首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether vaccination of healthy HIV-seronegative and HIV-1-seropositive antiretroviral therapy-treated subjects with recombinant modified vaccinia virus Ankara expressing an HIV-1 immunogen (MVA.HIVA) induced MVA-specific T cell responses. Using IFN-γ Elispot assays, we observed new or increased responses to MVA virus in 52% of HIV-seronegative subjects and 93% HIV-1 seropositive subjects; MVA-specific T cell frequencies were generally low and correlated poorly with T cell responses to the HIV-1 immunogen. In two vaccinees, responses were mapped to CD8+ T cell epitopes present in replication-competent vaccinia virus. These data support further evaluation of MVA as a viral vector for HIV-1 immunogens.  相似文献   

2.
Recombinant modified vaccinia virus Ankara expressing HIV-1 antigens (MVA.HIVA) was used in ELISpot assays to monitor HIV-1-specific T cell responses in infants. Responses to MVA.HIVA and HIV-1 peptides were examined in 13 infected and 81 exposed uninfected infants in Nairobi, Kenya. Responses to MVA.HIVA (38%) and peptide stimulation (38%) were similar in frequency (p=1.0) and magnitude (mean 176 versus 385 HIVSFU/10(6), p=0.96) in HIV-1 infected infants. In exposed uninfected infants, MVA.HIVA detected more positive responses and higher magnitude responses as compared to peptide. MVA.HIVA ELISpot is a sensitive method for quantification of HIV-1-specific CD8+ T cell responses in HIV-1 exposed infants. These results demonstrate the relevance of HIV-1 clade A consensus-derived immunogen HIVA for the viruses currently circulating in Nairobi.  相似文献   

3.
The magnitude and functional quality of antiviral CD8 T cell responses are critical for the efficacy of T cell based vaccines. Here, we investigate the influence of two popular viral vectors, adenovirus type 5 (Ad5) and modified vaccinia Ankara (MVA), on expansion, contraction and memory differentiation of HIV-1 Gag insert-specific CD8 T cell responses following immunization and show different patterns for the two recombinant viral vectors. The Ad5 vector primed 6-fold higher levels of insert-specific CD8 effector T cells than the MVA vector. The Ad5-primed effector cells also underwent less contraction (<2-fold) than the MVA-primed cells (>5-fold). The Ad5-primed memory cells were predominantly CD62L negative (effector memory) whereas the MVA-primed memory cells were predominantly CD62L positive (central memory). Consistent with their memory phenotype, MVA-primed CD8 T cells underwent higher fold expansion than Ad5-primed CD8 T cells following a homologous or heterologous boost. Impressively, the Ad5 boost changed the quality of MVA-primed memory response such that they undergo less contraction with effector memory phenotype. However, the MVA boost did not influence the contraction and memory phenotype of Ad5-primed response. In conclusion, our results demonstrate that vaccine vector strongly influences the expansion, contraction and the functional quality of insert-specific CD8 T cell responses and have implications for vaccine development against infectious diseases.  相似文献   

4.
DNA- and modified virus Ankara (MVA)-vectored candidate vaccines expressing human immunodeficiency virus type 1 (HIV-1) clade A-derived p24/p17 gag fused to a string of HLA class I epitopes, called HIVA, were tested in phase I trials in healthy, HIV-1/2-uninfected adults in Oxford, United Kingdom. Eighteen volunteers were vaccinated with pTHr.HIVA DNA (IAVI-001) alone, 8 volunteers received MVA.HIVA (IAVI-003) alone and 9 volunteers from study IAVI-001 were boosted with MVA.HIVA 9-14 months after DNA priming (IAVI-005). Immunogenicity results observed in these trials was published previously [Mwau M, Cebere I, Sutton J, Chikoti P, Winstone N, Wee EG-T, et al. An HIV-1 clade A vaccine in clinical trials: stimulation of HIV-specific T cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J Gen Virol 2004;85:911-9]. Here, we report on the safety of the two vaccines and the vaccine regimes. Overall, both candidate vaccines were safe and well tolerated. There were no reported vaccine-related adverse events over the 6-month period of the study and up to 2 years after the last vaccination. There were no moderate or severe local symptoms recorded after the pTHr.HIVA DNA intramuscular administration. Almost all participants experienced local reactogenicity events such as redness and induration after MVA.HIVA intradermal injection. Thus, the results from these initial small phase I trials administering the pTHr.HIVA DNA and MVA.HIVA vaccines either alone or in a prime-boost regime to healthy HIV-1/2-negative adults indicated that the vaccines were safe and warranted further testing of this approach in larger phase I/II studies.  相似文献   

5.
The safety and immunogenicity of plasmid pTHr DNA, modified vaccinia virus Ankara (MVA) human immunodeficiency virus type 1 (HIV-1) vaccine candidates were evaluated in four Phase I clinical trials in Kenya and Uganda. Both vaccines, expressing HIV-1 subtype A gag p24/p17 and a string of CD8 T-cell epitopes (HIVA), were generally safe and well-tolerated. At the dosage levels and intervals tested, the percentage of vaccine recipients with HIV-1-specific cell-mediated immune responses, assessed by a validated ex vivo interferon gamma (IFN-γ) ELISPOT assay and Cytokine Flow Cytometry (CFC), did not significantly differ from placebo recipients. These trials demonstrated the feasibility of conducting high-quality Phase 1 trials in Africa.  相似文献   

6.
《Vaccine》2021,39(33):4641-4650
BackgroundEliciting durable humoral immunity with sufficient breadth and magnitude is important for HIV-1 vaccine design. The HVTN 114 vaccine trial evaluated different boost regimens administered after a 7-year rest period in participants previously enrolled in HVTN 205, who received either three MVA/HIV62B (MMM) or two DNA and two MVA/HIV62B (DDMM) injections; both vaccines expressed multiple HIV-1 antigens in non-infectious virus-like-particles. The primary objective of HVTN 114 was to assess the impact of a heterologous gp120 protein AIDSVAX B/E boost on the magnitude, breadth and durability of vaccine-induced immune responses.MethodsWe enrolled 27 participants from HVTN 205 into five groups. Eight participants who previously received MMM were randomized and boosted with either MVA/HIV62B alone (T1; n = 4) or MVA/HIV62B and AIDSVAX B/E (T2; n = 4). Nineteen participants who received DDMM were randomized and boosted with MVA/HIV62B alone (T3; n = 6), MVA/HIV62B and AIDSVAX B/E (T4; n = 6), or AIDSVAX B/E alone (T5; n = 7). Boosts were at months 0 and 4. Participants were followed for safety and immunogenicity for 10 months and were pooled for analysis based on the regimen: MVA-only (T1 + T3), MVA + AIDSVAX (T2 + T4), and AIDSVAX-only (T5).ResultsAll regimens were safe and well-tolerated. Prior to the boost vaccination, binding antibody and CD4+T-cell responses were observed 7 years after HVTN 205 vaccinations. Late boosting with AIDSVAX, with or without MVA, resulted in high binding antibody responses to gp120 and V1V2 epitopes, with increased magnitude and breadth compared to those observed in HVTN 205. Late boosting with MVA, with or without AIDSVAX, resulted in increased gp140 and gp41 antibody responses and higher CD4+T-cell responses to Env and Gag.ConclusionsLate boosting with AIDSVAX, alone or in combination with MVA, can broaden binding antibody responses and increase T-cell responses even years following the original MVA/HIV62B with or without DNA-priming vaccine.  相似文献   

7.
Efficient HIV vaccines have to trigger cell-mediated immunity directed against various viral antigens. However little is known about the breadth of the response induced by vaccines carrying multiple proteins. Here, we report on the immunogenicity of a construct harbouring a fusion of the HIV-1 IIIB gag, pol and nef genes (gpn) designed for optimal safety and equimolar expression of the HIV proteins. The attenuated poxviruses, MVA and NYVAC, harbouring the gpn construct, induced potent immune responses in conventional mice characterised by stimulation of Gpn-specific IFN-gamma-producing cells and cytotoxic T cells. In HLA-A2 transgenic mice, recombinant MVA elicited cytotoxic responses against epitopes recognised in most HLA-A2+ HIV-1-infected individuals. We also found that the MVA vaccine triggered the in vitro expansion of peripheral blood cells isolated from a HIV-1-seropositive patient and with similar specificity as found in immunised HLA-A2 transgenic mice. In conclusion, the synthetic HIV polyantigen Gpn delivered by MVA is immunogenic, efficiently processed and presented by human MHC class I molecules.  相似文献   

8.
《Vaccine》2016,34(14):1688-1695
Recent efforts have been focused on the development of vaccines that could induce broad immunity against influenza virus, either through T cell responses to conserved internal antigens or B cell response to cross-reactive haemagglutinin (HA). We studied the capacity of Modified Vaccinia Ankara (MVA)-vectored influenza vaccines to induce cross-reactive immunity to influenza virus in human nasopharynx-associated lymphoid tissue (NALT) in vitro. Adenotonsillar cells were isolated and stimulated with MVA vaccines expressing either conserved nucleoprotein (NP) and matrix protein 1 (M1) (MVA-NP-M1) or pandemic H1N1 HA (MVA-pdmH1HA). The MVA vaccine uptake and expression, and T and B cell responses were analyzed. MVA-vectored vaccines were highly efficient infecting NALT and vaccine antigens were highly expressed by B cells. MVA-NP-M1 elicited T cell response with greater numbers of IFNγ-producing CD4+ T cells and tissue-resident memory T cells than controls. MVA-pdmH1HA induced cross-reactive anti-HA antibodies to a number of influenza subtypes, in an age-dependent manner. The cross-reactive antibodies include anti-avian H5N1 and mainly target HA2 domain. Conclusion: MVA vaccines are efficient in infecting NALT and the vaccine antigen is highly expressed by B cells. MVA vaccines expressing conserved influenza antigens induce cross-reactive T and B cell responses in human NALT in vitro, suggesting the potential as mucosal vaccines for broader immunity against influenza.  相似文献   

9.
To induce broad T cell immunity to HIV-1, we evaluated the safety, immunogenicity and dose-response relationship of DNA and recombinant Fowlpoxvirus (rFPV) vaccines encoding five shared HIV subtype AE genes (Gag, Pol, Env, Tat, Rev) in pigtail macaques. The DNA (three doses of either 1 mg or 4.5 mg) and rFPV (a single boost of either 5 x 10(7) or 2 x 10(8) plaque forming units) vaccines were administered intramuscularly without adjuvants. Broadly reactive HIV-specific T cell immunity was stimulated by all doses of the vaccines administered, without significant differences between the high and low doses studied. The vaccines induced both CD4 and CD8 T cell responses to Gag, Pol, Env and Tat/Rev proteins, with CD4 T cell responses being greater in magnitude than CD8 T cell responses. The vaccine-induced T cell responses had significant cross-recognition of heterologous HIV-1 proteins from non-AE HIV-1 subtypes. In conclusion, these subtype AE HIV-1 DNA and rFPV vaccines were safe, induced broad T-cell immunity in macaques, and are suitable for progression into clinical trials.  相似文献   

10.
Ovine adenovirus type 7 (OAdV) is the prototype member of the genus Atadenovirus. No immunity to the virus has so far been detected in human sera. We describe the construction and evaluation of a candidate HIV-1 vaccine based on OAdV and its utilisation alone and in combination with plasmid-, human adenovirus type 5 (HAdV5; a Mastadenovirus)-, and modified vaccinia Ankara (MVA)-vectored vaccines. All vectors expressed HIVA, an immunogen consisting of HIV-1 clade A consensus Gag-derived protein coupled to a T cell polyepitope. OAdV.HIVA was genetically stable, grew well and expressed high levels of protein from the Rous sarcoma virus promoter. OAdV.HIVA was highly immunogenic in mice and efficiently primed and boosted HIV-1-specific T cell responses together with heterologous HIVA-expressing vectors. There were significant differences between OAdV and HAdV5 vectors in priming of naïve CD8+ T cell responses to HIVA and in the persistence of MHC class I-restricted epitope presentation in the local draining lymph nodes. OAdV.HIVA primed T cells more rapidly but was less persistent than AdV5.HIVA and thus induced a qualitatively distinct T cell response. Nevertheless, both vectors primed a response in mice that reduced viral titres in a surrogate challenge model by three to four orders of magnitude. Thus, OAdV is a novel, underexplored vaccine vector with potential for further development for HIV-1 and other vaccines. The data are discussed in the context of the latest HIV-1 vaccine developments.  相似文献   

11.
《Vaccine》2005,23(2):188-197
Induction of HIV-specific T-cell responses by vaccines may facilitate efficient control of HIV. Plasmid DNA vaccines and recombinant fowlpoxvirus (rFPV) vaccines are promising HIV-1 vaccine candidates, although either vaccine alone may be insufficient to protect against HIV-1. A consecutive immunisation strategy involving priming with DNA and boosting with rFPV vaccines encoding multiple common HIV-1 antigens was further evaluated in 30 macaques. The DNA vaccine vector included CpG immunostimulatory molecules, and rFPV vaccines were compared with rFPV vaccines co-expressing the pro-T cell cytokines IFNγ or IL-12. Vaccines expressed multiple HIV-1 genes, mutated to remove active sites of the HIV proteins. The vaccines were well tolerated, and a significant enhancement of DNA-vaccine primed HIV-1 specific T lymphocyte responses was observed following rFPV boosting. Co-expression of IFNγ or IL-12 by the rFPV vaccines did not further enhance immune responses. Non-sterilising protection from a non-pathogenic HIV-1 challenge was observed. This study provides evidence of a safe, optimised, strategy for the generation of T-cell mediated immunity to HIV-1.  相似文献   

12.
Induction of HIV-specific T-cell responses by vaccines may facilitate efficient control of HIV. Plasmid DNA vaccines and recombinant fowlpoxvirus (rFPV) vaccines are promising HIV-1 vaccine candidates, although either vaccine alone may be insufficient to protect against HIV-1. A consecutive immunisation strategy involving priming with DNA and boosting with rFPV vaccines encoding multiple common HIV-1 antigens was further evaluated in 30 macaques. The DNA vaccine vector included CpG immunostimulatory molecules, and rFPV vaccines were compared with rFPV vaccines co-expressing the pro-T cell cytokines IFNgamma or IL-12. Vaccines expressed multiple HIV-1 genes, mutated to remove active sites of the HIV proteins. The vaccines were well tolerated, and a significant enhancement of DNA-vaccine primed HIV-1 specific T lymphocyte responses was observed following rFPV boosting. Co-expression of IFNgamma or IL-12 by the rFPV vaccines did not further enhance immune responses. Non-sterilising protection from a non-pathogenic HIV-1 challenge was observed. This study provides evidence of a safe, optimised, strategy for the generation of T-cell mediated immunity to HIV-1.  相似文献   

13.
Recombinant modified vaccinia virus Ankara (MVA) is together with a few other attenuated viral vectors on the forefront of human immunodeficiency virus type 1 (HIV-1) vaccine development. As such, MVA-vectored vaccines are likely to be administered into immunocompromized individuals. Here, we demonstrated in a good laboratory practice study safety and biological clearance of candidate HIV-1 vaccine MVA.HIVA in simian immunodeficiency virus (SIV)-infected rhesus macaques and mice with a severe combined immunodeficiency (SCID) following an intradermal vaccine administration. In SIV-infected macaques, MVA.HIVA DNA was undetectable by nested PCR 6 weeks after dosing. In SCID mice, the MVA.HIVA vaccine was well tolerated and a positive PCR signal was only observed at the site of injection 49 days after dosing in four out of six mice, but even these sites were negative by day 81 post-injection. Therefore, the MVA.HIVA vaccine is considered safe for application in phase I clinical trials in HIV-1-infected human subjects. These results also contribute to the confidence of using MVA as a smallpox vaccine.  相似文献   

14.
The immunogenicity of current human immunodeficiency virus-1 (HIV-1) canarypox vaccines is weak and needs to be improved. Ligation of OX40 (CD134), a member of tumor necrosis factor receptor superfamily (TNFRSF), by its ligand OX40L (CD252), a tumor necrosis factor superfamily (TNFSF) molecule, has been demonstrated to provide a pivotal costimulatory signal to enhance CD4+ T cell help of humoral and cytotoxic T cell immune responses. The present study examined whether an OX40L-expressing vector could boost the immunogenicity of the HIV-1 canarypox vaccine, vCP1452, in mice. Co-immunization of mice with OX40L-expressing canarypox and vCP1452 augmented HIV-1 specific CD8+ T cell responses in terms of frequency and cytokine expression. OX40L-expressing canarypox enhanced the frequency of antigen specific CD8+ T cells with an effector (CD127CD62L) phenotype, which was associated with an ex vivo expansion of HIV-1 specific CD4+ T cells. This was in contrast to our previous work in which a CD40L-expressing construct preferentially enhanced antigen specific memory responses [Liu J, Yu Q, Stone GW, Yue FY, Ngai N, Jones RB, et al. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals. Vaccine 2008;26(32):4062–72]. Surprisingly, OX40L did not enhance antibody responses elicited by the HIV-1 canarypox vaccine. We saw no added benefit by combining OX40L and CD40L vectors as an adjuvant strategy for vCP1452. Our results indicate that, similar to CD40L, canarypox vectors expressing OX40L can enhance the cellular but not humoral immunogenicity of HIV-1 canarypox vaccines. In summary, our findings show that OX40L can be used as a molecular adjuvant to enhance T cell immune responses.  相似文献   

15.

Background

A safe, effective vaccine for breastfeeding infants born to HIV-1-positive mothers could complement antiretroviral therapy (ART) for prevention of mother-to-child transmission of HIV-1. To date, only a few HIV-1 vaccine candidates have been tested in infants.

Trial design

A phase I/II randomized controlled trial PedVacc 002 was conducted to determine the safety and immunogenicity of a single, low dose of MVA.HIVA vaccine delivered intramuscularly to healthy 20-week-old infants born to HIV-1-positive mothers in Nairobi, Kenya.

Methods

Pregnant HIV-1-positive women in the 2nd/3rd trimester of gestation were enrolled, provided with ART and self-selected their infant-feeding modality. Infants received nevirapine and cotrimoxazole prophylaxis. At 20 weeks of age, eligible HIV-1-negative infants were randomized to vaccine versus no-treatment arms and followed to 48 weeks of age for assessments of vaccine safety, HIV-1-specific T-cell responses and antibodies to routine childhood vaccines.

Results

Between February and November 2010, 182 mothers were screened, 104 were eligible and followed on ART during pregnancy/postpartum, of whom 73 had eligible infants at 20 weeks postpartum. Thirty-six infants were randomized to vaccine and 37 to no treatment. Eighty-four percent of infants breastfed, and retention at 48 weeks was 99%. Adverse events were rare and similar between the two arms. HIV-1-specific T-cell frequencies in interferon-γ ELISPOT assay were transiently higher in the MVA.HIVA arm (p = 0.002), but not above the threshold for a positive assay. Protective antibody levels were adequate and similar between arms for all routine childhood vaccines except HBV, where 71% of MVA.HIVA subjects compared to 92% of control subjects were protected (p = 0.05).

Conclusions

This trial tested for the first time an MVA-vectored candidate HIV-1 vaccine in HIV-1-exposed infants in Africa, demonstrating trial feasibility and vaccine safety, low immunogenicity, and compatibility with routine childhood vaccinations. These results are reassuring for use of the MVA vector in more potent prime-boost regimens.  相似文献   

16.
The safety of attenuated poxviruses in HIV-1-infected individuals is an important consideration in their application as vaccine vectors, first, because new HIV-1 infections may occur in vaccine trials involving persons at high risk of infection and secondly, therapeutic vaccinations are a potential means to enhance virus-specific immune responses once infection has occurred. We administered a candidate modified vaccinia virus Ankara-vectored HIV-1 vaccine, MVA.HIVA, by intradermal injection to 16 chronically infected adults during highly active antiretroviral therapy. Vaccinations were well tolerated and there were no serious adverse events. No breakthrough viraemia occurred after immunisations or throughout follow-up. These data confirm the safety of MVA.HIVA in HIV-1-infected individuals and provide support for further evaluation of MVA-vectored vaccines in prophylactic and therapeutic immunisation strategies.  相似文献   

17.
Liu J  Yu Q  Stone GW  Yue FY  Ngai N  Jones RB  Kornbluth RS  Ostrowski MA 《Vaccine》2008,26(32):4062-4072
Human immunodeficiency virus type 1 (HIV-1) canarypox vaccines are safe but poorly immunogenic. CD40 ligand (CD40L), a member of the tumor necrosis factor superfamily (TNFSF), is a pivotal costimulatory molecule for immune responses. To explore whether CD40L can be used as an adjuvant for HIV-1 canarypox vaccine, we constructed recombinant canarypox viruses expressing CD40L. Co-immunization of mice with CD40L expressing canarypox and the canarypox vaccine expressing HIV-1 proteins, vCP1452, augmented HIV-1 specific cytotoxic T lymphocyte (CTL) responses in terms of frequency, polyfunctionality and interleukin (IL)-7 receptor alpha chain (IL-7Ralpha, CD127) expression. In addition, CD40L expressed from canarypox virus could significantly augment CD4+ T cell responses against HIV-1 in mice. CD40L expressed from canarypox virus matured human monocyte-derived dendritic cells (MDDCs) in a tumor necrosis factor-alpha (TNF-alpha) independent manner, which underwent less apoptosis, and could expand ex vivo Epstein-Barr virus (EBV)-specific CTL responses from healthy human individuals and ex vivo HIV-1-specific CTL responses from HIV-1-infected individuals in the presence or absence of CD4+ T cells. Taken together, our results suggest that CD40L incorporation into poxvirus vectors could be used as a strategy to enhance their immunogenicity.  相似文献   

18.
This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.  相似文献   

19.
Development of a candidate DNA/MVA HIV-1 subtype C vaccine for India   总被引:1,自引:0,他引:1  
Kumar S  Aggarwal P  Vajpayee M  Pandey RM  Seth P 《Vaccine》2006,24(14):2585-2593
Development of a vaccine against human immunodeficiency virus type-1 (HIV-1) is the mainstay for controlling the AIDS pandemic. An ideal HIV vaccine should induce neutralizing antibodies, CD4+ helper T cells, and CD8+ cytotoxic T cells. While the induction of broadly neutralizing antibodies remains a highly challenging goal, there are a number of technologies capable of inducing potent cell-mediated responses in animal models, which are now starting to be tested in humans. Naked DNA immunization is one of them. The present study focuses on the stimulation cell-mediated and humoral immune responses by recombinant DNA-MVA vaccines, the areas where this technology might assist either alone or as a part of more complex vaccine formulations in the HIV vaccine development. Candidate recombinant DNA-MVA vaccine formulations expressing the human immunodeficiency virus-1 env and gagprotease genes from HIV-1 Indian subtype C were constructed and characterized. A high level of expression of the respective recombinant MVA (rMVA) constructs was demonstrated in BHK-21 cells followed by the robust humoral as well as cell mediated immune (CMI) responses in terms of magnitude and breadth. The response to a single inoculation of the rDNA vaccine was boosted efficiently by rMVA in BALB/c mice. This is the first reported candidate HIV-1 DNA/MVA vaccine employing the Indian subtype C sequences and constitutes a part of a vaccine scheduled to enter a preclinical non-human primate evaluation in India.  相似文献   

20.
Vaccination is currently considered as an additional therapeutic approach to stimulate HIV-specific immune response in subjects that could not naturally control HIV. Ten chronically HIV infected individuals have been vaccinated with a modified vaccinia Ankara (MVA)-HIV-1(LAI)-nef vector in order to assess safety and immunogenicity. No significant adverse effects were observed during the course of vaccination indicating for the first time that the highly attenuated vaccinia-virus vector MVA is safe in HIV-1 infected individuals. We observed a CD4 T-cell response to Nef in the majority of vaccinated chronically HIV infected individuals. In two subjects CD4 T-cell response was directed to previously unidentified Nef epitopes. The strong Nef-specific CD4 T-cell response elicited by MVA-nef vaccination provides a rationale for immunotherapeutic interventions in HIV infected individuals with suppressed CD4 T-cell responses. Moreover, the CD4 T-cell response elicited was comparable with that usually detected in long-term non-progressor (LTNP) suggesting an improvement in the immunological status of the vaccinated subjects. Furthermore, the new putative CD4 epitopes described here hold promise as important tools for epitope-based vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号