenial cortex, as well as adjacent area 23 of the posterior cingulate cortex, extend together as an arch around the splenium of the corpus callosum and maintain their topographical relationship with one another throughout their entire course. Injections of anterograde and retrograde tracers confined to retrosplenial area 30 revealed that this area has reciprocal connections with adjacent areas 23, 19 and PGm, with the mid-dorsolateral part of the prefrontal cortex (areas 9, 9/46 and 46), with multimodal area TPO in the superior temporal sulcus, as well as the posterior parahippocampal cortex, the presubiculum and the entorhinal cortex. There are also bidirectional connections with the lateroposterior thalamic nucleus, as well as the laterodorsal and the anteroventral limbic thalamic nuclei. The connectivity of area 30 suggests that it may play a role in working memory processes subserved by the mid-dorsolateral frontal cortex in interaction with the hippocampal system.  相似文献   

18.
Anatomical material from two series of monkeys (Macaca mulatta)was used to determine the full extent and visuotopic organization of striate projections to the pulvinar. One series was processed for degeneration by the Fink-Heimer procedure following unilateral lesions of lateral, posterior, or medial striate cortex (representing the central, peripheral, and far peripheral visual field, respectively); collectively, the lesions included all of area 17. The second series was processed for autoradiography following tritiated amino-acid injections into striate sites representing the center of gaze and eccentricities ranging from 0.5° to greater than 30° from fixation in both the upper and lower fields. The results indicate the existence of two separate striate projection zones within the pulvinar. One, the PI/PL zone, is located primarily within the inferiorpulvinar (PI) but extends into the adjacentlateral pulvinar (PL). The other, the PL zone, is located entirely within the lateral pulvinar and partially surrounds the first zone along its dorsal, lateral, and ventral aspects. Within the PI/PL zone, striate projections are topographically organized and represent the entire contralateral visual field. Central vision is represented laterally and posteriorly, with the fovea represented at the caudal pole of the nucleus; conversely, far peripheral vision is found medially and anteriorly, adjacent to the medial geniculate nucleus. The representation of the horizontal meridian runs obliquely across PI/PL, such that the upper visual field is located ventrolaterally and the lower visual field dorsomedially. The representation of the vertical meridian is located along the lateral margin of PI in anterior sections of the pulvinar, but within PL in posterior sections. Thus, the vertical meridian appears to form the border between the lateral margin of the PI/PL zone and the medial margin of the PL zone. At the lateral margin of the PL zone is the representation of its horizontal meridian. Striate projections to the PL zone, unlike those to the PI/PL zone, are limited to the representation of central vision. These results suggest that striate inputs contribute to the visual properties of neurons (Bender, 1981 a) throughout the PI/PL zone, but are insufficient to explain the visual properties of neurons outside of the central visual field representation in the PL zone.  相似文献   

19.
Intrinsic connections are likely to play important roles in cognitive information processing to in the prefrontal association cortex. To gain insight into the organization of these circuits, intracortical connections of major laminar and sublaminar divisions were retrogradely labeled in Walker's area 9 and 46 in rhesus monkeys by using cholera toxin (B-subunit) conjugated to colloidal gold. Microinjections placed within particular cortical laminae produced unique patterns of retrograde labeling. Injections in layers II/III yielded labeling which was laterally widespread (2–7 mm) in supragranular layers, and more narrowly focused, i.e., conforming to a column, in layers IV–VI. In contrast, local circuits associated with layers IV and Vb displayed a regular, cylindrical organization, whereas intrinsic connections of layer Va were laterally extensive (3–5 mm) in layers III and Va. Finally, injections in layer VI gave rise to a narrow column of cell labeling traversing all layers, augmented by laterally extensive labeling (~ 7 mm) in layer VI. The intrinsic connections of the prefrontal cortex were arrayed within mediolaterally elongated stripes which were often distributed asymmetrically in either the medial or lateral direction. In addition, labsled cells within these mediolaterally oriented fields were frequently grouped within discrete clusters or narrow bands. The intrinsic connections identified in this study differ from the local circuits of corresponding layers reported for primary visual cortex; the unique intrinsic wiring diagram of the prefrontal cortex may be related to its specialized cognitive and mnemonic functions. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Corticothalamic connections of paralimbic regions in the rhesus monkey   总被引:8,自引:0,他引:8  
This study addressed the issue of whether paralimbic regions of the cerebral cortex share common thalamic projections. The corticothalamic connections of the paralimbic regions of the orbital frontal, medial prefrontal, cingulate, parahippocampal, and temporal polar cortices were studied with the autoradiographic method in the rhesus monkey. The results revealed that the orbital frontal, medial prefrontal, and temporal polar proisocortices have substantial projections to both the dorsomedial and medial pulvinar nuclei, whereas the anterior cingulate proisocortex (area 24) projects exclusively to the dorsomedial nucleus. These proisocortical areas also have thalamic connections with the intralaminar and midline nuclei. The cortical areas between the proisocortical regions on the one hand and the isocortical areas on the other, that is, the posterior cingulate region (area 23) and the posterior parahippocampal gyrus (areas TF and TH), project predominantly to the dorsal portion of the medial pulvinar nucleus, the anterior nuclear group (AV, AM), and the lateral dorsal (LD) nucleus. Additionally, the posterior cingulate and medial parahippocampal gyri (area TH) have projections to the lateral posterior (LP) nucleus. Thus, it appears that the proisocortical areas, which are characterized by a predominance of infragranular layers and an absence of layer IV, have common thalamic relationships. Likewise, the intermediate paralimbic areas between the proisocortex and isocortical regions, which also have a predominance of infragranular layers but in addition have evidence of a fourth layer, project to the medial pulvinar and to the so-called limbic nuclei, AV, AM, LD, as well as a modality-specific nucleus, LP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号