首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of papaverine, a smooth muscle relaxant agent, on the voltage-dependent Ca++ current were examined in isolated smooth muscle cells from the guinea pig trachea. The tight-seal whole cell voltage clamp technique was used. Papaverine (1-100 microM) inhibited the Ba++ inward current (IBa) through the voltage-dependent L-type Ca++ channel in a concentration-dependent fashion. The inhibitory effect of papaverine on IBa appeared to have both tonic and use-dependent components. In addition to the reduction of the maximal conductance of IBa, papaverine (20 microM) shifted the quasi-steady-state inactivation curve of IBa to more negative membrane potentials by approximately 10 mV. These effects of papaverine on IBa were completely reversible. Although it has been suggested that papaverine inhibited phosphodiesterase to increase intracellular cyclic AMP, phosphodiesterase inhibitors (theophylline, 500 microM, and 3-isobutyl-1-methylxanthine, 500 microM), isoproterenol (2 microM) and dibutyryl cyclic AMP (1 mM) did not affect IBa. Thus, papaverine inhibits IBa in a way independent of intracellular cyclic AMP. Papaverine also had inhibitory effects on other membrane currents (i.e., the voltage-dependent transient outward K+ current and the Ca(++)-activated oscillatory K+ current), which may result in an enhancement of the excitability of the cells. These results suggest that inhibition of the voltage-dependent L-type Ca++ channel is involved in the papaverine-induced relaxation of the tracheal smooth muscle.  相似文献   

2.
There is evidence that the relaxation of vascular smooth muscle produced by isoproterenol or cyclic AMP is mediated by membrane hyperpolarization. The current study investigates the possibility that this hyperpolarization, and hence the relaxation, may be produced by activation of the electrogenic sodium pump. Rat and pig tail artery strips were placed in a 1.0-mM potassium solution for 15 min. This procedure results in a decrease in the activity of the sodium pump. The strips were then made to contract in response to norepinephrine. Two minutes later, the concentration of potassium was increased to 6.0 mM and a relaxation occurred. The amplitude of this relaxation reflects the activity of the sodium pump. Either isoproterenol or dibutyryl-cyclic AMP causes an enhancement (time or degree) of potassium-induced relaxation. Theophylline potentiated potassium-induced relaxation in pig arteries but not in rat arteries. The relaxant action of isoproterenol on 1.0 mM barium contractures of rat arteries was inhibited by treatment with ouabain or with potassium-free solution. Ouabain inhibited the relaxant action of isoproterenol in pig arteries contracted with depolarizing potassium solution but not in rat tail arteries. Dibutyryl-cyclic AMP, theophylline and nitroprusside caused relaxation of serotonin-induced contractions; however, in rat arteries these responses were not inhibited by ouabain or by the absence of potassium. Similar studies on tail arteries from baboons, dogs, pigs and cats showed that relaxation by dibutyryl-cyclic AMP or by theophylline had some dependency on the activity of the sodium pump. These observations are consistent with the following conclusions: 1) isoproterenol and cyclic AMP potentiate the electrogenic pumping of sodium and potassium responsible for potassium-induced relaxation; 2) the relaxing action of isoproterenol, dibutyryl-cyclic AMP and theophylline are dependent upon experimental conditions and the species from which the vascular tissue is obtained; and 3) there is a component of isoproterenol- and cyclic AMP-induced relaxation which is not altered by inhibition of the electrogenic sodium pump in the rat.  相似文献   

3.
The effects of leukotriene D4 and methacholine on cyclic nucleotide content and isoproterenol-induced relaxation were examined in the isolated opossum trachea. Although leukotriene D4 (-log EC50 = 6.70) was a more potent contractile agent than methacholine (-log EC50 = 5.78), the maximal response to leukotriene D4 was only 65% of the maximum response to methacholine. Contraction of tracheal strips with leukotriene D4 was accompanied by a 3-fold increase in cyclic GMP accumulation. Methacholine-induced contraction was not associated with an increase in cyclic GMP. Neither agent altered basal cyclic AMP content. Additional experiments were carried out to examine functional inhibitory interactions between bronchoconstricting and bronchodilating pathways. In these studies, cumulative isoproterenol concentration-response curves were constructed in tracheal strips contracted with three different concentrations of methacholine and in tissues contracted with three corresponding equieffective concentrations of leukotriene D4. Although the relaxant response to isoproterenol decreased as tissues were contracted with higher concentrations of either agent, the inhibitory effect of methacholine on isoproterenol-induced relaxation was much greater than the inhibitory effect of leukotriene D4. Previous studies from our laboratory suggested that a potential explanation for the greater inhibitory effect of methacholine on the mechanical response to isoproterenol was that methacholine may inhibit isoproterenol-stimulated cyclic AMP accumulation whereas leukotriene D4 may not. However, neither methacholine nor leukotriene D4 inhibited isoproterenol-stimulated cyclic AMP accumulation in the opossum trachea. The results of this study indicate that the sensitivity of airway smooth muscle to beta adrenoceptor agonists is influenced both by the initial contractile state of the tissue and by the type of agent used to induce tone.  相似文献   

4.
The present study examines the relationship between tissue cyclic nucleotide levels and relaxation of bovine intrapulmonary arterial and venous smooth muscle in response to nitroglycerin, nitroprusside, S-nitroso-N-acetylpenicillamine and isoproterenol. Recent studies have suggested that cyclic GMP may be involved in the relaxation of vascular smooth muscle produced by nitrogen oxide-containing vasodilators and that S-nitrosothiols may act as intermediates of the latter agents. In the present study, nitroglycerin, nitroprusside and S-nitroso-N-acetylpenicillamine were more potent as relaxants of venous than arterial segments. Each of these agents elevated tissue cyclic GMP levels, but not cyclic AMP levels, before relaxation. These nitrogen oxide-containing agents were more potent as elevators of cyclic GMP levels in venous than arterial tissue and this correlated generally with their effects on vascular smooth muscle tone. Methylene blue antagonized both relaxation and increased cyclic GMP levels elicited by nitroglycerin, nitroprusside and S-nitroso-N-acetylpenicillamine. In contrast to the nitrogen oxide vasodilators, 8-bromo-cyclic GMP was equally effective in reducing induced tone in arterial or venous segments. Similarly, isoproterenol relaxed arterial and venous segments with equivalent sensitivities. Relaxation by isoproterenol was preceded by or occurred concomitantly with increased levels of cyclic AMP but not cyclic GMP and both effects were antagonized by propranolol. These findings are consistent with the hypothesis that vascular smooth muscle relaxation in response to nitrogen oxide-containing vasodilators or isoproterenol may be mediated or modulated by the intracellular accumulation of cyclic GMP or cyclic AMP, respectively.  相似文献   

5.
The relaxant effects of isoproterenol, forskolin and sodium nitroprusside were studied on tracheal pieces and lung parenchymal strips of Sprague-Dawley and Wistar rats according to age and functional antagonism with carbachol applied previously to induce the contraction. The beta receptor-related maximal relaxant effect of isoproterenol decreased from 4 to 11 weeks in Sprague-Dawley rat airways contracted with 10(-6) M carbachol. This maximal relaxant effect did not change with age in the Wistar strain. When lower carbachol concentrations were applied to Wistar trachea, the maximal relaxant effect of isoproterenol raised with a large decrease of the EC50 values. In the Sprague-Dawley strain, a similar diminution of carbachol concentration also allowed to increase the maximal amplitude of relaxation, but a smaller decrease of EC50 was observed as referred to the Wistar strain. These results suggest that the decrease with age of the maximal relaxation of Sprague-Dawley airways by isoproterenol might be linked to impaired functional antagonism between beta adrenergic and muscarinic stimulation in this rat strain. This hypothesis was strengthened by the observation of the effects of forskolin, an activator of adenylate cyclase, and sodium nitroprusside, a cyclic GMP-related relaxant drug, that did not show any modified effect in function of age in both rat strains. A modified regulation of adenylate cyclase complex with ontogenesis and with rat strain is suggested.  相似文献   

6.
The biochemical basis for the functional interaction between bronchoconstricting and bronchodilating pathways was investigated. Contracting canine trachealis strips with increasing concentrations of methacholine resulted in a progressive shift to the right of isoproterenol concentration-response curves. Thus, the EC50 for the relaxant response to isoproterenol was nearly 500-fold higher in preparations exposed to 3.0 microM methacholine than in tissues exposed to 0.03 microM methacholine. The maximum relaxation produced by isoproterenol was also dependent upon the initial muscarinic cholinergic tone. For example, isoproterenol reversed completely the contraction induced by 0.03 microM methacholine but did not relax trachealis strips contracted with 30 microM methacholine. To identify the molecular mechanism responsible for this functional antagonism, experiments were conducted to determine the effect of methacholine on isoproterenol-stimulated cyclic AMP accumulation and cyclic AMP-dependent protein kinase activation. Methacholine did not alter basal cyclic AMP content but did reduce cyclic AMP accumulation in response to isoproterenol. Furthermore, the ability of isoproterenol to activate cyclic AMP-dependent protein kinase was inhibited by methacholine in a concentration-dependent manner. This inhibition paralleled the decrease in mechanical responsiveness to isoproterenol. These results suggest that muscarinic cholinergic stimulation of canine tracheal smooth muscle functionally antagonizes the relaxant responses to beta adrenergic agonists and that a portion of this antagonism may be due to a suppression of catecholamine-stimulated cyclic AMP accumulation and cyclic AMP-dependent protein kinase activation.  相似文献   

7.
The effects of forskolin and isoproterenol on contractile force and cyclic AMP (cAMP) levels were compared in rabbit detrusor. Both forskolin and isoproterenol produced relaxation of rabbit detrusor and an increase in cAMP levels in the tissue. Although the relaxant response to forskolin was similar to that of isoproterenol, the increase in cAMP levels induced by forskolin was significantly larger than that induced by isoproterenol. These results suggest that there is a discrepancy in the relaxation responses and cAMP levels in response to forskolin and isoproterenol.  相似文献   

8.
MCI-154 is a new positive inotropic agent with vasodilating property. Experiments were carried out in the canine isolated right ventricular muscle in order to elucidate whether or not cyclic AMP is involved in the positive inotropic effect (PIE) of MCI-154. MCI-154 (10(-7) to 10(-4) M) produced a concentration-dependent PIE amounting to 75% of the maximal effect of isoproterenol. MCI-154 did not affect the time to peak tension and had a tendency to shorten the relaxation time and total duration of contraction. Pindolol, reserpine-pretreatment or tetrodotoxin did not modify the PIE of MCI-154. MCI-154 increased the cyclic AMP levels only at 3 X 10(-4) M, whereas CI-914, of which chemical structure is similar to that of MCI-154, elevated definitely the cyclic AMP at the lower concentrations (10(-5) to 10(-4) M). Carbachol at a concentration known to decrease markedly the PIE of amrinone, milrinone and papaverine, did not affect the PIE of MCI-154. MCI-154 inhibited the activity of a crude phosphodiesterase (PDE) from the canine ventricular muscle and it enhanced the PIE of isoproterenol, which implied the involvement of cyclic AMP. However, the maximal inhibition of PDE by MCI-154 remained less than 18%. Amrinone, milrinone and papaverine inhibited more potently the PDE activity than MCI-154. These results suggest that the elevation of cyclic AMP levels is only partially involved in the PIE of MCI-154 in the canine right ventricular muscle, and that MCI-154 may have novel mechanisms of action different from those of amrinone, milrinone and CI-914 that are largely cyclic AMP-dependent.  相似文献   

9.
Beta adrenergic receptor-mediated vascular smooth muscle relaxation decreases with increasing age. We have examined the mechanism responsible for this phenomenon using rat mesenteric arteries from young (5-6 weeks) and older (10-12 months) rats. The beta adrenergic agonist isoproterenol produced a dose-dependent relaxation of serotonin-constricted mesenteric artery rings from young rats, whereas the maximal ability of isoproterenol to relax arterial rings from the older rats was found to be reduced markedly (92.7 vs. 27.6%, P less than .0001). The relaxation responses caused by acetylcholine and nitroglycerin, which appear to act independently of cyclic AMP (cAMP), are similar in the two groups. The loss in responsiveness of the mesenteric artery to isoproterenol was not explained by a change in beta receptor number in the vessels (29 +/- 4 in young rats vs. 31 +/- 7 fmol/mg of protein in the older rats). The maximal stimulation of cAMP accumulation by isoproterenol was lower in the older vessels; forskolin activated cAMP accumulation equally in the two groups. However, the vessels from the older rats were less sensitive to forskolin-induced vascular relaxation. Also, the ability of dibutyryl cAMP to promote vascular relaxation was diminished in the older vessels. These data suggest that the diminished cAMP accumulation in older vessels in response to isoproterenol might not necessarily in itself explain completely the reduced physiological response and that an additional defect in the beta adrenergic-mediated relaxation in the vascular smooth muscle of older rats may lie at the level of cAMP-dependent protein kinase activation or more distally.  相似文献   

10.
Beta adrenergic relaxation of vascular smooth muscle, mediated by cyclic AMP, is blunted with age in a variety of experimental animals. The applicability of these observations to man is uncertain. The dorsal hand vein technique provides an excellent method to examine the direct effects of aging on vascular responsiveness. Thirty-nine healthy male volunteers over the age range of 19 to 79 were studied. No differences in vascular responsiveness to phenylephrine, an alpha adrenergic agonist, were found for either the ED50 (dose producing 50% vasoconstriction) or Emax (maximum vasoconstriction attained). In marked contrast, vascular relaxation induced by isoproterenol, a beta adrenergic agonist, was significantly different in both the ED50 (dose producing 50% of maximum relaxation from a preconstricted state) and Emax (maximum relaxation attained). ED50 +/- S.E.M. for the youngest and oldest deciles were 8.9 +/- 2.3 and 60 +/- 17.0 ng/min, respectively (P less than .05); Emax +/- S.E.M. were 96.7 +/- 3.3 and 37.7 +/- 8.7%, respectively (P less than .001). Nitroglycerin, a smooth muscle relaxant whose effects are not mediated through the cyclic AMP system, was also used to examine the specificity of this blunted response to isoproterenol. Almost complete relaxation was achieved with the infusion of nitroglycerin in the older group. These results suggest that aging is associated with a specific decrease in beta adrenoreceptor-mediated vascular relaxation.  相似文献   

11.
Functional antagonism between bronchoconstricting and bronchodilating pathways was examined in canine tracheal smooth muscle. Trachealis strips were contracted with either 0.3 microM (EC55) or 3.0 microM (EC80) methacholine before being relaxed by the cumulative addition of isoproterenol, prostaglandin E2, or forskolin. The EC50 for all three relaxants was increased 10-fold in tissues contracted with 3.0 microM methacholine vs. those contracted with 0.3 microM methacholine. Moreover, contracting tissues with the higher concentration of methacholine reduced the maximum relaxation induced by prostaglandin E2 and isoproterenol. Forskolin produced total relaxation regardless of the concentration of methacholine used and thus was a much more effective bronchodilator than either isoproterenol or prostaglandin E2. The inhibitory effect of methacholine on the relaxant response to these agents was paralleled by a reduction in drug-stimulated cyclic AMP-dependent protein kinase activity. Methacholine reduced the maximum activation of cyclic AMP-dependent protein kinase elicited by isoproterenol, prostaglandin E2 and submaximal concentrations of forskolin, which was a much more powerful enzyme activator than the other two agents. The ability of a maximum concentration of forskolin (30 microM) to activate cyclic AMP-dependent protein kinase was not inhibited by methacholine. Although methacholine also appeared to suppress drug-stimulated cyclic AMP accumulation, the inhibitory effect was only statistically significant in forskolin-treated tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of beta-adrenoceptor activation on levcromakalim-induced relaxation was investigated in myograph-mounted rat mesenteric arteries. The nonselective beta-adrenoceptor agonist isoproterenol (at a concentration causing approximately 30% relaxation of methoxamine-induced tone) potentiated relaxation to levcromakalim; higher concentrations exerted no additional effect. The modulatory and relaxant effects of isoproterenol were inhibited by the beta(1)-adrenoceptor antagonist atenolol, but the ATP-sensitive K(+) (K(ATP)) channel inhibitor glibenclamide did not inhibit relaxations to isoproterenol. The protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPS) inhibited the ability of isoproterenol to modulate levcromakalim relaxation. However, neither Rp-cAMPS nor N-[2-(p-bromocinnamylamino)ethyl]-6-isoquinolinesulfonamide (H-89) (another protein kinase A inhibitor) markedly reduced isoproterenol-induced relaxation, although Rp-cAMPS inhibited relaxations induced by forskolin (an adenylyl cyclase activator). Iberiotoxin (50 nM), an inhibitor of large conductance Ca(2+)-activated K(+) channels (BK(Ca)), attenuated isoproterenol relaxation. Moreover, both Rp-cAMPS and H-89 caused inhibition of the effects of isoproterenol in the presence of iberiotoxin, whereas glibenclamide did not. We conclude that isoproterenol modulates the actions of levcromakalim through beta(1)-adrenoceptors and protein kinase A, even though K(ATP) channels do not contribute to its relaxant effects. However, the major relaxant mechanism for isoproterenol appears to be protein kinase A-independent activation of BK(Ca), with cyclic AMP-dependent mechanisms only being unmasked when the BK(Ca) mechanism is inhibited. Although direct G protein-mediated activation of BK(Ca) has been demonstrated previously in electrophysiological studies of single smooth muscle cells, this is the first time that such a mechanism has been shown to be functionally important in an intact blood vessel preparation.  相似文献   

13.
Our previous observations suggested that beta adrenergic-mediated relaxation of the rat myometrium could not be ascribed solely to cyclic AMP. The present study examines the relationships between relaxation and cyclic AMP accumulation in the myometrium in response to isoproterenol, forskolin and the combination of both. The diterpene enhanced cyclic AMP generation and potentiated the rises in cyclic AMP due to isoproterenol and prostaglandin (PG) E2. Isoproterenol-induced relaxation of a carbachol-contracted myometrium was associated with modest increments in cyclic AMP (6-12 pmol/mg of protein) in contrast to forskolin whose relaxing effect could be expressed only when associated with large increases in cyclic AMP (80-180 pmol/mg of protein). PGE2, although elevating cyclic AMP to the same extent as isoproterenol, caused contractions which were antagonized by isoproterenol and forskolin, respectively, associated with low and high cyclic AMP concentrations. Both PGE2 and forskolin, by virtue of their stimulatory effect on cyclic AMP generation, enhanced the efficiency of isoproterenol to cause relaxation. Likewise, the greater efficacy of forskolin to relax a PGE2- as opposed to a carbachol-contracted myometrium, was ascribed to its potentiated cyclic AMP response when combined with PGE2. It is proposed that the beta adrenoceptor-linked relaxation results from the concerted effects of both a cyclic AMP-dependent (sensitive to low cyclic AMP) and a cyclic AMP-independent process; the latter is postulated to operate at the membrane level with an ultimate reduction in cytosolic Ca++. On the other hand, cyclic AMP, provided it reached a critical concentration essential to mediate intracellular Ca++ sequestration, would be the sole determinant for forskolin-elicited relaxation.  相似文献   

14.
Histamine, beta-adrenergic amines, and prostaglandins inhibited hemolytic plaque formation by splenic leukocytes from immunized mice. The same agents had previously been shown to prevent both the IgE-mediated release of histamine from human basophils and the immunologically specific cytolytic activity of murine lymphocytes, through stimulation of the production of cyclic AMP in leukocytes. We therefore tested the hypothesis that cyclic AMP might mediate an inhibitory effect of these drugs by comparing the ability of these agents to inhibit plaque formation with their effects on cyclic AMP accumulation in leukocytes. In splenic cells from three mouse strains, the dose-dependent effects of these agents of cyclic AMP correlated with their inhibition of plaque formation. Beta- but not alpha-adrenergic agonists were effective in both systems, and the effects of isoproterenol were inhibited by propranolol. Histamine was approximately equipotent with isoproterenol in both systems. Two prostaglandins (E(1) and E(2)) were effective in both systems, but prostaglandin F(2alpha) was not. Dibutyryl cyclic AMP, a lipid-soluble analog of the endogenous nucleotide, inhibited plaque formation by cells of all three strains. Theophylline, an inhibitor of cyclic AMP degradation, inhibited plaque formation slightly, but potentiated the effects of histamine, isoproterenol, and the prostaglandins on both cyclic AMP accumulation and plaque formation. Finally, cholera enterotoxin, a potent activator of adenyl cyclase, produced a delayed inhibition of plaque formation and a parallel increase in leukocyte cyclic AMP content; both effects of the toxin were blocked by canine antitoxin. These results suggest that leukocyte cyclic AMP may act as a "second messenger" to suppress plaque formation in vitro. The inhibitory effects of hormones and cyclic AMP on plaque formation are strikingly similar to their effects on in vitro models of immediate and cell-mediated hypersensitivity. The physiologic significance of these findings is not yet known.  相似文献   

15.
The regulation of guinea pig tracheal muscle tone by cyclic AMP-dependent and cyclic GMP-dependent relaxant mechanisms was investigated by studying the tracheal relaxant activities of forskolin, nitroprusside, N6-2'-O-dibutyryl-cyclic AMP and 8-bromoguanosine-cyclic GMP. In carbachol (3 X 10(-6) M)-contracted isolated tracheal rings, N6-2'-O-dibutyryl-cyclic AMP and 8-bromoguanosine-cyclic GMP each caused biphasic relaxation responses, which consisted of an acute relaxation followed by a sustained but lesser degree of relaxation. The biphasic nature of this response is suggested to result from a functional counter-balancing of cyclic nucleotide-dependent relaxant mechanisms and the contractile mechanisms stimulated by carbachol. The sensitivity of carbachol-contracted tracheal rings to forskolin and nitroprusside (activators of adenylate and guanylate cyclase, respectively) was generally not influenced by N6-2'-O-dibutyryl-cyclic AMP or 8-bromoguanosine-cyclic GMP in concentrations that induced up to 50% relaxation of the trachea. Furthermore, the partial relaxation of tracheal tension with one cyclic nucleotide analog did not alter the sensitivity of the tracheal rings to the other. These results demonstrate that cyclic AMP- and cyclic GMP-dependent mechanisms induce relaxations of the trachea that are functionally additive, each neither potentiating nor depressing the effects of the other. In the presence of 3 X 10(-6) M carbachol, the effectiveness of cyclic AMP- and cyclic GMP-dependent relaxant mechanisms appears to be fixed, and independent of the amount of active tension being maintained by the tracheal muscle itself.  相似文献   

16.
There is some evidence in the literature that catecholamines relax uterine and other types of smooth muscle by increasing tissue levels of cyclic adenosine monophosphate (cyclic AMP). In the present study, isoproterenol completely relaxed uterine strips obtained from estrogen-primed rats and also increased tissue levels of cyclic AMP and phosphorylase a. In uterine strips depolarized and put into contracture for 15 minutes by 127 mM K+, isoproterenol did not increase phosphorylase a or cyclic AMP but was still capable of producing relaxation. When uterine strips were exposed to the methoxy derivative of verapamil, D-600, a compound known to prevent the influx of calcium, the uterus relaxed completely without an increase in cyclic AMP. The addition of isoproterenol at this stage resulted in an increase in cyclic AMP similar to that noted in nondepolarized uterine strips. The addition of 127 mM K+ also resulted in time-dependent biochemical changes as well as contracture. Cyclic AMP was increased 3-fold after 2 minutes of K+ depolarization and phosphorylase a was increased as well. The increase in cyclic AMP was prevented by propranolol but propranolol did not affect the contracture response to K+. D-600 prevented contracture but did not affect the K+-induced increase in cyclic AMP. The data suggest that an increase in whole tissue levels of cyclic AMP are not necessary in order for isoproterenol to relax depolarized rat uterine strips. The data also suggest that intracellular calcium levels can affect the level of cyclic AMP in the rat uterus.  相似文献   

17.
We studied the in vivo mechanism of beta-adrenergic receptor (beta-AR) hyporesponsiveness induced by intratracheal instillation of interleukin-1beta (IL-1beta, 500 U) in Brown-Norway rats. Tracheal and bronchial smooth muscle responses were measured under isometric conditions ex vivo. Contractile responses to electrical field stimulation and to carbachol were not altered, but maximal relaxation induced by isoproterenol (10(-6)-10(-5) M) was significantly reduced 24 h after IL-1beta treatment in tracheal tissues and to a lesser extent, in the main bronchi. Radioligand binding using [125I]iodocyanopindolol revealed a 32+/-7% reduction in beta-ARs in lung tissues from IL-1beta-treated rats, without any significant changes in beta2-AR mRNA level measured by Northern blot analysis. Autoradiographic studies also showed significant reduction in beta2-AR in the airways. Isoproterenol-stimulated cyclic AMP accumulation was reduced by IL-1beta at 24 h in trachea and lung tissues. Pertussis toxin reversed this hyporesponsiveness to isoproterenol but not to forskolin in lung tissues. Western blot analysis revealed an IL-1beta-induced increase in Gi(alpha) protein expression. Thus, IL-1beta induces an attenuation of beta-AR-induced airway relaxation through mechanisms involving a reduction in beta-ARs, an increase in Gi(alpha) subunit, and a defect in adenylyl cyclase activity.  相似文献   

18.
The objective of this study was to examine the relationship between responses of bovine intrapulmonary artery and vein to arachidonic acid and cyclic nucleotide levels in order to better understand the mechanism of relaxation elicited by arachidonic acid and acetylcholine. Arachidonic acid relaxed phenylephrine-precontracted arterial rings and elevated both cyclic GMP and cyclic AMP levels in arteries with intact endothelium. In contrast, endothelium-damaged arterial rings contracted to arachidonic acid without demonstrating significant changes in cyclic nucleotide levels. Indomethacin partially inhibited endothelium-dependent relaxation and abolished cyclic AMP accumulation whereas methylene blue, a guanylate cyclase inhibitor, partially inhibited relaxation and abolished cyclic GMP accumulation in response to arachidonic acid. All vessel responses were blocked by a combination of the two inhibitors. Prostaglandin (PG) I2 relaxed arterial rings and elevated cyclic AMP levels whereas PGE2 and PGF2 alpha caused contraction, suggesting that the indomethacin-sensitive component of arachidonic acid-elicited relaxation is due to PGI2 formation and cyclic AMP accumulation. The methylene blue-sensitive component is attributed to an endothelium-dependent but cyclooxygenase-independent generation of a substance causing cyclic GMP accumulation. Intrapulmonary veins contracted to arachidonic acid with no changes in cyclic nucleotide levels and PGI2 was without effect. Homogenates of intrapulmonary artery and vein formed 6-keto-PGF1 alpha, PGF2 alpha and PGE2 from [14C]arachidonic acid, which was inhibited by indomethacin. Thus, bovine intrapulmonary vein may not possess receptors for PGI2. The failure of endothelium-intact vein to relax to acetylcholine may be related to the lack of a relaxant effect by arachidonic acid, perhaps attributed to the absence of generation of an endothelium-derived relaxing factor.  相似文献   

19.
This study was designed to evaluate whether the adenylate cyclase inhibitor 2',5'-dideoxyadenosine (DDA) would attenuate the relaxation produced by adenosine analogs in order to provide functional evidence in support of the working hypothesis that adenosine receptor-mediated relaxation of coronary artery involves adenylate cyclase. Rings from porcine left anterior descending coronary artery were mounted in organ chambers for measurement of isometric force. Rings contracted with KCl (30 mM) relaxed in a concentration-dependent manner to 2-chloroadenosine (CAD), 5'-N-ethylcarboxamidoadenosine (NECA), isoproterenol, sodium nitroprusside (SNP) and forskolin. Treatment of coronary rings with DDA (50 microM) significantly attenuated the relaxation produced by CAD, NECA, forskolin and isoproterenol, but had no effect on the relaxation response to SNP. The nucleoside transport inhibitor dilazep (10 microM) completely reversed the inhibitory effect of DDA on the relaxation produced by forskolin and CAD, whereas dilazep only partially reversed the DDA inhibition of NECA-induced relaxation. In a membrane preparation from porcine coronary artery CAD, but not NECA, increased cyclic AMP production in a GTP-dependent manner. DDA significantly decreased basal cyclic AMP production and also decreased CAD-, forskolin-, GTP- and NaF-stimulated cyclic AMP production. These results provide functional and biochemical evidence in support of the working hypothesis that adenosine receptor-mediated coronary relaxation involves adenylate cyclase. Furthermore, the results from this study suggest that the signaling mechanisms responsible for adenosine receptor-mediated coronary relaxation are more complicated than a single receptor coupled with adenylate cyclase because 1) dilazep completely reversed the inhibitory effect of DDA on the CAD relaxation but not the NECA relaxation, and 2) NECA did not increase cyclic AMP production.  相似文献   

20.
In noncontracting mouse hemidiaphragms incubated in modified Krebs-Ringer--bicarbonate buffer with 10 mM Ca++, isoproterenol-stimulated phosphorylase a formation, conversion of phosphorylase kinase to the activated form, elevation of cyclic AMP-dependent protein kinase activity ratios and increase in cyclic AMP concentrations were reduced 35 to 50% over the responses in buffer with 2.5 mM Ca++. In buffer with 10 mM Ca++, the initial rate of isoproterenol-stimulated cyclic AMP accumulation was 59% of that in buffer with 2.5 mM Ca++. The inhibitory action of Ca++ on cyclic AMP accumulation was antagonized by verapamil, but not by inhibitors of cyclic nucleotide phosphodiesterase activity. In buffer with 2.5 mM Ca++, isoproterenol-stimulated cyclic AMP accumulation was inhibited by A23187 and caffeine, agents that can increase intracellular Ca++ concentrations. In addition to Ca++, high concentrations of Co++, Ni++, Mn++ and, to a lesser extent, Sr++ inhibited the isoproterenol response. The results of these studies indicate that high buffer Ca++ concentrations inhibit the response of the glycogenolytic pathway to isoproterenol by an action on cyclic AMP formation. We propose that the site of the inhibitory action of Ca++ is the divalent metal activator site associated with hormone-stimulated adenylate cyclase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号