首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites. SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research (SBIR) and Technology Transfer Research (STTR) grants.

Results

SRP has had many successes: discovery of arsenic’s toxicity to the developing human central nervous system; documentation of benzene toxicity to hematologic progenitor cells in human bone marrow; development of novel analytic techniques such as the luciferase expression assay and laser fragmentation fluorescence spectroscopy; demonstration that PCBs can cause developmental neurotoxicity at low levels and alter the genomic characteristics of sentinel animals; elucidation of the neurodevelopmental toxicity of organophosphate insecticides; documentation of links between antimicrobial agents and alterations in hormone response; discovery of biological mechanisms through which environmental chemicals may contribute to obesity, atherosclerosis, diabetes, and cancer; tracking the health and environmental effects of the attacks on the World Trade Center and Hurricane Katrina; and development of novel biological and engineering techniques to facilitate more efficient and lower-cost remediation of hazardous waste sites.

Conclusion

SRP must continue to address the legacy of hazardous waste in the United States, respond to new issues caused by rapid advances in technology, and train the next generation of leaders in environmental health science while recognizing that most of the world’s worst toxic hot spots are now located in low- and middle-income countries.

Citation

Landrigan PJ, Wright RO, Cordero JF, Eaton DL, Goldstein BD, Hennig B, Maier RM, Ozonoff DM, Smith MT, Tukey RH. 2015. The NIEHS Superfund Research Program: 25 years of translational research for public health. Environ Health Perspect 123:909–918; http://dx.doi.org/10.1289/ehp.1409247  相似文献   

2.

Background

Complex problems do not respect academic disciplinary boundaries. Environmental health research is complex and often moves beyond these boundaries, integrating diverse knowledge resources to solve such challenges. Here we describe an evolving paradigm for interweaving approaches that integrates widely diverse resources outside of traditional academic environments in full partnerships of mutual respect and understanding. We demonstrate that scientists, social scientists, and engineers can work with government agencies, industry, and communities to interweave their expertise into metaphorical knowledge fabrics to share understanding, resources, and enthusiasm.

Objective

Our goal is to acknowledge and validate how interweaving research approaches can contribute to research-driven, solution-oriented problem solving in environmental health, and to inspire more members of the environmental health community to consider this approach.

Discussion

The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program (SRP), as mandated by Congress, has evolved to become a program that reaches across a wide range of knowledge resources. SRP fosters interweaving multiple knowledge resources to develop innovative multidirectional partnerships for research and training. Here we describe examples of how motivation, ideas, knowledge, and expertise from different people, institutions, and agencies can integrate to tackle challenges that can be as complex as the resources they bring to bear on it.

Conclusions

By providing structure for interweaving science with its stakeholders, we are better able to leverage resources, increase potential for innovation, and proactively ensure a more fully developed spectrum of beneficial outcomes of research investments.

Citation

Anderson BE, Naujokas MF, Suk WA. 2015. Interweaving knowledge resources to address complex environmental health challenges. Environ Health Perspect 123:1095–1099; http://dx.doi.org/10.1289/ehp.1409525  相似文献   

3.

Background

Nearly 40 years of research provides an extensive body of evidence about human health, well-being, and improved function benefits associated with experiences of nearby nature in cities.

Objectives

We demonstrate the numerous opportunities for future research efforts that link metro nature, human health and well-being outcomes, and economic values.

Methods

We reviewed the literature on urban nature-based health and well-being benefits. In this review, we provide a classification schematic and propose potential economic values associated with metro nature services.

Discussion

Economic valuation of benefits derived from urban green systems has largely been undertaken in the fields of environmental and natural resource economics, but studies have not typically addressed health outcomes. Urban trees, parks, gardens, open spaces, and other nearby nature elements—collectively termed metro nature—generate many positive externalities that have been largely overlooked in urban economics and policy. Here, we present a range of health benefits, including benefit context and beneficiaries. Although the understanding of these benefits is not yet consistently expressed, and although it is likely that attempts to link urban ecosystem services and economic values will not include all expressions of cultural or social value, the development of new interdisciplinary approaches that integrate environmental health and economic disciplines are greatly needed.

Conclusions

Metro nature provides diverse and substantial benefits to human populations in cities. In this review, we begin to address the need for development of valuation methodologies and new approaches to understanding the potential economic outcomes of these benefits.

Citation

Wolf KL, Robbins AS. 2015. Metro nature, environmental health, and economic value. Environ Health Perspect 123:390–398; http://dx.doi.org/10.1289/ehp.1408216  相似文献   

4.

Background

Millions of individuals worldwide, particularly those living in rural and developing areas, are exposed to harmful levels of inorganic arsenic (iAs) in their drinking water. Inorganic As exposure during key developmental periods is associated with a variety of adverse health effects, including those that are evident in adulthood. There is considerable interest in identifying the molecular mechanisms that relate early-life iAs exposure to the development of these latent diseases, particularly in relationship to cancer.

Objectives

This work summarizes research on the molecular mechanisms that underlie the increased risk of cancer development in adulthood that is associated with early-life iAs exposure.

Discussion

Epigenetic reprogramming that imparts functional changes in gene expression, the development of cancer stem cells, and immunomodulation are plausible underlying mechanisms by which early-life iAs exposure elicits latent carcinogenic effects.

Conclusions

Evidence is mounting that relates early-life iAs exposure and cancer development later in life. Future research should include animal studies that address mechanistic hypotheses and studies of human populations that integrate early-life exposure, molecular alterations, and latent disease outcomes.

Citation

Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC. 2016. Mechanisms underlying latent disease risk associated with early-life arsenic exposure: current research trends and scientific gaps. Environ Health Perspect 124:170–175; http://dx.doi.org/10.1289/ehp.1409360  相似文献   

5.

Background

There are > 80,000 chemicals in commerce with few data available describing their impacts on human health. Biomonitoring surveys, such as the NHANES (National Health and Nutrition Examination Survey), offer one route to identifying possible relationships between environmental chemicals and health impacts, but sparse data and the complexity of traditional models make it difficult to leverage effectively.

Objective

We describe a workflow to efficiently and comprehensively evaluate and prioritize chemical–health impact relationships from the NHANES biomonitoring survey studies.

Methods

Using a frequent itemset mining (FIM) approach, we identified relationships between chemicals and health biomarkers and diseases.

Results

The FIM method identified 7,848 relationships between 219 chemicals and 93 health outcomes/biomarkers. Two case studies used to evaluate the FIM rankings demonstrate that the FIM approach is able to identify published relationships. Because the relationships are derived from the vast majority of the chemicals monitored by NHANES, the resulting list of associations is appropriate for evaluating results from targeted data mining or identifying novel candidate relationships for more detailed investigation.

Conclusions

Because of the computational efficiency of the FIM method, all chemicals and health effects can be considered in a single analysis. The resulting list provides a comprehensive summary of the chemical/health co-occurrences from NHANES that are higher than expected by chance. This information enables ranking and prioritization on chemicals or health effects of interest for evaluation of published results and design of future studies.

Citation

Bell SM, Edwards SW. 2015. Identification and prioritization of relationships between environmental stressors and adverse human health impacts. Environ Health Perspect 123:1193–1199; http://dx.doi.org/10.1289/ehp.1409138  相似文献   

6.

Background

Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals.

Objectives

We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used.

Methods

We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps.

Discussion

In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.

Conclusions

We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

Citation

Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535  相似文献   

7.

Background

Phthalate exposure occurs readily in the environment and has been associated with an array of health end points, including adverse birth outcomes. Some of these may be mediated by oxidative stress, a proposed mechanism for phthalate action.

Objectives

In the present study, we explored the associations between phthalate metabolites and biomarkers of oxidative stress measured in urine samples from multiple time points during pregnancy.

Methods

Women were participants in a nested case–control study of preterm birth (n = 130 cases, n = 352 controls). Each was recruited early in pregnancy and followed until delivery, providing urine samples at up to four visits. Nine phthalate metabolites were measured to assess exposure, and 8-hydroxydeoxyguanosine and 8-isoprostane were also measured in urine as markers of oxidative stress. Associations were assessed using linear mixed models to account for intraindividual correlation, with inverse selection probability weightings based on case status to allow for greater generalizability.

Results

Interquartile range increases in phthalate metabolites were associated with significantly higher concentrations of both biomarkers. Estimated differences were greater in association with monobenzyl phthalate (MBzP), mono-n-butyl phthalate (MBP), and monoisobutyl phthalate (MiBP), compared with di(2-ethylhexyl) phthalate (DEHP) metabolites.

Conclusions

Urinary phthalate metabolites were associated with increased oxidative stress biomarkers in our study population of pregnant women. These relationships may be particularly relevant to the study of birth outcomes linked to phthalate exposure. Although replication is necessary in other populations, these results may also be of great importance for a range of other health outcomes associated with phthalates.

Citation

Ferguson KK, McElrath TF, Chen YH, Mukherjee B, Meeker JD. 2015. Urinary phthalate metabolites and biomarkers of oxidative stress in pregnant women: a repeated measures analysis. Environ Health Perspect 123:210–216; http://dx.doi.org/10.1289/ehp.1307996  相似文献   

8.

Background

Chronic diseases are increasing among children in Latin America.

Objective and Methods

To examine environmental risk factors for chronic disease in Latin American children and to develop a strategic initiative for control of these exposures, the World Health Organization (WHO) including the Pan American Health Organization (PAHO), the Collegium Ramazzini, and Latin American scientists reviewed regional and relevant global data.

Results

Industrial development and urbanization are proceeding rapidly in Latin America, and environmental pollution has become widespread. Environmental threats to children’s health include traditional hazards such as indoor air pollution and drinking-water contamination; the newer hazards of urban air pollution; toxic chemicals such as lead, asbestos, mercury, arsenic, and pesticides; hazardous and electronic waste; and climate change. The mix of traditional and modern hazards varies greatly across and within countries reflecting industrialization, urbanization, and socioeconomic forces.

Conclusions

To control environmental threats to children’s health in Latin America, WHO, including PAHO, will focus on the most highly prevalent and serious hazards—indoor and outdoor air pollution, water pollution, and toxic chemicals. Strategies for controlling these hazards include developing tracking data on regional trends in children’s environmental health (CEH), building a network of Collaborating Centres, promoting biomedical research in CEH, building regional capacity, supporting development of evidence-based prevention policies, studying the economic costs of chronic diseases in children, and developing platforms for dialogue with relevant stakeholders.

Citation

Laborde A, Tomasina F, Bianchi F, Bruné MN, Buka I, Comba P, Corra L, Cori L, Duffert CM, Harari R, Iavarone I, McDiarmid MA, Gray KA, Sly PD, Soares A, Suk WA, Landrigan PJ. 2015. Children’s health in Latin America: the influence of environmental exposures. Environ Health Perspect 123:201–209; http://dx.doi.org/10.1289/ehp.1408292  相似文献   

9.

Background

Low-level environmental exposure to lead has been associated with both reduced intelligence and symptoms of attention deficit/hyperactivity disorder (ADHD). However, few studies have estimated the association of lead and intelligence independent of ADHD, and it is not clear from previous studies whether lead is associated with both inattention and impulsivity ADHD symptoms.

Objectives

We estimated mutually adjusted associations of environmental lead exposure with both intelligence and ADHD symptoms, and associations between lead and specific ADHD-related domains.

Methods

Blood lead concentrations were measured in a general population of 1,001 children 8–11 years of age. We used multivariable linear regression models to estimate associations of blood lead concentrations with IQ scores, teacher and parent ratings of ADHD symptoms, and measures of inattention and impulsivity. Models were adjusted for demographic variables and other environmental exposures (blood levels of mercury and manganese, urinary concentrations of cotinine, phthalate metabolites, and bisphenol A).

Results

Associations of blood lead with lower IQ and higher impulsivity were robust to adjustment for a variety of covariates. When adjusted for demographic characteristics, other environmental exposures, and ADHD symptoms or IQ, a 10-fold increase in blood lead concentration was associated with lower Full-Scale IQ (–7.23; 95% CI: –13.39, –1.07) and higher parent- and teacher-rated hyperactivity/impulsivity scores (ADHD Rating Scale, 1.99; 95% CI: 0.17, 3.81 and 3.66; 95% CI: 1.18, 6.13, respectively) and commission errors (Continuous Performance Test, 12.27; 95% CI: –0.08, 24.62). Blood lead was not significantly associated with inattention in adjusted models.

Conclusions

Low-level lead exposure was adversely associated with intelligence in school-age children independent of ADHD, and environmental lead exposure was selectively associated with impulsivity among the clinical features of ADHD.

Citation

Hong SB, Im MH, Kim JW, Park EJ, Shin MS, Kim BN, Yoo HJ, Cho IH, Bhang SY, Hong YC, Cho SC. 2015. Environmental lead exposure and attention deficit/hyperactivity disorder symptom domains in a community sample of South Korean school-age children. Environ Health Perspect 123:271–276; http://dx.doi.org/10.1289/ehp.1307420  相似文献   

10.

Background

Although prenatal methylmercury exposure has been linked to poorer intellectual function in several studies, data from two major prospective, longitudinal studies yielded contradictory results. Associations with cognitive deficits were reported in a Faroe Islands cohort, but few were found in a study in the Seychelles Islands. It has been suggested that co-exposure to another contaminant, polychlorinated biphenyls (PCBs), may be responsible for the positive findings in the former study and that co-exposure to nutrients in methylmercury-contaminated fish may have obscured and/or protected against adverse effects in the latter.

Objectives

We aimed to determine the degree to which co-exposure to PCBs may account for the adverse effects of methylmercury and the degree to which co-exposure to docosahexaenoic acid (DHA) may obscure these effects in a sample of Inuit children in Arctic Québec.

Methods

IQ was estimated in 282 school-age children from whom umbilical cord blood samples had been obtained and analyzed for mercury and other environmental exposures.

Results

Prenatal mercury exposure was related to poorer estimated IQ after adjustment for potential confounding variables. The entry of DHA into the model significantly strengthened the association with mercury, supporting the hypothesis that beneficial effects from DHA intake can obscure adverse effects of mercury exposure. Children with cord mercury ≥ 7.5 μg/L were four times as likely to have an IQ score < 80, the clinical cut-off for borderline intellectual disability. Co-exposure to PCBs did not alter the association of mercury with IQ.

Conclusions

To our knowledge, this is the first study to document an association of prenatal mercury exposure with poorer performance on a school-age assessment of IQ, a measure whose relevance for occupational success in adulthood is well established. This association was seen at levels in the range within which many U.S. children of Asian-American background are exposed.

Citation

Jacobson JL, Muckle G, Ayotte P, Dewailly É, Jacobson SW. 2015. Relation of prenatal methylmercury exposure from environmental sources to childhood IQ. Environ Health Perspect 123:827–833; http://dx.doi.org/10.1289/ehp.1408554  相似文献   

11.

Background

Displacing the use of polluting and inefficient cookstoves in developing countries is necessary to achieve the potential health and environmental benefits sought through clean cooking solutions. Yet little quantitative context has been provided on how much displacement of traditional technologies is needed to achieve targets for household air pollutant concentrations or fuel savings.

Objectives

This paper provides instructive guidance on the usage of cooking technologies required to achieve health and environmental improvements.

Methods

We evaluated different scenarios of displacement of traditional stoves with use of higher performing technologies. The air quality and fuel consumption impacts were estimated for these scenarios using a single-zone box model of indoor air quality and ratios of thermal efficiency.

Results

Stove performance and usage should be considered together, as lower performing stoves can result in similar or greater benefits than a higher performing stove if the lower performing stove has considerably higher displacement of the baseline stove. Based on the indoor air quality model, there are multiple performance–usage scenarios for achieving modest indoor air quality improvements. To meet World Health Organization guidance levels, however, three-stone fire and basic charcoal stove usage must be nearly eliminated to achieve the particulate matter target (< 1–3 hr/week), and substantially limited to meet the carbon monoxide guideline (< 7–9 hr/week).

Conclusions

Moderate health gains may be achieved with various performance–usage scenarios. The greatest benefits are estimated to be achieved by near-complete displacement of traditional stoves with clean technologies, emphasizing the need to shift in the long term to near exclusive use of clean fuels and stoves. The performance–usage scenarios are also provided as a tool to guide technology selection and prioritize behavior change opportunities to maximize impact.

Citation

Johnson MA, Chiang RA. 2015. Quantitative guidance for stove usage and performance to achieve health and environmental targets. Environ Health Perspect 123:820–826; http://dx.doi.org/10.1289/ehp.1408681  相似文献   

12.

Background

The most essential goal of medicine and public health is to prevent harm (primum non nocere). This goal is only fully achieved with primary prevention, which requires us to identify and prevent harms prior to human exposure through research and testing that does not involve human subjects. For that reason, public health policies place considerable reliance on nonhuman toxicological studies. However, toxicology as a field has often not produced efficient and timely evidence for decision making in public health. In response to this, the U.S. National Research Council called for the adoption of evidence-based methods and systematic reviews in regulatory decision making. The U.S. Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), and the European Food Safety Agency (EFSA) have recently endorsed these methods in their assessments of safety and risk.

Objectives

In this commentary we summarize challenges and problems in current practices in toxicology as applied to decision making. We compare these practices with the principles and methods utilized in evidence-based medicine and health care, with emphasis on the record of the Cochrane Collaboration.

Discussion

We propose a stepwise strategy to support the development, validation, and application of evidence-based toxicology (EBT). We discuss current progresses in this field produced by the Office of Health Assessment and Translation (OHAT) of the National Toxicology Program and the Navigation Guide works. We propose that adherence to the Cochrane principles is a fundamental prerequisite for the development and implementation of EBT.

Conclusion

The adoption of evidence-based principles and methods will enhance the validity, transparency, efficiency, and acceptance of toxicological evidence, with benefits in terms of reducing delays and costs for all stakeholders (researchers, consumers, regulators, and industry).

Citation

Mandrioli D, Silbergeld EK. 2016. Evidence from toxicology: the most essential science for prevention. Environ Health Perspect 124:6–11; http://dx.doi.org/10.1289/ehp.1509880  相似文献   

13.

Background

The process of creating a cohort or cohort substudy may induce misleading exposure–health effect associations through collider stratification bias (i.e., selection bias) or bias due to conditioning on an intermediate. Studies of environmental risk factors may be at particular risk.

Objectives

We aimed to demonstrate how such biases of the exposure–health effect association arise and how one may mitigate them.

Methods

We used directed acyclic graphs and the example of bone lead and mortality (all-cause, cardiovascular, and ischemic heart disease) among 835 white men in the Normative Aging Study (NAS) to illustrate potential bias related to recruitment into the NAS and the bone lead substudy. We then applied methods (adjustment, restriction, and inverse probability of attrition weighting) to mitigate these biases in analyses using Cox proportional hazards models to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs).

Results

Analyses adjusted for age at bone lead measurement, smoking, and education among all men found HRs (95% CI) for the highest versus lowest tertile of patella lead of 1.34 (0.90, 2.00), 1.46 (0.86, 2.48), and 2.01 (0.86, 4.68) for all-cause, cardiovascular, and ischemic heart disease mortality, respectively. After applying methods to mitigate the biases, the HR (95% CI) among the 637 men analyzed were 1.86 (1.12, 3.09), 2.47 (1.23, 4.96), and 5.20 (1.61, 16.8), respectively.

Conclusions

Careful attention to the underlying structure of the observed data is critical to identifying potential biases and methods to mitigate them. Understanding factors that influence initial study participation and study loss to follow-up is critical. Recruitment of population-based samples and enrolling participants at a younger age, before the potential onset of exposure-related health effects, can help reduce these potential pitfalls.

Citation

Weisskopf MG, Sparrow D, Hu H, Power MC. 2015. Biased exposure–health effect estimates from selection in cohort studies: are environmental studies at particular risk? Environ Health Perspect 123:1113–1122; http://dx.doi.org/10.1289/ehp.1408888  相似文献   

14.

Background

Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives

This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.

Methods

Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results

We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion

Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

Citation

Petitti DB, Hondula DM, Yang S, Harlan SL, Chowell G. 2016. Multiple trigger points for quantifying heat-health impacts: new evidence from a hot climate. Environ Health Perspect 124:176–183; http://dx.doi.org/10.1289/ehp.1409119  相似文献   

15.

Background

Organophosphate pesticide (OP) exposure to the U.S. population is dominated by dietary intake. The magnitude of exposure from diet depends partly on personal decisions such as which foods to eat and whether to choose organic food. Most studies of OP exposure rely on urinary biomarkers, which are limited by short half-lives and often lack specificity to parent compounds. A reliable means of estimating long-term dietary exposure to individual OPs is needed to assess the potential relationship with adverse health effects.

Objectives

We assessed long-term dietary exposure to 14 OPs among 4,466 participants in the Multi-Ethnic Study of Atherosclerosis, and examined the influence of organic produce consumption on this exposure.

Methods

Individual-level exposure was estimated by combining information on typical intake of specific food items with average OP residue levels on those items. In an analysis restricted to a subset of participants who reported rarely or never eating organic produce (“conventional consumers”), we assessed urinary dialkylphosphate (DAP) levels across tertiles of estimated exposure (n = 480). In a second analysis, we compared DAP levels across subgroups with differing self-reported organic produce consumption habits (n = 240).

Results

Among conventional consumers, increasing tertile of estimated dietary OP exposure was associated with higher DAP concentrations (p < 0.05). DAP concentrations were also significantly lower in groups reporting more frequent consumption of organic produce (p < 0.02).

Conclusions

Long-term dietary exposure to OPs was estimated from dietary intake data, and estimates were consistent with DAP measurements. More frequent consumption of organic produce was associated with lower DAPs.

Citation

Curl CL, Beresford SA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, Kaufman JD. 2015. Estimating pesticide exposure from dietary intake and organic food choices: the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health Perspect 123:475–483; http://dx.doi.org/10.1289/ehp.1408197  相似文献   

16.

Background

For Europe as a whole, data on internal exposure to environmental chemicals do not yet exist. Characterization of the internal individual chemical environment is expected to enhance understanding of the environmental threats to health.

Objectives

We developed and applied a harmonized protocol to collect comparable human biomonitoring data all over Europe.

Methods

In 17 European countries, we measured mercury in hair and cotinine, phthalate metabolites, and cadmium in urine of 1,844 children (5–11 years of age) and their mothers. Specimens were collected over a 5-month period in 2011–2012. We obtained information on personal characteristics, environment, and lifestyle. We used the resulting database to compare concentrations of exposure biomarkers within Europe, to identify determinants of exposure, and to compare exposure biomarkers with health-based guidelines.

Results

Biomarker concentrations showed a wide variability in the European population. However, levels in children and mothers were highly correlated. Most biomarker concentrations were below the health-based guidance values.

Conclusions

We have taken the first steps to assess personal chemical exposures in Europe as a whole. Key success factors were the harmonized protocol development, intensive training and capacity building for field work, chemical analysis and communication, as well as stringent quality control programs for chemical and data analysis. Our project demonstrates the feasibility of a Europe-wide human biomonitoring framework to support the decision-making process of environmental measures to protect public health.

Citation

Den Hond E, Govarts E, Willems H, Smolders R, Casteleyn L, Kolossa-Gehring M, Schwedler G, Seiwert M, Fiddicke U, Castaño A, Esteban M, Angerer J, Koch HM, Schindler BK, Sepai O, Exley K, Bloemen L, Horvat M, Knudsen LE, Joas A, Joas R, Biot P, Aerts D, Koppen G, Katsonouri A, Hadjipanayis A, Krskova A, Maly M, Mørck TA, Rudnai P, Kozepesy S, Mulcahy M, Mannion R, Gutleb AC, Fischer ME, Ligocka D, Jakubowski M, Reis MF, Namorado S, Gurzau AE, Lupsa IR, Halzlova K, Jajcaj M, Mazej D, Snoj Tratnik J, López A, Lopez E, Berglund M, Larsson K, Lehmann A, Crettaz P, Schoeters G. 2015. First steps toward harmonized human biomonitoring in Europe: demonstration project to perform human biomonitoring on a European scale. Environ Health Perspect 123:255–263; http://dx.doi.org/10.1289/ehp.1408616  相似文献   

17.

Background

Investigators measuring exposure biomarkers in urine typically adjust for creatinine to account for dilution-dependent sample variation in urine concentrations. Similarly, it is standard to adjust for serum lipids when measuring lipophilic chemicals in serum. However, there is controversy regarding the best approach, and existing methods may not effectively correct for measurement error.

Objectives

We compared adjustment methods, including novel approaches, using simulated case–control data.

Methods

Using a directed acyclic graph framework, we defined six causal scenarios for epidemiologic studies of environmental chemicals measured in urine or serum. The scenarios include variables known to influence creatinine (e.g., age and hydration) or serum lipid levels (e.g., body mass index and recent fat intake). Over a range of true effect sizes, we analyzed each scenario using seven adjustment approaches and estimated the corresponding bias and confidence interval coverage across 1,000 simulated studies.

Results

For urinary biomarker measurements, our novel method, which incorporates both covariate-adjusted standardization and the inclusion of creatinine as a covariate in the regression model, had low bias and possessed 95% confidence interval coverage of nearly 95% for most simulated scenarios. For serum biomarker measurements, a similar approach involving standardization plus serum lipid level adjustment generally performed well.

Conclusions

To control measurement error bias caused by variations in serum lipids or by urinary diluteness, we recommend improved methods for standardizing exposure concentrations across individuals.

Citation

O’Brien KM, Upson K, Cook NR, Weinberg CR. 2016. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect 124:220–227; http://dx.doi.org/10.1289/ehp.1509693  相似文献   

18.

Background

Lead (Pb) exposure and obesity are co-occurring risk factors for decreased bone mass in the young, particularly in low socioeconomic communities.

Objectives

The goal of this study was to determine whether the comorbidities of Pb exposure and high-fat diet–induced obesity amplify skeletal deficits independently associated with each of these risk factors, and to explore associated mechanisms of the observed deficiencies.

Methods

Five-week-old male C57BL/6J mice were placed on low-fat (10% kcal, LFD) or high-fat (60% kcal, HFD) diets for 12 weeks. Mice were exposed to lifetime Pb (50 ppm) through drinking water.

Results

HFD was associated with increased body mass and glucose intolerance. Both HFD and Pb increased fasting glucose and serum leptin levels. Pb and HFD each reduced trabecular bone quality and together had a further detrimental effect on these bone parameters. Mechanical bone properties of strength were depressed in Pb-exposed bones, but HFD had no significant effect. Both Pb and HFD altered progenitor cell differentiation, promoting osteoclastogenesis and increasing adipogenesis while suppressing osteoblastogenesis. In support of this lineage shift being mediated through altered Wnt signaling, Pb and non-esterified fatty acids in MC3T3 cells increased in vitro PPAR-γ activity and inhibited β-catenin activity. Combining Pb and non-esterified fatty acids enhanced these effects.

Conclusions

Pb and HFD produced selective deficits in bone accrual that were associated with alterations in progenitor cell activity that may involve reduced Wnt signaling. This study emphasizes the need to assess toxicants together with other risk factors relevant to human health and disease.

Citation

Beier EE, Inzana JA, Sheu TJ, Shu L, Puzas JE, Mooney RA. 2015. Effects of combined exposure to lead and high-fat diet on bone quality in juvenile male mice. Environ Health Perspect 123:935–943; http://dx.doi.org/10.1289/ehp.1408581  相似文献   

19.

Background

Cadmium (Cd) risk assessment presently relies on tubular proteinuria as a critical effect and urinary Cd (U-Cd) as an index of the Cd body burden. Based on this paradigm, regulatory bodies have reached contradictory conclusions regarding the safety of Cd in food. Adding to the confusion, epidemiological studies implicate environmental Cd as a risk factor for bone, cardiovascular, and other degenerative diseases at exposure levels that are much lower than points of departure used for setting food standards.

Objective

The objective was to examine whether the present confusion over Cd risks is not related to conceptual or methodological problems.

Discussion

The cornerstone of Cd risk assessment is the assumption that U-Cd reflects the lifetime accumulation of the metal in the body. The validity of this assumption as applied to the general population has been questioned by recent studies revealing that low-level U-Cd varies widely within and between individuals depending on urinary flow, urine collection protocol, and recent exposure. There is also evidence that low-level U-Cd increases with proteinuria and essential element deficiencies, two potential confounders that might explain the multiple associations of U-Cd with common degenerative diseases. In essence, the present Cd confusion might arise from the fact that this heavy metal follows the same transport pathways as plasma proteins for its urinary excretion and the same transport pathways as essential elements for its intestinal absorption.

Conclusions

The Cd risk assessment paradigm needs to be rethought taking into consideration that low-level U-Cd is strongly influenced by renal physiology, recent exposure, and factors linked to studied outcomes.

Citation

Bernard A. 2016. Confusion about cadmium risks: the unrecognized limitations of an extrapolated paradigm. Environ Health Perspect 124:1–5; http://dx.doi.org/10.1289/ehp.1509691  相似文献   

20.

Background

Women living in agricultural areas may experience high pesticide exposures compared with women in urban or suburban areas because of their proximity to farm activities.

Objective

Our objective was to review the evidence in the published literature for the contribution of nonoccupational pathways of pesticide exposure in women living in North American agricultural areas.

Methods

We evaluated the following nonoccupational exposure pathways: paraoccupational (i.e., take-home or bystander exposure), agricultural drift, residential pesticide use, and dietary ingestion. We also evaluated the role of hygiene factors (e.g., house cleaning, shoe removal).

Results

Among 35 publications identified (published 1995–2013), several reported significant or suggestive (p < 0.1) associations between paraoccupational (n = 19) and agricultural drift (n = 10) pathways and pesticide dust or biomarker levels, and 3 observed that residential use was associated with pesticide concentrations in dust. The 4 studies related to ingestion reported low detection rates of most pesticides in water; additional studies are needed to draw conclusions about the importance of this pathway. Hygiene factors were not consistently linked to exposure among the 18 relevant publications identified.

Conclusions

Evidence supported the importance of paraoccupational, drift, and residential use pathways. Disentangling exposure pathways was difficult because agricultural populations are concurrently exposed to pesticides via multiple pathways. Most evidence was based on measurements of pesticides in residential dust, which are applicable to any household member and are not specific to women. An improved understanding of nonoccupational pesticide exposure pathways in women living in agricultural areas is critical for studying health effects in women and for designing effective exposure-reduction strategies.

Citation

Deziel NC, Friesen MC, Hoppin JA, Hines CJ, Thomas K, Beane Freeman LE. 2015. A review of nonoccupational pathways for pesticide exposure in women living in agricultural areas. Environ Health Perspect 123:515–524; http://dx.doi.org/10.1289/ehp.1408273  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号