首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The first part of the study was a quantitative analysis of the distribution of A8 neurons compared with that of A9 and A10 neurons by means of tyrosine hydroxylase and calbindin-D(28K) immunohistochemistry and image analysis in monkeys. Then the striatal projection of A8 neurons was studied using retrograde and anterograde tracing methods. It was compared with that originating in cell groups A9 and A10 by performing injections of the retrograde tracer wheat germ agglutinin conjugated to horseradish peroxidase into different regions of the striatum. Ten percent of all mesencephalic dopaminergic neurons are located in cell group A8. This cell group, along with A10 and the dorsal part of A9, constitutes the dorsal tier, which accounts for 28% of mesencephalic dopaminergic neurons. Double-staining experiments showed that the neurons located in the dorsal tier were calbindin positive, whereas those from the ventral tier were not. In terms of anatomical projection, the dorsal tier mainly projects to the ventral part of the associative striatum, with preferential projections of A8 neurons to the ventrocaudal putamen, of A10 neurons to the nucleus accumbens, and of dorsal A9 neurons to both. Conversely, the main targets of the ventral tier of mesencephalic neurons (ventral part of A9) are the sensorimotor putamen and the associative caudate nucleus. In conclusion, each mesencephalic cell group projects primarily to one specific striatal region but also participates, albeit to a lesser extent, in the innervation of all the remaining striatal parts.  相似文献   

2.
The anatomical organization of cholinergic markers such as acetylcholinesterase, choline acetyltransferase, and nerve growth factor receptors was investigated in the basal ganglia of the human brain. The distribution of choline acetyltransferase-immunoreactive axons and varicosities and their relationship to regional perikarya showed that the caudate, putamen, nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra, red nucleus, and subthalamic nucleus of the human brain receive widespread cholinergic innervation. Components of the striatum (i.e., the putamen, caudate, olfactory tubercle, and nucleus accumbens) displayed the highest density of cholinergic varicosities. The next highest density of cholinergic innervation was detected in the red nucleus and subthalamic nucleus. The level of cholinergic innervation was of intermediate density in the globus pallidus and the ventral tegmental area and low in the pars compacta of the substantia nigra. Immunoreactivity for nerve growth factor receptors (NGFr) was confined to the cholinergic neurons of the basal forebrain and their processes. Axonal immunoreactivity for NGFr was therefore used as a marker for cholinergic projections originating from the basal forebrain (Woolf et al., '89: Neuroscience 30:143-152). Although the vast majority of striatal cholinergic innervation was NGFr-negative and, therefore, intrinsic, the striatum also contained NGFr-positive axons, indicating the existence of an additional cholinergic input from the basal forebrain. This basal forebrain cholinergic innervation was more pronounced in the putamen than in the caudate. The distribution of NGFr-positive axons suggested that the basal forebrain may also project to the globus pallidus but probably not to the subthalamic nucleus, substantia nigra, or red nucleus. The great majority of cholinergic innervation to these latter three structures and to parts of the globus pallidus appeared to come from cholinergic neurons outside the basal forebrain, most of which are probably located in the upper brainstem. These observations indicate that cholinergic neurotransmission originating from multiple sources is likely to play an important role in the diverse motor and behavioral affiliations that have been attributed to the human basal ganglia.  相似文献   

3.
In the caudate-putamen of the rat a patch/matrix organization can be recognized on the basis of the immunohistochemical distribution of several markers, which include enkephalin, substance P, dopamine, and calcium-binding protein. In the present experiments the distributional relations of these markers were investigated in the nucleus accumbens. The distribution of enkephalin fibers shows different inhomogeneities according to their location in the nucleus. Rostrally, heavily labeled areas stand out against a moderately stained background, whereas caudally, in medial and ventral parts of the nucleus, lightly stained areas delineate regions in the moderately stained neuropil. In the distribution of substance P, areas with high staining intensity were observed in the medial and ventral parts of the nucleus accumbens. Inhomogeneities in the distribution of strong dopamine immunoreactivity consist of weakly immunoreactive areas throughout the rostrocaudal extent of the nucleus accumbens and extremely heavily labeled areas in the medial and ventral parts of the nucleus. Calcium-binding protein immunoreactivity can only be detected in dorsal parts of the nucleus. The generally intense immunostaining for calcium-binding protein is interspersed with "blanks" of weak immunoreactivity. The heavily and moderately labeled enkephalin areas each maintain specific relations with inhomogeneities in the distribution of substance P, dopamine, and calcium-binding protein. Rostrally, the heavily labeled enkephalin areas coincide with areas strongly immunostained for calcium-binding protein and with lightly stained areas in the dopamine and substance P immunoreactivity patterns. In the same region lightly stained areas in the enkephalin distribution match heavily labeled substance P areas. Caudally, in the border region of the nucleus accumbens and the caudate-putamen, the heavily labeled enkephalin areas are either related to "blanks" or to the intense staining regions in the calcium-binding protein immunoreactivity distribution. The moderately labeled enkephalin areas caudomedially in the nucleus accumbens are in register with the heavily labeled regions in the distribution of substance P and with the extremely heavily labeled regions in the distribution of dopamine. Relations with connectivity are discussed and the inhomogeneities are compared to those in the caudate-putamen. It is concluded that in the ventral striatum either one patch and one matrix compartment exist with different immunohistochemical relationships or there are several compartments with different immunohistochemical characteristics and different input-output relations.  相似文献   

4.
Summary. The neurochemical organization of the posterior caudate nucleus (CN) (body, gyrus and tail) and putamen (Put) was analyzed in the human brain using adjacent sections stained for acetylcholinesterase (AChE), limbic system-associated membrane protein (LAMP), enkephalin (ENK), parvalbumin (PV), calbindin (CB) and tyrosine hydroxylase (TH). Striosomes were visualized in all striatal regions but the anterior two thirds of the CN tail. They were highly immunoreactive (-ir) for ENK and LAMP, devoid of PV and AChE staining, and surrounded by a ring of tissue with pale TH- and CB-ir neuropil. In the Put, other rings of tissue completely free of ENK labeling surrounded certain striosomes (clear septa). In the CN body, gyrus and tail some markers revealed gradients and heterogeneities along the dorsoventral and mediolateral axes. A rim of striatal tissue densely stained for ENK and LAMP and poorly labeled for PV was noticeable along the lateral edge of the Put and the dorsolateral sector of the CN body. Our results illustrate a chemical architecture in the posterior striatum that is heterogeneous and slightly different from that found in the more anterior striatum. Correspondence: José Manuel Giménez-Amaya, Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Despacho A-39, 28029 Madrid, Spain  相似文献   

5.
Horseradish peroxidase was injected in various parts of the caudate nucleus and the putamen of monkeys to ascertain the relative locations of striatal projecting cells in the mesencephalon. The nigrostriatal component, as expected, is the greatest but numerous cells of the mesencephalic raphe system also project to the striatum. The projections from the pars compacta are organized in a topographical manner in all principal planes. The rostral two thirds of the substantia nigra are related to the head of the caudate nucleus. Nigral neurons projecting to the putamen are more posteriorly located and display an anteroposterior topography. The medial two thirds of the pars compacta send efferents to the head of the caudate nucleus from ventromedial to laterodorsal regions, reflecting a mediolateral topographical relationship. An inverse relationship exists dorsoventrally between nigra and caudate so that ventral compacta cells project to dorsal caudate and the dorsally situated neurons project to ventral-ventro-medial caudate regions. The dorsal and lateral parts of the putamen are more intimately related to the lateral and posterior nigra; by contrast, the ventral and ventromedial putamen receives more afferents from medial and central regions of the substantia nigra. A large group of cells in the tegmentum dorsal and medial to the medial lemniscus shows continuity with the pars compacta, and has similar connections with the striatum. This cell group should be included with the pars compacta. Significant overlap exists between the projection fields in all planes, making the nigrostriatal topographical organization seem less than precise. This apparent lack of point-to-point reciprocity may be due to the considerable size difference between the striatum and the substantia nigra. The raphe nuclei project to the greater part of the striatum but more significantly to its ventral and medial regions. The paranigral cell group sends its efferents mainly to the ventral striatum.  相似文献   

6.
The organization of projections from the prefrontal cortex (PFC) to the striatum in relation to previously defined "orbital" and "medial" networks within the PFC were studied in monkeys using anterograde and retrograde tracing techniques. The results indicate that the orbital and medial networks connect to different striatal regions. The ventromedial striatum (the medial caudate nucleus, accumbens nucleus, and ventral putamen) receives input predominantly from the medial PFC (mPFC) and orbital areas 12o, Iai, and 13a, which constitute the "medial" network. More specifically, caudal medial areas 32, 25, and 14r project to the medial edge of the caudate nucleus, accumbens nucleus, and ventromedial putamen, whereas rostral areas 10o, 10m, and 11m are restricted to the medial edge of the caudate. Projections from orbital areas 12o, 13a, and Iai extend more laterally into the lateral accumbens and the ventral putamen. Area 24 gives rise to a divided pattern of projections, including fibers to the ventromedial striatum, apparently from area 24b, and fibers to the dorsolateral striatum, apparently from area 24c. Other areas of orbital cortex (11l, 12m, 12l, 13m, 13l, Ial, and Iam) that constitute the "orbital" network project primarily to the central part of the rostral striatum. This region includes the central and lateral parts of the caudate nucleus, and the ventromedial putamen, on either side of the internal capsule. The results support the subdivision of the orbital and medial PFC into "medial" and "orbital" networks and suggest that the prefrontostriatal projections reflect the functional organization of the PFC rather than topographic location.  相似文献   

7.
Neurotensin-like immunoreactivity (NT-LI) was demonstrated in projection neurons of the striatum and nucleus accumbens in the cat by combining immunohistochemistry and the fluorescent retrograde neuronal labeling method. In colchicine-treated cats, many neurons with NT-LI were found in the caudate nucleus, nucleus accumbens, and putamen. Most of these neurons were medium-sized neurons with spiny dendrites. NT-LI of neuronal elements in the caudate nucleus and nucleus accumbens formed dense aggregates with irregular figures, which appeared to correspond to the striosomes of Graybiel et al. (Proc. Natl. Acad. Sci. USA 75:5723-5726, '78; Exp. Brain Res. 34:189-195, '79; Neuroscience 6:377-397, '81). Fibers with NT-LI were distributed massively to the globus pallidus and ventral midbrain regions, but not to the entopeduncular nucleus. In the ventral midbrain regions, many fine varicose fibers with NT-LI were distributed to the pars compacta and pars lateralis of the substantia nigra, ventral tegmental area, and retrorubral area. In the pars reticulata of the substantia nigra, however, fibers with NT-LI were rather sparse. Examination of consecutive sections immunostained for NT, enkephalin (Enk), GABA, and substance P (SP) revealed that 50% of neurons with NT-LI in the caudate nucleus and nucleus accumbens exhibited Enk-LI, 15% showed GABA-LI, and 5% manifested both Enk-LI and GABA-LI; no NT-positive neurons in the striatum and nucleus accumbens showed SP-LI. No morphological differences were found between NT-positive neurons with Enk-LI and/or GABA-LI and those without Enk-LI and GABA-LI. Most neurons with NT-LI in the striatum and nucleus accumbens were retrogradely labeled with True Blue injected into the globus pallidus, pars compacta and pars lateralis of the substantia nigra, and ventral tegmental area. After hemitransection severing neuronal connections between the ventral midbrain regions and the forebrain structures, fibers with NT-LI and those with Enk-LI in the ventral midbrain regions were markedly reduced in number.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Although temporomandibular disorders (TMD) have been associated with abnormal gray matter volumes in cortical areas and in the striatum, the corticostriatal functional connectivity (FC) of patients with TMD has not been studied. Here, we studied 30 patients with TMD and 20 healthy controls that underwent clinical evaluations, including Helkimo indices, pain assessments, and resting‐state functional magnetic resonance imaging scans. The FCs of the striatal regions with the other brain areas were examined with a seed‐based approach. As seeds, we used the dorsal caudate, ventral caudate/nucleus accumbens, dorsal caudal putamen, and ventral rostral putamen regions. Voxel‐wise comparisons with controls revealed that the patients with TMD exhibited reduced FCs in the ventral corticostriatal circuitry, between the ventral striatum and ventral frontal cortices, including the anterior cingulate cortex and anterior insula; in the dorsal corticostriatal circuitry, between the dorsal striatum and the dorsal cortices, including the precentral gyrus and supramarginal gyrus; and also within the striatum. Additionally, we explored correlations between the reduced corticostriatal FCs and clinical measurements. These results directly supported the hypothesis that TMD is associated with reduced FCs in brain corticostriatal networks and that these reduced FCs may underlie the deficits in motor control, pain processing, and cognition in TMD. Our findings may contribute to the understanding of the etiologies and pathologies of TMD.  相似文献   

9.
Recent evidence has suggested that thalamic amnesia results from damage to the intralaminar nuclei, an important source of input to striatum. To test the hypothesis that intralaminar damage disrupts functions mediated by striatum, we studied the effects of striatal lesions on a delayed matching task known to be affected by intralaminar lesions. Rats were trained to perform the task and given one of five treatments: sham surgery or a lesion of medial or lateral caudate/putamen, nucleus accumbens, or ventral striatum. Rats with ventral striatal lesions were impaired compared to all other groups. Rats with medial caudate/putamen or nucleus accumbens lesions were impaired compared to controls. The effects of ventral striatal lesions were sufficient to account for impairments in the accuracy and latency of delayed matching responses observed in previous studies of intralaminar and medial frontal cortical lesions. The ventral striatal lesions involved portions of ventral pallidum and thus it seems likely that they affected functions mediated by the nucleus accumbens as well as striatal areas of the tubercle. Serial reversal learning trained in the same apparatus with the same reinforcer was unaffected by all of the lesions. These results are discussed in terms of the roles of midline thalamic nuclei and of thalamo-cortico-striatal circuits in delayed conditional discrimination tasks.  相似文献   

10.
The distribution of parvalbumin in the basal ganglia was studied in eight human brains using immunohistochemical techniques and the pattern of staining was compared to the distribution of enkephalin immunoreactivity in adjacent sections. The results showed a heterogeneous pattern of parvalbumin immunoreactivity in the caudate nucleus and putamen; this pattern of staining was characterized by irregularly shaped patches of low parvalbumin immunoreactivity dispersed against a background matrix of moderate-to-high immunoreactive staining. These parvalbumin-poor patches in the caudate nucleus and putamen aligned with the enkephalin-rich striosomes. These results show that parvalbumin immunoreactivity in the human striatum has the same compartmental mosaic organization as other neurochemical markers in the mammalian striatum.  相似文献   

11.
D S Zahm 《Brain research》1991,552(1):164-169
The catecholamine selective neurotoxin, 6-hydroxydopamine, was injected into the ventral mesencephalon of rats and the distribution of tyrosine hydroxylase immunoreactivity in the striatum was compared to that of substance P and calbindin immunoreactivities, recognized histochemical markers of striatal compartments. Two components of the TH-IR mesostriatal innervation were identified. A more vulnerable component, present in the core of the nucleus accumbens and matrix of the caudate-putamen, excepting its ventrolateral part, was eliminated rapidly, unmasking a less vulnerable component which was present primarily in the shell of the nucleus accumbens and patch(striosome) compartment of the caudate-putamen. The TH-IR innervation in the ventrolateral caudate-putamen also was patchy following these lesions but the patches corresponded consistently to neither patch nor matrix compartments.  相似文献   

12.
Topographical or compartmental involvement of the putamen and caudate nucleus has not been fully elucidated in multiple system atrophy predominantly presenting with Parkinsonism (MSA-P). We carried out immunohistochemical studies using antibodies to calbindin (CALB) and calcineurin (CaN) as neurochemical markers for striatal medium spiny neurons. We found that in the caudal and dorsolateral putamen, the area most affected in MSA-P, the medium spiny neurons positive for CALB were severely depleted, while CaN-positive neurons were relatively spared in a mosaic pattern. In the dorsal caudate nucleus, an area less affected in MSA, residual CALB-positive neurons exhibited a compartmentalized distribution that corresponded with the striosomal arrangement visualized by Met-enkephalin immunostaining. Our findings suggest that there is a compartmental difference in the susceptibility of striatal medium spiny neurons to neurodegeneration in MSA-P.  相似文献   

13.
Postmortem studies show pathological changes in the striatum in Alzheimer's disease (AD). Here, we examine the surface of the striatum in AD and assess whether changes of the surface are associated with impaired cognitive functioning. The shape of the striatum (n. accumbens, caudate nucleus, and putamen) was compared between 35 AD patients and 35 individuals without cognitive impairment. The striatum was automatically segmented from 3D T1 magnetic resonance images and automatic shape modeling tools (Growing Adaptive Meshes) were applied for morphometrical analysis. Repeated permutation tests were used to identify locations of consistent shape deformities of the striatal surface in AD. Linear regression models, corrected for age, gender, educational level, head size, and total brain parenchymal volume were used to assess the relation between cognitive performance and local surface deformities. In AD patients, differences of shape were observed on the medial head of the caudate nucleus and on the ventral lateral putamen, but not on the accumbens. The head of the caudate nucleus and ventral lateral putamen are characterized by extensive connections with the orbitofrontal and medial temporal cortices. Severity of cognitive impairment was associated with the degree of deformity of the surfaces of the accumbens, rostral medial caudate nucleus, and ventral lateral putamen. These findings provide evidence for the hypothesis that in AD primarily associative and limbic cerebral networks are affected.  相似文献   

14.
Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective cholinergic neurons in the rabbit forebrain. The density of ChAT-immunoreactive terminals in layer V of distinct neocortical territories and in hippocampal subfields was also measured. Another cholinergic marker, the low-affinity neurotrophin receptor (p75(NTR)), was also employed to identify subsets of cholinergic neurons. Double-immunofluorescence labeling of ChAT and p75(NTR), calbindin D-28k (CB), parvalbumin, calretinin, neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase, or substance P was used to elucidate the neuroanatomical borders of cholinergic nuclei and to analyze the neurochemical complexity of cholinergic cell populations. Cholinergic projection neurons with heterogeneous densities were found in the medial septum, vertical and horizontal diagonal bands of Broca, ventral pallidum, and magnocellular nucleus basalis (MBN)/substantia innominata (SI) complex; cholinergic interneurons were observed in the caudate nucleus, putamen, accumbens nucleus, and olfactory tubercule, whereas the globus pallidus was devoid of cholinergic nerve cells. Cholinergic interneurons were frequently present in the hippocampus and to a lesser extent in cerebral cortex. Cholinergic projection neurons, except those localized in SI, abundantly expressed p75(NTR), and a subset of cholinergic neurons in posterior MBN was immunoreactive for CB and nNOS. A strict laminar distribution pattern of cholinergic terminals was recorded both in the cerebral cortex and in CA1-CA3 and dentate gyrus of the hippocampus. In summary, the structural organization and chemoarchitecture of rabbit basal forebrain may be considered as a transition between that of rodents and that of primates.  相似文献   

15.
The organization of the thalamic projections to the ventral striatum in the rat was studied by placing injections of the retrograde tracer cholera toxin subunit B in the ventral striatum and small deposits of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) in individual midline and intralaminar thalamic nuclei. In order to provide a complete map of the midline and intralaminar thalamostriatal projections, PHA-L injections were also made in those parts of the intralaminar nuclei that project to the dorsal striatum. The relationship of thalamic afferent fibres with the compartmental organization of the ventral striatum was assessed by combining PHA-L tracing and enkephalin immunohistochemistry. The various midline and intralaminar thalamic nuclei project to longitudinally oriented striatal sectors. The paraventricular thalamic nucleus sends most of its fibres to medial parts of the nucleus accumbens and the olfactory tubercle, whereas smaller contingents of fibres terminate in the lateral part of the nucleus accumbens and the most ventral, medial, and caudal parts of the caudate-putamen complex. The projections of the parataenial nucleus are directed towards central and ventral parts of the nucleus accumbens and intermediate mediolateral parts of the olfactory tubercle. The intermediodorsal nucleus projects to lateral parts of the nucleus accumbens and the olfactory tubercle and to ventral parts of the caudate-putamen. The projection of the rhomboid nucleus is restricted to the rostrolateral extreme of the striatum. A diffuse projection to the ventral striatum arises from neurons ventral and caudal to the nucleus reuniens rather than from cells inside the nucleus. Fibres from the central medial nucleus terminate centrally and dorsolaterally in the rostral part of the nucleus accumbens and medially in the caudate-putamen. Successively more lateral positions in the caudate-putamen are occupied by fibres from the paracentral and central lateral nuclei, respectively. The lateral part of the parafascicular nucleus projects to the most lateral part of the caudate-putamen, whereas projections from the medial part of this nucleus terminate in the medial part of the caudate-putamen and in the dorsolateral part of the nucleus accumbens. Furthermore, a rostral to caudal gradient in a midline or intralaminar nucleus corresponds to a dorsal to ventral and rostral to caudal gradient in the striatum. In the ventral striatum, thalamic afferent fibres in the "shell" region of the nucleus accumbens avoid areas of high cell density and weak enkephalin immunoreactivity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
17.
The distribution of benzodiazepine receptors in the human striatum was studied by quantitative autoradiography following in vitro labelling of cryostat sections with [3H]flunitrazepam, and the pattern of receptor-labelling was compared to the distribution of acetylcholinesterase (AChE) staining in adjacent sections. A heterogeneous pattern of benzodiazepine receptors was found in all regions of the striatum. The highest densities of receptors were seen in the ventral striatum (nucleus accumbens and olfactory tubercle), where very dense receptor patches aligned with both AChE-poor and AChE-rich regions. The dorsal striatum (caudate nucleus and putamen) contained lower concentrations of benzodiazepine receptors, but dense receptor patches were still evident (especially in the caudate nucleus) and these aligned with AChE-poor striosomes.  相似文献   

18.
Hodological, electrophysiological, and ablation studies indicate a role for the basal forebrain in telencephalic vocal control; however, to date the organization of the basal forebrain has not been extensively studied in any nonmammal or nonhuman vocal learning species. To this end the chemical anatomy of the avian basal forebrain was investigated in a vocal learning parrot, the budgerigar (Melopsittacus undulatus). Immunological and histological stains, including choline acetyltransferase, acetylcholinesterase, tyrosine hydroxylase, dopamine and cAMP-regulated phosphoprotein (DARPP)-32, the calcium binding proteins calbindin D-28k and parvalbumin, calcitonin gene-related peptide, iron, substance P, methionine enkephalin, nicotinamide adenine dinucleotide phosphotase diaphorase, and arginine vasotocin were used in the present study. We conclude that the ventral paleostriatum (cf. Kitt and Brauth [1981] Neuroscience 6:1551-1566) and adjacent archistriatal regions can be subdivided into several distinct subareas that are chemically comparable to mammalian basal forebrain structures. The nucleus accumbens is histochemically separable into core and shell regions. The nucleus taeniae (TN) is theorized to be homologous to the medial amygdaloid nucleus. The archistriatum pars ventrolateralis (Avl; comparable to the pigeon archistriatum pars dorsalis) is theorized to be a possible homologue of the central amygdaloid nucleus. The TN and Avl are histochemically continuous with the medial aspects of the bed nucleus of the stria terminalis and the ventromedial striatum, forming an avian analogue of the extended amygdala. The apparent counterpart in budgerigars of the mammalian nucleus basalis of Meynert consists of a field of cholinergic neurons spanning the basal forebrain. The budgerigar septal region is theorized to be homologous as a field to the mammalian septum. Our results are discussed with regard to both the evolution of the basal forebrain and its role in vocal learning processes.  相似文献   

19.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration is able to produce nigrostriatal damage and motor disabilities in primates similar to those seen in Parkinson's disease. Two months after MPTP treatment in African Green monkeys, significant depletions of dopamine (DA) and/or homovanillic acid (HVA) were found in the dorsal ventral tegmental area, and septum, but not in the ventral part of the ventral tegmental area or nucleus accumbens. However, DA losses were greater at all examined sites in the striatum. In putamen and caudate nucleus the decreases in DA and HVA appeared more marked dorsolaterally than ventromedially. After MPTP treatment the ratio HVA/DA was elevated in the septum and all striatal regions; in the striatum the increases in ratio were greater in the dorsolateral than in the ventromedial samples. NE concentration was not significantly altered by MPTP in the mesolimbic system. In control animals the HVA concentration and the ratio HVA/DA were higher in the putamen than in the caudate nucleus. A longitudinal study showed that CSF HVA and 3-methoxy-4-hydroxyphenylglycol were reduced by MPTP and remained below baseline level for 12 months after MPTP treatment. This biochemical study indicates that in the monkey MPTP is able to induce selective damage within both the nigrostriatal and mesolimbic DA systems.  相似文献   

20.
Selective kappa opioid receptor autoradiography with [3H]bremazocine (BRM) was used to examine regional and subregional kappa receptor distribution patterns at five rostrocaudal levels through the human striatum. [3H]BRM binding densities were measured in the individual striatal nuclei and in subregions therein. The distribution of [3H]BRM binding sites was found to have a strongly heterogeneous character. At the regional level a rostral-to-caudal decrease in [3H]BRM binding densities was observed. Also, a dorsal-to-ventral differentiation was seen, with higher values in the ventral striatum, especially in the nucleus accumbens, and lower values in the dorsal parts of the caudate nucleus and putamen. These findings suggest an association of kappaa receptor function with limbic-related processes in the ventral striatum. Along the ventral edge of the nucleus accumbens and putamen, specific domains with extremely high [3H]BRM binding values were identified. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号