首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide specificity of cultured tumor-infiltrating lymphocytes (TIL) was systematically investigated in a group of HLA-A2.1+ metastatic melanoma patients consecutively referred to our department for surgical treatment. Seven samples from 6 patients were studied. All surgical specimens showed evidence of gp100, MART-1/Melan-A and Tyrosinose gene expression as detectable by reverse PCR (rPCR). Cultured TIL from 2 patients displayed cytotoxic activity against autologous or HLA-matched EBV-transformed cells previously pulsed with MART-1/Melan-A27-35 peptide. In contrast, no CTL activity against gp 100280-288 or tyrosinase1-9 peptides could be observed. TIL were then repeatedly stimulated in vitro with the same peptides. After 6 restimulation courses at weekly intervals, specific recognition of gp100280-288 and MART-1/Melan-A27-35 peptides was detectable in 3 and 5 TIL populations, respectively. In one case Tyrosinase1-9-specific CTL could be demonstrated. Two TIL populations from metastases resected from a melanoma patient at 6 months' distance showed a different peptide specificity pattern, and no specific CTL could be generated from simultaneously sampled peripheral blood mononuclear cells (PBMC). All peptide-specific CTL populations also displayed significant cytotoxic activity against HLA-A2.1 matched melanoma cell lines expressing the antigens under investigation. Our data indicate that CTL specific for MART-Melan-A27-35, gp100280-288 or Tyrosinase1-9 peptides could be expanded with varying frequency from TIL derived from 4 out of 6 HLA-A2.1+ patients whose tumors expressed the genes encoding these tumor-associated antigens (TAA). © 1995 Wiley-Liss, Inc.  相似文献   

2.
Tumour-associated antigens (TAA)-specific vaccination requires highly immunogenic reagents capable of inducing cytotoxic T cells (CTL). Soluble peptides are currently used in clinical applications despite an acknowledged poor immunogenicity. Encapsulation into liposomes has been suggested to improve the immunogenicity of discrete antigen formulations. We comparatively evaluated the capacity of HLA-A2.1 restricted Melan-A/MART-1 epitopes in soluble form (S) or following inclusion into sterically stabilised liposomes (SSL) to be recognised by specific CTL, to stimulate their proliferation and to induce them in healthy donors' peripheral blood mononuclear cells (PBMC), as well as in melanoma-derived tumour-infiltrating lymphocytes (TIL). HLA-A2.1(+), Melan-A/MART-1-NA-8 melanoma cells served as targets of specific CTL in 51Cr release assays upon pulsing by untreated or human plasma-treated soluble or SSL-encapsulated Melan-A/MART-1 27-35 (M27-35) or 26-35 (M26-35) epitopes. These reagents were also used to stimulate CTL proliferation, measured as 3H-thymidine incorporation, in the presence of immature dendritic cells (iDC), as antigen-presenting cells (APC). Induction of specific CTL upon stimulation with soluble or SSL-encapsulated peptides was attempted in healthy donors' PBMC or melanoma-derived TIL, and monitored by 51Cr release assays and tetramer staining. Na-8 cells pulsing with SSL M27-35 resulted in a five-fold more effective killing by specific CTL as compared with equal amounts of S M27-35. Encapsulation into SSL also provided a partial (50%) protection of M27-35 from plasma hydrolysis. No specific advantages regarding M26-35 were detectable in these assays. However, at low epitope concentrations (相似文献   

3.
Melan-A/MART-1 is a melanoma differentiation antigen that is recognized by a high proportion of cytolytic T lymphocyte (CTL) clones derived from human leukocyte antigen (HLA)-A2+ melanoma patients. Whereas peptide Melan-A/MART-127–35 was originally defined as the immunodominant CTL epitope, we have previously reported that peptide Melan-A/MART-126–35 was recognized more efficiently by the majority of tumor-reactive CTL clones. As demonstrated here, CTL populations generated from blood lymphocytes of either melanoma patients or healthy individuals after in vitro stimulation with peptide Melan-A/MART-126–35 killed specifically HLA-A2+ Melan-A+ allogeneic melanoma cells, thus suggesting their potential use in adoptive immunotherapy. We characterized the surface phenotype of the circulating CTL precursors (CTLp), which respond to in vitro stimulation with peptide Melan-A/MART-126–35. In melanoma patients, these CTLp predominantly expressed the CD45RO memory marker. In contrast, they were mainly, although not exclusively, found in the CD45RA subpopulation of CD8+ T cells in healthy individuals. The demonstration that Melan-A/MART-1-specific CTLp in peripheral blood lymphocytes from HLA-A2+ patients with metastatic melanoma express a memory phenotype provides direct evidence that in vivo priming of this antigen may occur during tumor progression. Int. J. Cancer 78:699–706, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.  相似文献   

5.
From the peripheral blood lymphocytes (PBLs) of melanoma patient SK29(AV) we have previously isolated 2 independent cytolytic T lymphocyte (CTL) clones (CTL7/147 and CTL13/211), which lysed autologous tumor cells in association with HLA-B45.1. As demonstrated here, both CTL clones were directed against melanocyte differentiation antigen Melan-A/MART-1, which also was recognized by HLA-A2.1-restricted CTLs from the same patient. By generating and transfecting 3′-deletion mutants of Melan-A/MART-1 cDNA, we localized its peptide-coding regions. The HLA-B45.1-presented peptides were derived from a hydrophobic region of the protein and largely overlapped the peptides recognized by CTLs from the same patient in association with HLA-A2.1. We determined the fine specificity of these CTL clones with synthetic peptides. CTL clone CTL7/147 recognized the 11-mer peptide AEEAAGIGILT (residues 24–34) at the lowest concentrations. The absence of threonine-34 abrogated the recognition by CTL7/147. The truncated peptide AEEAAGIGIL (residues 24–33) proved to be the optimal synthetic peptide for sensitization against lysis by CTL13/211. This indicated that C-terminal threonine-34 was not involved in binding to HLA-B45.1 but, rather, was part of the epitope for CTL7/147. HLA-B45.1-associated peptides of Melan-A/MART-1 were regularly processed and presented by other melanomas and other cell types. Three of 4 independent HLA-A2.1-restricted SK29-CTL clones recognized the 10-mer peptide EAAGIGILTV (residues 26–35) at 10- to 100-fold lower concentrations than the nonamer AAGIGILTV (residues 27–35), previously described as the common immunodominant peptide antigen for all known anti-Melan-A/MART-1 CTLs restricted by HLA-A2.1. Different melanoma peptide antigens currently are applied in therapeutic vaccination studies. Our findings emphasize that restricting to peptides of minimal length might exclude relevant T-cell epitopes. Int. J. Cancer 75:451–458, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Peptides derived from the melanoma-associated MART-1/Melan-A antigen are currently implemented in immunotherapy for inducing or augmenting T-cell responses directed against peptides expressed by autologous tumor cells in HLA-A2+ patients with melanoma. Here, we describe the specificity of the T-cell clone SK29-FFM1.1, which secretes GM-CSF in response to a panel of synthetic MART-1/Melan-A-derived peptides, including the naturally presented ILTVILGVL(32-40), but exhibits cytotoxicity and IFN-gamma secretion exclusively to the MART-1/Melan-A derived peptide AAGIGILTV(27-35). In addition, cytotoxic T-lymphocyte (CTL) clone SK29-FFM1.1 recognizes 3 different naturally processed and presented peptides on HLA-A2+ MART-1/Melan-A+ melanoma cells, as defined by cytotoxicity and IFN-gamma and GM-CSF secretion. Processing and presentation of MART-1/Melan-A peptides appears to be different in cells of non-melanocytic origin, as shown by the characterization of naturally presented peptides displayed by HLA-A2+ colorectal cancer cells transduced with a MART-1/Melan-A gene-containing retrovirus. Our data suggest that multiple epitopes, including ILTVILGVL and different isoforms of AAGIGILTV derived from MART-1/Melan-A may be naturally presented by melanoma cells to the immune system.  相似文献   

7.
The effect on immunogenicity of different tumor T cell epitope formulations was evaluated in vitro using nonreplicating recombinant vaccinia vector expressing two forms of the melanoma-associated MART-1/Melan-A antigen. The first recombinant virus expressed a minigene encoding a fusion product between an endoplasmic reticulum (ER)-targeting signal and the HLA-A201 binding 27-35 peptide. The second viral construct encoded the complete MART-1/Melan-A protein. The capacity of HLA-A201 cells infected with either viral construct to generate and to stimulate MART-1/Melan-A 27-35 specific cytotoxic T-lymphocytes (CTL), was comparatively characterized. The results obtained here with a tumor antigen confirmed the capacity of vaccinia virus-encoded ER-minigene to generate a very strong antigenic signal. In cytotoxicity assays, recognition of target cells infected with high amounts of both recombinant viruses with activated specific CTL clones, resulted in similar lytic activity. With regard to calcium mobilization, TCR down-regulation, IFN-gamma release, and T cell proliferation assays, the targeted epitope elicited 10- to 1000-fold stronger responses. Remarkably, the immunogenic difference between the two formulations, in their respective capacity to generate CTL from naive HLA-A2 peripheral blood mononuclear cells in vitro as measured by tetramer detection, was lower (2- to 3-fold). Recombinant vectors expressing complete antigens have demonstrated their capacity to generate specific responses and such vaccines might take advantage of a broader potential of presentation. However, as demonstrated here for the HLA-A201-restricted MART-1/Melan-A immunodominant epitope, nonreplicative vaccinia virus expressing ER-targeted minigenes appear to represent a significantly more immunogenic epitope vaccine formulation.  相似文献   

8.
Melanoma-reactive human cytotoxic T lymphocytes (CTLs) mediate tumor regression in vivo through specific recognition of MHC-associated peptide epitopes, many of which are encoded by the melanocytic tissue differentiation proteins gp100/Pme117 and MART-1/Melan-A. Vaccines using these peptides may induce protective or therapeutic immunity against melanoma. Rational design of such approaches is aided by a clear understanding of the identity of these antigenic peptides; however, most CTL epitopes described to date were identified indirectly. Especially where these peptides may be used in human clinical trials for the treatment or prevention of cancer, there is substantial need for direct evaluation of HLA-A*0201-associated peptides from MART-1 and gp100 that are naturally processed and presented. To that end, we have isolated peptides directly from HLA-A*0201 molecules of human melanoma cells and have determined that naturally processed epitopes for HLA-A*0201-restricted, melanoma-reactive CTLs include the nonamers MART-1(27-35) (AAGIGILTV), gp100(154-162) (KTWGQYWQV), gp100(209-217) (ITDQVPFSV) and gp100(280-288) (YLEPGPVTA) and the decamer gp100(476-485) (VLYRYGSFSV). Among these, the one that appears to be most abundant at the cell surface is gp100(154-162) (KTWGQYWQV). The others are among the less abundant peptides. HLA-A*0201-restricted CTLs from one melanoma patient who has survived metastatic disease recognized MART-1(27-35) (AAGIGILTV), gp100(280-288) (YLEPGPVTA) and gp100(154-162) (KTWGQYWQV) and were cross-reactive on longer peptides that contained these nonamer sequences. These peptides, identified by both an indirect genetic approach and by a direct peptide approach, can be used for tumor vaccine strategies with confidence that they are identical to the naturally processed peptide epitopes presented at the surface of melanoma cells in association with HLA-A*0201 molecules.  相似文献   

9.
Toward the development of a novel cancer immunotherapy, we have previously identified several tumor-associated antigens (TAAs) and the epitopes recognized by human histocompatibility leukocyte (HLA)-A2/A24-restricted cytotoxic T lymphocyte (CTL). In this study, we tried to identify a TAA of lung cancer (LC) and its HLA-A2 restricted CTL epitopes to provide a target antigen useful for cancer immunotherapy of LC. We identified a novel cancer testis antigen, cell division cycle associated gene 1 (CDCA1), overexpressed in nonsmall cell LC using a cDNA microarray analysis. The expression levels of CDCA1 were also increased in the majority of small cell LC, cholangiocellular cancer, urinary bladder cancer and renal cell cancers. We used HLA-A2.1 transgenic mice to identify the HLA-A2 (A*0201)-restricted CDCA1 epitopes recognized by mouse CTL, and we investigated whether these peptides could induce CDCA1-reactive CTLs from the peripheral blood mononuclear cells (PBMCs) of HLA-A2-positive donors and a NSCLC patient. Consequently, we found that the CDCA1(65-73) (YMMPVNSEV) peptide and CDCA1(351-359) (KLATAQFKI) peptide could induce peptide-reactive CTLs in HLA-A2.1 transgenic mice. In HLA-A2(+) donors, in vitro stimulation of PBMC with these peptides could induce peptide-reactive CTLs which killed tumor cell lines endogenously expressing both HLA-A2 and CDCA1. As a result, CDCA1 is a novel cancer-testis antigen overexpressed in LC, cholangiocellular cancer, urinary bladder cancer and renal cell cancers, and CDCA1 may therefore be an ideal TAA useful for the diagnosis and immunotherapy of these cancers.  相似文献   

10.
In this study, a computer-assisted reverse immunology approach was utilized in order to identify potentially antigenic peptides derived from the differentiation antigen TRP-2, a melanosomal protein frequently expressed in melanoma. Among the seven peptides complying with HLA-A2.1-binding motifs, two induced specific CD8(+) cytotoxic T lymphocytes. HLA-A2.1(+) melanoma cells expressing TRP-2 were lysed by clones specific for TRP-2(360-368) (TLDSQVMSL) peptide, thus identifying it as a naturally processed epitope. Other T-cell clones directed against TRP-2(476-484) (VMGTLVALV) were unable to lyse HLA-matched TRP-2(+) cell lines. The role of intracellular proteolytic processing in the generation of this epitope was investigated by transfecting mini-genes encoding the TRP-2(476-484) peptide alone or carrying N- or C-terminal extensions. Specific T-cell clones recognized target cells expressing the cytotoxic T-lymphocyte (CTL)-defined epitope or its C-terminally extended precursor, but failed to recognize cells expressing the N-terminally extended TRP-2(476-484) peptide, suggesting the presence of a negative processing signal (NPS). Regarding C-terminus-flanking regions, mutational analysis indicates that the GLY485 residue plays a key role in the processing of the TRP-2(476-484) epitope. Interestingly, proteasome inhibitors preventing the generation of the MART-1/Melan-A(27-35) immunodominant melanoma tumor-associated antigen (TAA) promoted detectable presentation of TRP-2(476-484) epitope in HLA-A2.1(+) and TRP-2(+) tumor lines, as witnessed by cytokine release by specific T-cell clones.  相似文献   

11.
Suboptimal activation of T lymphocytes by tumor cells may contribute to the failure of the immune system to control tumor growth. We recently demonstrated that Melan-A/MART-1-reactive CTLs can be anergized by peptide analogues with partial agonist/antagonist functions, which selectively impair interleukin (IL)-2 release. Here we analyze the potential expression of partial agonist/antagonist peptides by tumor cells and their role in suboptimal T-cell activation. HLA-bound peptide fractions were eluted from HLA-A*0201/Melan-A/MART-1(+) melanoma cells and analyzed for reconstitution of the MART-1-specific T-cell epitope. Among the peptide fractions able to induce IFN-gamma release by MART-1-specific T cells, only fraction 43-44 activated IL-2 production by anti-MART-1 T cells, whereas the remaining two fractions acted as peptide antagonists by inhibiting IL-2 release in response to the native epitope. A comparable down-modulation of IL-2 release could also be induced by the MART-1-derived peptide 32-40, previously identified in one of the two anergizing fractions. A substantial deficit in IL-2 release was additionally detected in tumor-specific CD8(+) T cells infiltrating melanoma lesions. To overcome IL-2 impairment by peptide antagonists, anti-MART-1 T cells were generated by in vitro sensitization with the two optimized analogues Melan-A/MART-1(27-35) 1L (with superagonist features) and Melan-A/MART-1(26-35) 2L (with improved HLA-A*0201 binding). T cells raised with the superagonist Melan-A/MART-1(27-35) 1L showed resistance to the inhibition of IL-2 release mediated by melanoma-derived peptide fractions, whereas Melan-A/MART-1(26-35) 2L-specific T cells appeared to be as sensitive as T cells raised with the parental epitope. This resistance was associated with the enhanced ability of Melan-A/MART-1(27-35) 1L-specific T cells to release IL-2. Taken together, these data indicate that melanoma cells can process and present on their surface peptides inhibiting optimal T-cell activation against immunodominant epitopes and that the usage of optimized peptide analogues could represent a promising approach for overcoming tumor-induced immunosuppression and possibly designing more successful vaccines for cancer patients.  相似文献   

12.
Melanoma-associated antigens, MART-1, tyrosinase, gp100 and MAGEs, are typical melanoma-specific tumor antigens which can potently induce immune responses in metastatic melanoma patients treated with peptide vaccines. In the present study, we established a dendritic cell (DC)-based HLA-A2 melanoma-associated peptide (MART-1 or gp100)-specific CTL induction method and characterized the CTLs using HLA-A2 tetramer staining in 6 cases of HLA-A2+ melanoma treated with DC vaccines. Peripheral blood mononuclear cells (PBMC) from patients were stimulated twice with MART-1 A2 peptide-pulsed DCs in the presence of a low dose of IL-2. To boost CTL populations, CTL lines were further stimulated twice with MART-1 A2 peptide-pulsed T2 cells. The frequency of MART-1 A2 tetramer-positive CTLs increased from 0.16% (prior to stimulation) to 2.15% (after DC stimulation), and reached 46.5% on average (after additional T2 stimulation) in 4 cases which showed a successful expansion. The absolute numbers of MART-1 A2 tetramer-positive CTLs increased from 187- to 619-fold (average, 415-fold) compared to prior to DC stimulation. CTL assays using MART-1-specific CTL lines demonstrated potent killing activity against MART-1 peptide-pulsed T2 cells or HLA-A2+ melanoma cell lines in accordance with the frequency of tetramer-positive CTLs. Finally, we were successful in identifying melanoma peptide-specific T-cell receptor (TCR) cDNAs in 2 cases for MART-1 and 1 case for gp100 using the anti-TCR MoAb-based sorting as a novel approach instead of a conventional cell cloning, and confirmed peptide-specific IFN-gamma production in TCR cDNA-transduced na?ve T cells. The results showed that cloned TCR cDNAs were efficient in reconstituting tumor-specific cytotoxicity and good candidates for novel immunotherapy.  相似文献   

13.
We have established a sensitive ELISPOT assay measuring interferon γ (IFN γ) release on a single-cell basis to detect influenza peptide-specific CD8+ T cells in uncultured peripheral blood mononuclear cells (PBMC). Using this method, we studied the T cell response to HLA-A1 and HLA-A2.1 binding peptide epitopes derived from the MAGE-1 and MAGE-3 proteins, from the melanoma-associated antigens tyrosinase, Melan-A/MART-1 and gp100, and from influenza proteins in stage IV melanoma patients and healthy controls. In 18 of 24 HLA-A2-positive donors (75%), but only in 9 of 25 HLA-A2-positive melanoma patients (36%) T cells reactive with the influenza matrix peptide were demonstrated (p = 0.007). T cells responding to one or several of the melanoma-associated peptides were detected in 5 of 25 HLA-A2-positive patients with metastatic melanoma. Four of these 5 patients had been treated with interleukin-2- and IFNα-containing therapy. Two of the 24 healthy donors had T cells reactive with the MART-1 27-35 peptide. No reactivity with the HLA-A1-binding peptides from MAGE-1 or MAGE-3 was detected in any of the HLA-A1-positive healthy controls or melanoma patients. These results show that the IFNγ-ELISPOT assay is suitable to determine quantitatively T cells reactive with melanoma-associated and influenza peptide epitopes in uncultured PBMC. The failure to detect T cells responding to influenza in many melanoma patients with progressive disease may indicate an impairment of their T cell function. Int. J. Cancer 71: 932-936, 1997. © 1997 Wiley-Liss Inc.  相似文献   

14.
DCs hold promise for cancer immunotherapy due to their functional ambivalence: iDCs internalize antigens, then mDCs trigger naive T-cell activation. However, no consensus has been reached concerning the optimal mode of antigen acquisition for efficient cross-priming of TAA-specific CTLs, and this remains a field of investigation. Here, we used highly purified apobodies derived from an HLA-A*0201-negative melanoma line as a source of tumor antigens for HLA-A*0201 DCs. We compared in vitro mDCs loaded with apobodies to DCs loaded with antigenic peptides, NA17-A(1-9) and Melan-A/MART-1(26-35) A27L analogue, for their capacity to stimulate melanoma antigen-specific T cells from autologous PBLs. Apobody phagocytosis did not induce spontaneous DC maturation, but phagocytic DCs were still responsive to maturation signals, resulting in a functional ability to activate antigen-specific lymphocytes. NA17-A-specific T lymphocytes were activated by both types of stimulation, whereas only peptide-pulsed DCs stimulated the growth of Melan-A/MART-1-specific lymphocytes. We also observed a lack of staining of melanoma-derived apobodies with a Melan-A-specific MAb, suggesting protein alteration during apoptosis induction. After HLA-A*0201/NA17-A multimer sorting, antigen-specific lymphocytes induced by mature DCs loaded with either peptide or apobodies displayed similar functional capacity against peptide-pulsed T2 cells and melanoma cells. Therefore, apobody-loaded DCs can achieve T-cell priming similar to that induced by peptide-pulsed DCs, provided that the apoptotic process allows the preservation of antigen expression.  相似文献   

15.
The purpose of this review is to illustrate some of the technical and biological hurdles that need to be addressed when developing new gene therapy based clinical trials. Gene transfer approaches can be used to “mark” cells to monitor their persistence in vivo in patients, to protect cells from toxic chemotherapeutic agents, correct a genetic defect within the target cell, or to confer a novel function on the target cell. Selection of the most suitable vector for gene transfer depends upon a number of factors such as the target cell itself and whether gene expression needs to be sustained or transient. The TCR gene transfer approach described here represents one innovative strategy being pursued as a potential therapy for metastatic melanoma. Tumor reactive T cells can be isolated from the tumor infiltrating lymphocytes (TIL) of melanoma patients. A retroviral vector has been constructed containing the T cell receptor (TCR) α and β chain genes from a MART-1(27-35)-specific T cell clone (TIL 5). Jurkat cells transduced with this virus specifically release cytokine in response to MART-1(27-35) peptide pulsed T2 cells, showing that the virus can mediate expression of a functional TCR. HLA-A2 transgenic mice are being used to examine whether transduced bone marrow progenitor cells will differentiatein vivo into mature CD8+ T cells expressing the MART-1(27-35)-specific TCR. Expression of the human TCR α and β chain genes has been detected by RT-PCR in the peripheral blood of HLA-A2 transgenic mice reconstituted with transduced mouse bone marrow. Expression of the TIL 5 TCR genes in the peripheral blood of these mice was maintained for greater than 40 weeks after bone marrow reconstitution. TIL 5 TCR gene expression was also maintained following transfer of bone marrow from mice previously reconstituted with transduced bone marrow to secondary mouse recipients, suggesting that a pluripotent progenitor or lymphocyte progenitor cell has been transduced.  相似文献   

16.
Cytotoxic T lymphocytes (CTL) reactive with human melanoma tumor cells occasionally display cross-reactivity with normal melanocytes. Previously, we identified the melanocyte lineage-specific antigen gp100 that is expressed by both melanoma cells and normal melanocytes, as a target antigen for tumor-infiltrating lymphocytes derived from a melanoma patient (TIL 1200). Here, we demonstrate that the oligoclonal HLA-A2.1-restricted TIL 1200 line is reactive with 2 distinct peptides derived from the gpl00 protein. Apart from the peptide corresponding to gpl00 amino acids 457–466, we identified the gpl00 peptide 154–162 as a second epitope recognized by TIL 1200. A 100-fold lower concentration of this novel gpl00 peptide was required for target-cell sensitization compared to peptide 457–466, indicating that the 154–162 peptide is the dominant gpl00 epitope for TIL 1200. Together with the recently described gpl00 280–288 epitope, 3 distinct CTL epitopes have now been identified in gpl00, all presented in the context of HLA-A2.1. Therefore, gpl00 is an attractive target antigen in the development of immuno-therapeutic protocols against melanoma. © 1995 Wiley-Liss Inc.  相似文献   

17.
18.
Bone metastases are one of the most common events in patients with prostate carcinoma. PTH-rP, a protein produced by prostate carcinoma and other epithelial cancers, is a key agent for the development of bone metastases. A PTH-rP-derived peptide, designated PTR-4 was identified, which is capable to bind HLA-A2.1 molecules and to generate PTH-rP-specific cytotoxic T cell (CTL) lines from healthy HLA-A2.1(+) individual peripheral-blood-mononuclear-cells (PBMC). In this model, we investigated the in vitro possibility of generating an efficient PTH-rP specific CTL response by cyclical stimulations with IL-2 and PTR-4 peptide-pulsed autologous dendritic cells (DC), of HLA-A2.1(+) tumour infiltrating lymphocytes (TIL) derived from a patient with metastatic prostate carcinoma. A T cell line generated in this way (called TM-PTR-4) had a CD3(+), CD5(+), CD4(-), CD8(+), CD45(Ro+), CD56(-) immunophenotype and a HLA-A2.1 restricted cytotoxic activity to PTR-4-peptide pulsed CIR-A2 (HLA-A2.1(+)) target cells, PTH-rP(+)/HLA-A2.1(+) CIR-A2 transfected with PTH-rP gene, prostate carcinoma LNCaP cells, and autologous metastatic prostate cancer cells (M-CaP). These lymphocytes were not cytotoxic to HLA-A2.1(+) targets not producing PTH-rP, such as peptide-unpulsed CIR-A2 and colon carcinoma SW-1463, cell lines. Our results provide evidence that PTR-4 peptide-pulsed autologous DC may break the tolerance of human TIL against the autologous tumour by inducing a PTH-rP-specific CTL immune reaction. In conclusion PTR-4 peptide-pulsed autologous DC may be a promising approach for vaccine-therapy and antigen-specific CTL adoptive immunotherapy of hormone-resistant prostrate cancer.  相似文献   

19.
To design an efficient procedure to expand high avidity melanoma reactive T cells and to perform immunotherapies, we compared conditions of peripheral blood lymphocyte (PBL) stimulation by Melan-A/MART-1 peptides. Avidity of induced CTLs was evaluated by measuring their lysis and cytokine secretion to peptide-pulsed transporter-associated protein-deficient cells and to melanoma cells. In side-by-side experiments, we show that melanoma cells, either allogeneic or autologous, induced the growth of high avidity Melan-A-reactive CTLs from all donors, whereas essentially low avidity T cells were induced by peptide-pulsed PBLs. We also show that at least two cytokines, interleukin-6 and interleukin-2, were required to promote the growth of high avidity CTLs. Once sorted by tetramer labeling or cloning, the specificity and reactivity to tumor cells of peptide-specific T cells induced by allogeneic melanoma cells were confirmed. We then describe a relatively simple and efficient procedure that allowed us to obtain systematically high amounts (in the range of billion) of high avidity Melan-A/ MART-1-specific T cells from the PBLs of HLA-A2 melanoma patients and healthy donors in 3 months. Because this antigen is expressed by most melanoma tumors, this procedure should be useful for checking the efficiency of adoptive immunotherapy of melanoma tumors and using functionally well-defined Melan-A/MART-1-specific CTLs in a large group of patients.  相似文献   

20.
Abstract

5-Fluorouracil (5-FU) is a pyrimidine antimetabolite active against colorectal carcinoma and other malignancies of the digestive tract. Over-expression or mutation of thymidylate synthase (TS), the target enzyme of the 5-FU metabolite, 5-fluorodeoxyuridine monophosphate, is strictly correlated with cancer cell resistance to 5-FU. On this basis we investigated whether TS is a potential target for active specific immunotherapy of human colon carcinoma, which acquires resistance to 5-FU. Three TS-derived epitope peptides which fit defined amino acid consensus motifs for HLA-A2.1 binding were synthesized and investigated for their ability to induce human TS-specific cytotoxic T cell (CTL) responses In Vitro. CTL lines specific for each peptide were established by stimulating peripheral blood mononuclear cells (PBMC) from an HLA-A2.1 + healthy donor with autologous dendritic cells loaded with TS peptide. Specific CTL lines showed HLA-A2.1-restricted cytotoxicity In Vitro to HLA-A2.1+ target cells pulsed with the specific TS peptide and to HLA-class I matching colon carcinoma target cells over-expressing TS enzyme after exposure to 5-FU. Recognition by CTL lines suggests that these TS peptides may be potential candidates for use in a peptide-based vaccine against 5-FU resistant colon carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号