首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Some studies have found that unilateral cerebral damage produces significant deficits in the ipsilesional, "less-affected", body side. Other studies have found that such damage results in a paradoxical hyperfunctionality of the ipsilesional body side and a facilitation of learning-induced neuroplastic changes in the contralesional motor cortex. The purpose of this study was to determine whether these effects co-exist and/or vary with lesion severity. After small or large unilateral ischemic lesions of the sensorimotor cortex (SMC) or sham operations, adult male rats were trained for 20 days to acquire a motor task, skilled reaching for food, for the first time with the ipsilesional forelimb. Analyses of movement patterns indicated lesion-size-dependent ipsilesional abnormalities in grasping, retrieving and releasing food pellets. Despite these impairments, success rates were significantly increased and aiming errors reduced in lesion groups compared with sham operates. Performance was best in rats with small lesions that had more minor ipsilesional impairments. In the motor cortex contralateral to the lesion and trained limb, there were significant increases in the density of dendrites immunoreactive for microtubule-associated protein-2 (MAP2) and of N-methyl-D-aspartate receptor subunit 1 (NMDAR1) immunoreactivity compared with sham operates. These effects were correlated with reaching performance. Therefore, enhanced motor skill learning in the "less-affected" forelimb and contralesional neuroplastic changes are muted after larger lesions and co-exist with ipsilesional impairments. These effects may be related to a denervation-induced neural restructuring of the contralesional cortex that both disrupts pre-existing motor engrams and facilitates the establishment of new ones.  相似文献   

3.
Unilateral damage to sensorimotor cortical (SMC) regions can profoundly impair skilled reaching function in the contralesional forelimb. Such damage also results in impairments and compensatory changes in the less-affected/ipsilesional forelimb, but these effects remain poorly understood. Furthermore, anesthetization of the ipsilesional hand in humans with cerebral infarcts has been reported to produce transient functional improvements in the paretic hand [Floel A, Nagorsen U, Werhahn KJ, Ravindran S, Birbaumer N, Knecht S, et al. Influence of somatosensory input on motor function in patients with chronic stroke. Ann Neurol 2004;56:206-12; Voller B, Floel A, Werhahn KJ, Ravindran S, Wu CW, Cohen LG. Contralateral hand anesthesia transiently improves poststroke sensory deficits. Ann Neurol 2006;59:385-8]. One aim of this study was to sensitively assay the bilateral effects of unilateral ischemic SMC damage on performance of a unimanual skilled reaching task (the single pellet retrieval task) that rats had acquired pre-operatively with each forelimb. The second aim was to determine whether partially recovered contralesional reaching function is influenced by anesthetization of the ipsilesional forelimb. Unilateral SMC lesions were found to result in transient ipsilesional impairments in reaching success and significant ipsilesional abnormalities in reaching movements compared with sham-operates. There were major contralesional reaching impairments which improved during a 4 week training period, but movements remained significantly abnormal. Anesthetization of the ipsilesional forelimb with lidocaine at this time attenuated the contralesional movement abnormalities. These findings indicate that unilateral ischemic SMC lesions impair skilled reaching behavior in both forelimbs. Furthermore, after partial recovery in the contralesional forelimb, additional improvements can be induced by transient anesthetization of the ipsilesional forelimb. This is consistent with the effects of unilateral anesthetization in humans which have been attributed to the modulation of competitive interhemispheric interactions. The present findings suggest that such interactions are also likely to influence skilled reaching function in rats.  相似文献   

4.
Unilateral damage to the forelimb region of the sensorimotor cortex (FLsmc) results in time-dependent changes in neuronal activity, structure and connectivity in the contralateral motor cortex of adult rats. These changes have been linked to facilitation of motor skill learning in the less-affected/ipsilesional forelimb, which is likely to promote its use in the development of behavioral compensation. The goal of this study was to determine whether an early post-lesion-sensitive time period exists for this enhanced learning and whether it is linked to synaptogenesis in the contralesional motor cortex. Rats were trained for 21 days on a skilled reaching task with the ipsilesional forelimb beginning 4 or 25 days after unilateral ischemic (endothelin-1-induced) FLsmc lesions or sham operations. As found previously, reaching performance was significantly enhanced in rats trained early post-lesion compared with sham-operates. In rats trained later post-lesion, performance was neither significantly different from time-matched sham-operates nor strikingly different from animals trained earlier post-lesion. In layer V of the contralesional motor cortex, stereological methods for light and electron microscopy revealed significantly more total, multisynaptic bouton and perforated synapses per neuron compared with sham-operates, but there were no significant differences between early- and late-trained lesion groups. Thus, there appears to be a sensitive time window for the maximal expression of the enhanced learning capacity of the less-affected forelimb but this window is broadly, rather than sharply, defined. These results indicate that relatively long-lasting lesion-induced neuronal changes are likely to underlie the facilitation of learning with the less-affected forelimb.  相似文献   

5.
Extreme over-reliance on the impaired forelimb following unilateral lesions of the forelimb representation area of the rat sensorimotor cortex (FL-SMC) leads to exaggeration of injury when overuse is begun during the first week, but not later periods, after injury. Behavioral impairment is partially worsened by the additional tissue loss. In the present study, we show that complete disuse of the impaired forelimb during the first post-operative week renders surviving tissue vulnerable to later overuse of the same limb, in effect extending the window of vulnerability in which use-dependent exaggeration of brain injury can occur. Behavioral recovery is disrupted by complete disuse, but the degree of impairment is variable depending on the nature of the behavioral test employed. Our results uphold the idea that mild rehabilitative training early after injury is beneficial, while either extreme overuse or complete disuse may disrupt functional recovery.  相似文献   

6.
Behavioural impairments caused by brain lesions show a considerable, though often incomplete, recovery. It is hypothesized that cortical and subcortical plasticity of sensory representations contribute to this recovery. In the hindpaw representation of somatosensory cortex of adult rats we investigated the effects of focal unilateral cortical lesions on remote areas. Cortical lesions with a diameter of approximately 2 mm were induced in the parietal cortex by photothrombosis with the photosensitive dye Rose Bengal. Subsequently, animals were kept in standard cages for 7 days. On day seven, animals were anaesthetized and cutaneous receptive fields in the cortical hindpaw representations ipsi- and contralateral to the lesion were constructed from extracellular recordings of neurons in layer IV using glass microelectrodes. Receptive fields in the lesioned animals were compared to receptive fields measured in nonlesioned animals serving as controls. Quantitative analysis of receptive fields revealed a significant increase in size in the lesioned animals. This doubling in receptive field size was observed equally in the hemispheres ipsi- and contralateral to the lesion. The results indicate that the functional consequences of restricted cortical lesions are not limited to the area surrounding the lesion, but affect the cortical maps on the contralateral, nonlesioned hemisphere.  相似文献   

7.
We have studied the effect of transplantation of embryonic frontal cortex on the motor deficit resulting from motor cortex lesion in the adult rat. Twenty-four 2-month-old rats were first trained in a food reaching task with right and left forelimbs. Then, at 4 months of age, the subjects were divided into two equal groups. In the lesion group, the animals sustained a lesion of the left motor cortex, whereas in the graft group the animals received a fetal cell suspension of embryonic (E16) frontal cortical tissue three days after the lesion. Postoperative reaching ability was assessed every week during eight weeks and then every two months until the age of one year. The results indicate that the deficit resulting from the lesion is bilateral but mainly affects the limb contralateral to the lesion. During the first 3 weeks of postoperative testing, both groups displayed comparable evolution of performance with contralateral forelimb, characterized by an initial large drop followed by progressive recovery. But, whereas in the lesion group performance did not increase after the fourth postoperative week, in the graft group the reaching scores further improved, without recovering, however, preoperative levels. This improvement was still observed eight months after transplantation. However, no improvement appeared using the limb ipsilateral to the transplant. An anatomical study of the volumes of transplant and/or lesion revealed that the importance of the recovery or deficit varied as a function of the sizes of the transplant and/or lesion within the rostral part of the motor cortex, approximately corresponding to the rostral forelimb area of Neafsey et al. [37]. It is therefore suggested that in adult rats, some components of the motor deficit resulting from a lesion of the motor cortex can be partially reduced by transplantation of homotopic embryonic cortex.  相似文献   

8.
This study examined whether epidurally delivered cortical electrical stimulation (CS) improves the efficacy of motor rehabilitative training and alters neuronal density and/or cell proliferation in perilesion cortex following ischemic sensorimotor cortex (SMC) lesions. Adult rats were pre-trained on a skilled reaching task and then received partial unilateral SMC lesions and implantation of electrodes over the remaining SMC. Ten to fourteen days later, rats received daily reach training concurrent with anodal or cathodal 100 Hz CS or no stimulation (NoCS) for 18 days. To label newly generated cells, bromodeoxyuridine (BrdU; 50 mg/kg) was administered every third day of training. Both anodal and cathodal CS robustly enhanced reaching performance compared to NoCS controls. Neuronal density in the perilesion cortex was significantly increased in the cathodal CS group compared to the NoCS group. There were no significant group differences in BrdU-labeled cell density in ipsilesional cortex. Staining with Fluoro-Jade-B indicated that neurons continue to degenerate near the infarct at the time when cortical stimulation and rehabilitation were initiated. These data indicate that epidurally delivered CS greatly improves the efficacy of rehabilitative reach training following SMC damage and raise the possibility that cathodal CS may influence neuronal survival in perilesion cortex.  相似文献   

9.
The ability of striatal embryonic grafts to promote functional recovery on complex behavioral tasks depends on various factors, including the amount of striatal-like tissue within the grafts and the duration of post-graft training. However, how the innate paw bias of animals is affected by experience, or influences recovery following injury, is less known. Here, we have examined the effects of intrinsic side bias and lateralized limb use training on spontaneous forelimb preference and graft-mediated functional recovery in a skilled reaching task in a rodent model of Huntington's disease. Na?ve rats were assessed on their baseline paw preferences when reaching between the bars of their cage to retrieve sugar pellets from a tray attached outside. Next, rats were lesioned unilaterally in the lateral dorsal striatum with quinolinic acid, and 7-10 days later, half of the animals were given suspension grafts prepared from E15 whole ganglionic eminence implanted into the lesioned striatum. The animals then received extensive unilateral training, either ipsi- or contralateral to the side of the lesion and graft in separate subgroups, on the 'staircase' task until asymptotic performance was obtained. As reported previously, the grafts alleviated lesion-induced deficits in retrieving pellets from the contralateral staircase. Spontaneous biases were then reassessed in the cage-reaching task. Irrespective of whether the animal received ipsilateral or contralateral staircase training, the unilateral lesions induced a significant shift in spontaneous bias towards the ipsilateral paw. Grafted animals showed a similar shift in bias if staircase training was given to the ipsilateral paw but showed no change in spontaneous bias (similar to controls) if they had received contralateral training during the post-transplantation period. The results suggest that striatal grafts can alleviate lesion-induced changes in their spontaneous side preferences, but only if they receive extensive training in the use of the contralateral limb, compatible with the notion that recovery is use-dependent.  相似文献   

10.
目的 观察一过性缺血后脑组织中嗜酸性神经元、反应性星形胶质细胞和梗死区域的分布,探明脑缺血病理形态学改变的时序性变化.方法 通过2次10 min、间隔5h的单侧颈总动脉夹闭制造蒙古沙鼠脑缺血模型,激光多普勒血流仪检测前部脑皮质血流;于24 h,4d,2、4、16周观察脑组织病理形态学改变.结果 颈总动脉夹闭后激光多普勒血流仪显示前部至后部脑血流量明显降低:分别为22.1%±9.5%,26.3%±4.9%,37.5%±3.5%,F =67.219,P<0.01;位于前脑部的脑血流量的降低明显高于后脑部.缺血24h后,嗜酸性神经元出现于脑前部皮质中层和深层、4d后遍及整个皮质各层,4d至4周大范围的高密度嗜酸性神经元区域(≥80个/mm2)进展为梗死.脑后部皮质中层和深层进展为低嗜酸性神经元区(< 80个/mm2),未进一步进展为梗死.反应性星形胶质细胞分布区域与嗜酸性神经元一致;反应性星形胶质细胞伴随高密度嗜酸性神经元区域在缺血后4d至4周大部分转化为梗死.迟发性星形胶质细胞死亡发生于反应性星形胶质细胞伴随高密度嗜酸性神经元区域.结论 嗜酸性神经元密度是缺血脑组织梗死及迟发性星形胶质细胞死亡的重要标志.  相似文献   

11.
Intensive use of the impaired forelimb promotes behavioral recovery and induces plastic changes of the central nervous system after stroke. However, the optimal onset of intensive use treatment after stroke is controversial. In this study, we investigated whether early forced impaired limb use (FLU) initiated 24 h after intracerebral hemorrhage (ICH) of the internal capsule affected behavioral recovery and histological damage. Rats were subjected to ICH via low-dose collagenase infusion or sham stroke. One day after surgery, the ipsilateral forelimbs of half of the ICH and sham rats were casted for a week to induce the use of their contralateral forelimbs. Behavioral assessments were performed on days 10-12 and 26-28 after the surgery and followed by histological assessments. Improvements in skilled reaching and coordinated stepping function were found in the FLU-treated group in comparison with the untreated group after ICH. Additionally, FLU-treated ICH animals showed more normal and precise reaching and stepping movements as compared with ICH control animals. In contrast, FLU did not have a significant impact on gross sensory-motor functions such as the motor deficit score, contact placing response and spontaneous usage of the impaired paw. The volume of tissue lost and the number of spared corticospinal neurons in lesioned motor cortex were not affected by early FLU after ICH. These findings demonstrate the efficacy of early focused use of an impaired limb after internal capsule hemorrhage.  相似文献   

12.
Following unilateral lesions of the somatic sensorimotor cortex (SMC) in neonatal, but not adult, rats, an aberrant ipsilateral corticospinal projection originates from the undamaged hemisphere (Hicks and D'Amato, 1970; Leong and Lund, 1973; Castro, 1975). We have evaluated the contribution of the hemisphere contralateral to a unilateral lesion of the SMC in the recovery of tactile forelimb-placing behavior. Neither adult-lesioned or neonatally lesioned animals show evidence for placing deficits with either forelimb when tested 30 or 42 d after the lesion. However, in adult-lesioned animals, a subsequent lesion of the undamaged SMC on postlesion day 42 produces placing deficits only with the forelimb contralateral to the second lesion, while such a second lesion in the neonatally lesioned rats results in placing deficits with both forelimbs. Anatomical observations in the animals used for behavioral analyses confirm previous reports of a substantial ipsilateral corticospinal projection in rats with unilateral SMC damage as neonates and demonstrate that many of these aberrant fibers recross the midline within the spinal cord to arborize extensively within the ipsilateral spinal gray. These findings indicate that, following unilateral SMC lesions in neonates, the contralateral hemisphere mediates some aspects of the recovery of forelimb placing. The aberrant ipsilateral corticospinal projection may provide the anatomical substrate through which the cortex effects this recovery.  相似文献   

13.
14.
We describe a new test of vibrissae-elicited forelimb placing ability that allows testing of sensorimotor integration across the midline. Rats were given unilateral brain lesions using one of three methods: (1) middle cerebral artery occlusion (MCAo) causing significant damage to the cortex and striatum, (2) aspiration lesions to remove tissue from the sensorimotor cortex, and (3) infusions of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, producing a parkinsonian syndrome. Application of the new test to these animals revealed that with some lesion types, the ability of vibrissae on the unimpaired side of the body to trigger placing in the functionally impaired forelimb recovers before vibrissae on the impaired side can elicit placing. This occurs despite the lack of any apparent vibrissae sensory deficit, since the contralesional vibrissae maintained the ability to trigger placing in the unimpaired forelimb in all lesions studied. Chronically, MCAo-lesioned rats do not place the impaired forelimb upon stimulation of the impaired-side vibrissae, but do place if the vibrissae on the good side are stimulated (i.e., when the placing is triggered "across the midline"). This is in contrast to 6-OHDA-lesioned rats which, consistent with parkinsonian akinesia, cannot place the impaired limb regardless of sensory trigger. Also, differences in the pattern of recovery between MCAo- and aspiration-lesioned rats suggest a possible anatomical substrate for cross-midline placing ability and its recovery. Unlike other tests, cross-midline placing methods can readily distinguish between severe stroke and severe parkinsonism in rats.  相似文献   

15.
In many recovering hemiparetic stroke patients, movement of the affected limb elicits ipsilateral activation of sensorimotor areas within the undamaged hemisphere, which is not observed in control subjects. Following middle cerebral artery occlusion, rats received intensive enriched-rehabilitation (ER) of the impaired forelimb for 4 weeks. Weekly assessments on a skilled reaching test demonstrated significant improvement in ischemic animals over 4 weeks of ER (P < 0.05). We hypothesized that if the undamaged forelimb motor cortex contributed to improved forelimb function, then inhibition of neural activity within this region should reinstate (at least some of) the initial motor impairment. After 3 and 4 weeks of ER, animals received a microinjection of lidocaine hydrochloride into the undamaged motor cortex and were re-assessed on reaching ability. The behavioral effect of lidocaine challenge was dependent on the size of the infarct: animals with large infarcts were rendered unable to retrieve any food pellets and had great difficulty even contacting a pellet with the affected forepaw. Small-infarct animals were only moderately affected (25% reduction in success) by lidocaine, an effect similar to that observed in control animals. Qualitative assessments of recovered reaching after 4 weeks of rehabilitation revealed that impairments in forelimb lift, advance and aim were exacerbated (P < 0.05) following lidocaine-inactivation of the undamaged motor cortex of animals with large ischemic infarcts. In animals with small infarcts, lidocaine challenge only impaired limb advance. Thus, recruitment of the undamaged hemisphere may depend on the functional integrity of the remaining sensorimotor system. These data suggest that, in the rat, the undamaged (ipsilateral) motor system may contribute to compensatory recovery of the affected forelimb.  相似文献   

16.
Functional recovery was achieved in rats after repairing the transected left sixth and seventh cervical roots. Intercostal nerves were used for reanastomosis between the transected roots and the spinal cord, and acidic fibroblast growth factor with fibrin glue was applied. Experimental rats showed relevant functional recovery of gait and grooming reflexes. Electromyography demonstrated less denervation and more regeneration. Horseradish peroxidase retrograde axonal tracing disclosed a statistically significant increase of motor neuron survival, suggesting that motor neuron survival was significantly correlated with functional recovery. It is our belief that this novel treatment strategy may help patients with similar injuries in the future.  相似文献   

17.
Neural damage in the rat thalamus after cortical infarcts.   总被引:7,自引:0,他引:7  
Histopathologic changes in the thalamus of 23 rats after somatosensory cortical infarction produced by middle cerebral artery occlusion were examined using the Fink-Heimer silver staining method, immunohistochemistry with antibodies against glial fibrillary acidic protein and laminin, and conventional stains. Middle cerebral artery occlusion produced cortical infarcts in the lateral parietal region, with variable involvement of the frontoparietal parasagittal sensorimotor cortex. Within 3 days after occlusion, massive terminal degeneration but no neuronal changes were apparent in the ipsilateral thalamus. By 1 week after occlusion, abnormal neurons with darkly stained, shrunken nuclei and atrophic perikarya were present in the ipsilateral thalamic nuclei. These neurons were densely argyrophilic in Fink-Heimer sections. Rats with small lateral parietal cortical lesions had degenerating neurons limited to the medial ventroposteromedial nucleus. Large lesions involving the parasagittal sensorimotor cortex resulted in widespread neuronal damage in the ventroposteromedial, ventroposterolateral, intralaminar, and posterior nuclear regions but nowhere else. Immunoreactivity to laminin antibody decreased, and astrocytic proliferation was abundant in affected thalamic areas. These findings are consistent with retrograde neuronal degeneration due to thalamocortical fiber damage in ischemic cortical regions. Such lesions remote from the infarct may influence functional recovery in patients with stroke.  相似文献   

18.
Constraint-induced movement therapy (CIMT) involves the restraint of an intact limb to force the dominant use of an affected limb, in an attempt to enhance use-dependent plasticity and reduce dysfunction. To investigate whether forced disuse of an intact forelimb with CIMT causes a loss of limb function and degenerative damage in the brain, a staircase test and a horizontal ladder test were carried out in control rats and forelimb-restrained rats, and then Argyrophil III silver staining, which is capable of detecting subtle neuronal damage, was used to examine histological alterations associated with restraint. No significant changes in forelimb function were observed in restrained rats. However, atypical weak argyrophilic neurons, an indicator of minor neural damage, were found in the bilateral hippocampus of restrained rats. This damage was not found in the cortex, striatum, or spinal cord. Investigation of neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ) revealed a clear reduction in the number of bromodeoxyuridine-positive cells in bilateral SGZ, but not in the SVZ, in restrained rats compared with controls. This reduction was accompanied by reduced mRNA expression of vascular endothelial growth factor and glial-derived neurotrophic factor. However, reduced cellular proliferation and decreased gene expression were recovered after the removal of the restraint. Our results suggest that forced disuse of the intact forelimb has no significant effect on skilled forelimb function but has a minor effect on neurogenesis in SGZ, suggesting that mild stress may be caused by the restraint.  相似文献   

19.
20.
Hida H  Masuda T  Sato T  Kim TS  Misumi S  Nishino H 《Neuroreport》2007,18(2):179-183
Pleiotrophin promotes survival of dopaminergic neurons in vitro. To investigate whether pleiotrophin promotes survival of grafted dopaminergic neurons in vivo, donor cells from ventral mesencephalon were treated with pleiotrophin (100 ng/ml) during cell preparation and grafted into striatum of hemi-Parkinson model rats. Functional recovery in methamphetamine-induced rotations was improved, and more tyrosine hydroxylase-positive cells survived in the striatum in the pleiotrophin-treated group. Pleiotrophin addition to cells just before transplantation also resulted in better functional recovery; however, no caspase-3 activation was seen during cell preparation. Interestingly, the effect of pleiotrophin on the survival was additive to that of glial-cell line-derived neutropic factor. These results revealed that pleiotrophin had effects on donor cells in neural transplantation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号