首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Purpose: Effective heat-induced cell death in cultured cells bearing a mutant p53 (mp53) gene was sought by glycerol treatment which led to conformational change from mp53 to wild-type p53 (wtp53) in p53-null murine fibroblasts transfected with mp53. Materials and methods: Heat sensitivity was measured using a colony-forming assay. For heat-induced apoptosis, gel electrophoresis was applied to detect DNA fragmentation and Hoechst33342 staining for apoptotic bodies. Glycerol (0.6 m) was applied to the cultured cells 48 h before heating at 44 C in a water bath. Results: Wtp53 transfectants (MT158/wtp53-1) were sensitive to heat stress compared with mp53 transfectants (MT158/mp53-2 cells), and the combined treatment with glycerol enhanced cell killing only in the MT158/mp53-2 cells. After glycerol pretreatment for 48h, the subsequent heat treatment enhanced DNA fragmentation and apoptosis in MT158/mp53-2 cells, while DNA fragmentation and apoptotic bodies were not enhanced with heat treatment alone in these cells. In contrast, DNA fragmentation or apoptotic bodies were clearly observed in MT158/wtp53-1 cells 3-24h after heat treatment. Treatment with glycerol alone did not induce apoptosis in the transfectants. Conclusions: Glycerol appears to function as a chemical chaperone that restores mp53 to wtp53 function.  相似文献   

2.
PURPOSE: The effects of a heat shock protein (hsp) inhibitor KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolactam) were examined on the heat sensitivity and heat tolerance of human cancer cells with special reference to p53 status. MATERIALS AND METHODS: Human squamous cell carcinoma (SAS) and glioblastoma cell lines (A-172) transfected with mutant p53 (mp53) or control neo genes were used. KNK437 was added in culture medium at a final concentration of 50, 100 or 300 microM 1 h before heating (42 degrees C). Surviving fractions of cells were measured by use of a clonogenic assay. Effects of KNK437 on the accumulation of heat shock proteins and DNA binding activity of heat shock factor 1 were examined with Western blot analysis and gel mobility-shift assay, respectively. Heat-induced apoptotic bodies were detected by Hoechst 33342 staining. RESULTS: The mp53-transfected SAS (SAS/mp53) and A-172 (A-172/mp53) cells were more resistant to heat than the neomycin (neo)-transfected SAS (SAS/neo) and A-172 (A-172/neo) cells. The constitutive amount of hsp27 was larger in SAS/mp53 than in SAS/neo cells. Clear differences in the constitutive amounts of hsp40, hsp72 and hsp90 were not observed between SAS/mp53 and SAS/neo cells. KNK437 enhanced the heat sensitivity in SAS/mp53 and A-172/mp53 cells more effectively than in neo control cells. Heat tolerance was suppressed by KNK437 in SAS/mp53 and SAS/neo cells and also in A-172/mp53 and A-172/neo cells. Along with suppression of heat tolerance, KNK437 suppressed heat-induced accumulation of both hsp27 and hsp72. Heat-induced apoptotic bodies were enhanced by KNK437 in SAS/mp53 and SAS/neo cells. CONCLUSION: The results suggest a possible mechanism for the heat sensitivity of SAS cells. Heat sensitivity depends on p53 status regulating the amount of hsp27. Heat tolerance is suppressed by KNK437 through the suppression of heat-induced accumulations of hsp27 and hsp72 and the induction of p53-independent apoptosis.  相似文献   

3.
PURPOSE: To investigate the dependence on p53 gene status of the thermal enhancement of cellular sensitivity against different levels of linear energy transfer (LET) from X-rays or carbon-ion (C-) beams. MATERIALS AND METHODS: Two kinds of human squamous cell carcinoma cell lines were used with an identical genotype except for the p53 gene. SAS/mp53 cells were established by transfection with mutated p53 (mp53) gene to SAS cells having functional wild-type p53 (wtp53). As the control, a neo vector was transfected to the SAS cells (SAS/neo cells). Both cells were exposed to X-rays or accelerated C-beams (30-150 KeV microm(-1)) followed by heating at 44 degrees C. Cellular sensitivity was determined by colony-forming activity. Induction of apoptosis was analysed by Hoechst 33342 staining of apoptotic bodies and agarose-gel electrophoresis for the formation of DNA ladders. RESULTS: It was found that (1) there was no significant difference in cellular sensitivity between SAS/neo and SAS/mp53 cells to LET radiation of >30 KeV microm(-1), although the radiosensitivity of SAS/neo cells to X-rays was higher (1.2-fold) than that of SAS/mp53 cells; (2) there was an interactive thermal enhancement of radiosensitivity below an LET of 70 KeV microm(-1) in SAS/neo cells, although only additive thermal enhancement was observed in SAS/mp53 cells through all LET levels examined; (3) low-LET radiation induced apoptosis only in SAS/neo cells; (4) high-LET radiation at an isosurvival dose-induced apoptosis of SAS/neo cells at a higher frequency compared with that with low-LET radiation; (5) high-LET radiation-induced p53-independent apoptosis in SAS/mp53 cells; and (6) thermal enhancement of cellular sensitivity to X-rays was due to induction of p53-dependent apoptosis. CONCLUSIONS: The findings suggest that thermal enhancement of radiosensitivity may result from p53-dependent apoptosis induced by inhibition of p53-dependent cell survival system(s) through either regulation of the cell cycle or induction of DNA repair. It is also suggested that the analysis of p53 gene status of cancer cells may predict response to combined therapies with low-LET radiation and hyperthermia.  相似文献   

4.
PURPOSE: This study was undertaken to clarify the effects of acute or chronic pre-irradiation on the induction of p53-dependent apoptosis by X-rays or heat shock. MATERIALS AND METHODS: Having an identical genotype except for p53-status, the human cultured squamous cell carcinoma cells (SAS) were transfected with a mutant p53 gene (SAS/mp53) or neo alone (SAS/neo) as a control. After acute X-irradiation (1 Gy min(-1)), chronic gamma-irradiation (0.001 Gy min(-1)) or heat shock (44 degrees C), the cells were for the incidence of apoptotic bodies and DNA ladders, cellular levels of p53 and bax, and caspase-3 activity. RESULTS: It was found that (1) a challenge treatment with X-rays (5.O Gy) or heat shock (30 min) immediately after chronic pre-irradiation (1.5 Gy) but not acute pre-irradiation (1.5 Gy) resulted in lower levels of apoptosis than those observed after challenge treatment only in SAS/neo cells; (2) a challenge treatment-induced apoptosis was observed 48 h after cessation of chronic pre-irradiation in SAS/neo cells; (3) apoptosis was barely increased in SAS/mp53 cells; and (4) the levels of apoptosis-related proteins after challenge treatments were strongly correlated with the above phenomena. CONCLUSIONS: Chronic pre-irradiation at a low dose-rate suppressed induction of p53-dependent apoptosis via bax and caspase-3. These findings suggest that chronic pre-irradiation suppressed p53 function through radiation-induced signalling and/or p53 stability.  相似文献   

5.
Purpose : To investigate the dependence on p53 gene status of the thermal enhancement of cellular sensitivity against different levels of linear energy transfer (LET) from X-rays or carbon-ion (C-) beams. Materials and methods : Two kinds of human squamous cell carcinoma cell lines were used with an identical genotype except for the p53 gene. SAS/m p53 cells were established by transfection with mutated p53 (m p53) gene to SAS cells having functional wild-type p53 (wtp53). As the control, a neo vector was transfected to the SAS cells (SAS/ neo cells). Both cells were exposed to X-rays or accelerated C-beams (30-150 KeV w m -1) followed by heating at 44°;C. Cellular sensitivity was determined by colony-forming activity. Induction of apoptosis was analysed by Hoechst 33342 staining of apoptotic bodies and agarose-gel electrophoresis for the formation of DNA ladders. Results : It was found that (1) there was no significant difference in cellular sensitivity between SAS/ neo and SAS/m p53 cells to LET radiation of >30 KeV w m -1, although the radiosensitivity of SAS/ neo cells to X-rays was higher (1.2-fold) than that of SAS/m p53 cells; (2) there was an interactive thermal enhancement of radiosensitivity below an LET of 70 KeV w m -1 in SAS/ neo cells, although only additive thermal enhancement was observed in SAS/m p53 cells through all LET levels examined; (3) low-LET radiation induced apoptosis only in SAS/ neo cells; (4) high-LET radiation at an isosurvival dose-induced apoptosis of SAS/ neo cells at a higher frequency compared with that with low-LET radiation; (5) high-LET radiation-induced p53-independent apoptosis in SAS/m p53 cells; and (6) thermal enhancement of cellular sensitivity to X-rays was due to induction of p53-dependent apoptosis. Conclusions : The findings suggest that thermal enhancement of radiosensitivity may result from p53-dependent apoptosis induced by inhibition of p53-dependent cell survival system(s) through either regulation of the cell cycle or induction of DNA repair. It is also suggested that the analysis of p53 gene status of cancer cells may predict response to combined therapies with low-LET radiation and hyperthermia.  相似文献   

6.
Purpose : This study was undertaken to clarify the effects of acute or chronic pre-irradiation on the induction of p53 -dependent apoptosis by X-rays or heat shock. Materials and methods : Having an identical genotype except for p53 -status, the human cultured squamous cell carcinoma cells (SAS) were transfected with a mutant p53 gene (SAS/m p53) or neo alone (SAS/ neo) as a control. After acute X-irradiation (1Gy min -1) , chronic gamma-irradiation (0.001 Gy min -1) or heat shock (44°C), the cells were for the incidence of apoptotic bodies and DNA ladders, cellular levels of p53 and bax, and caspase-3 activity. Results : It was found that (1) a challenge treatment with X-rays (5.0 Gy) or heat shock (30 min) immediately after chronic pre-irradiation (1.5Gy) but not acute pre-irradiation (1.5 Gy) resulted in lower levels of apoptosis than those observed after challenge treatment only in SAS/ neo cells; (2) a challenge treatment-induced apoptosis was observed 48h after cessation of chronic pre-irradiation in SAS/ neo cells; (3) apoptosis was barely increased in SAS/m p53 cells; and (4) the levels of apoptosis-related proteins after challenge treatments were strongly correlated with the above phenomena. Conclusions : Chronic pre-irradiation at a low dose-rate suppressed induction of p53 -dependent apoptosis via bax and caspase-3. These findings suggest that chronic pre-irradiation suppressed p53 function through radiation-induced signalling and/or p53 stability.  相似文献   

7.
目的 评价抑癌基因p53( 野生型p53) 对照射后人胃癌细胞系(BGC823) 的G1 期阻滞和凋亡的控制作用。方法 3 种具有不同p53 状态的人胃癌细胞系,即转染人野生型p53 基因的BGC823wtp53 细胞、转染人突变型p53 基因的BGC823mutp53 细胞和转染无p53 基因的空载质粒的BGC823vect 细胞,用流式细胞计分析细胞,4Gy 照射后0、8 和24 小时后各细胞时相分布和凋亡的反应。结果 照射4Gy 后8 小时和24 小时后的BGC823wtp53 细胞出现强烈的G1 期阻滞(分别占原细胞总数的67-9% 和61-1 %) ,而BGC823mutp53 、BGC823vect 细胞几乎没有G1 期阻滞;照射4Gy 后8 小时和24 小时后的BGC823wtp53 细胞出现明显的预示凋亡的亚G1 峰,凋亡细胞比例分别达13-0 % 和15-3 % ;而BGC823mutp53 和BGC823vect 细胞几乎没有出现亚G1 峰和凋亡细胞比例都为零。结论 野生型p53 基因具有促进照射后肿瘤细胞的G1 期阻滞和凋亡作用,而p53 变异和缺失则减低了肿瘤细胞对放射线的反应。  相似文献   

8.
PURPOSE: The effect of heat treatment in combination with X-irradiation was examined with regard to expression of p53, a tumor suppressor gene product, and Hsp70, a heat-shock protein, in association with the occurrence of programmed cell death (apoptosis). MATERIALS AND METHODS: Three hematopoietic cell lines (HSB2, HL60 and Kasumi-1), which differ in p53 status, were exposed to 42.5 degrees C during one hour and/or X-radiation (total dose 8 Gy). After exposure, both mRNA and protein expression levels of Hsp70 and p53 were investigated by real-time PCR (polymerase chain reaction) and Western blotting. Apoptosis was simultaneously analyzed by observation of cell morphology as well as flowcytometric determination of Annexin V binding to phosphatidylserine and propidium iodide exclusion. RESULTS: Both HL60 and HSB2 cell lines with a low p53 status and a quick response to heat treatment with Hsp70 over-expression are less susceptible to heat-induced apoptosis compared to Kasumi-1 cells with wild-type p53 protein and no Hsp70 response. The combination of first applying X-irradiation followed by heat treatment resulted in the most effective induction of apoptosis due to impairment of the Hsp70 response in all three cell lines. CONCLUSION: These results indicate that the Hsp70 response and p53 status mediate the susceptibility of hematopoietic cells to undergo heat-induced apoptosis. Therefore, these parameters can be used as markers to predict the effectiveness of hyperthermia in cancer treatment.  相似文献   

9.
Purpose: The effects of a heat shock protein (hsp) inhibitor KNK437 (N‐formyl‐3,4‐methylenedioxy‐benzylidene‐γ‐butyrolactam) were examined on the heat sensitivity and heat tolerance of human cancer cells with special reference to p53 status.

Materials and methods: Human squamous cell carcinoma (SAS) and glioblastoma cell lines (A‐172) transfected with mutant p53 (mp53) or control neo genes were used. KNK437 was added in culture medium at a final concentration of 50, 100 or 300?µM 1?h before heating (42°C). Surviving fractions of cells were measured by use of a clonogenic assay. Effects of KNK437 on the accumulation of heat shock proteins and DNA binding activity of heat shock factor 1 were examined with Western blot analysis and gel mobility‐shift assay, respectively. Heat‐induced apoptotic bodies were detected by Hoechst 33342 staining.

Results: The mp53‐transfected SAS (SAS/mp53) and A‐172 (A‐172/mp53) cells were more resistant to heat than the neomycin (neo)‐transfected SAS (SAS/neo) and A‐172 (A‐172/neo) cells. The constitutive amount of hsp27 was larger in SAS/mp53 than in SAS/neo cells. Clear differences in the constitutive amounts of hsp40, hsp72 and hsp90 were not observed between SAS/mp53 and SAS/neo cells. KNK437 enhanced the heat sensitivity in SAS/mp53 and A‐172/mp53 cells more effectively than in neo control cells. Heat tolerance was suppressed by KNK437 in SAS/mp53 and SAS/neo cells and also in A‐172/mp53 and A‐172/neo cells. Along with suppression of heat tolerance, KNK437 suppressed heat‐induced accumulation of both hsp27 and hsp72. Heat‐induced apoptotic bodies were enhanced by KNK437 in SAS/mp53 and SAS/neo cells.

Conclusion: The results suggest a possible mechanism for the heat sensitivity of SAS cells. Heat sensitivity depends on p53 status regulating the amount of hsp27. Heat tolerance is suppressed by KNK437 through the suppression of heat‐induced accumulations of hsp27 and hsp72 and the induction of p53‐independent apoptosis.  相似文献   

10.
We investigated the death pattern of cancer cells by using different kinds of linear energy transfer (LET) radiation. We used two human squamous cell carcinoma cell lines with an identical genotype except for the p53 gene. SAS/mp53 cells were established by transfection with the mp53 gene to SAS cells having functional p53 (wtp53). As the control, a neovector was transfected to the SAS cells (SAS/neo cells). Both types of cells were exposed to X-rays (1.5 KeV/micron) or accelerated C-beams (30-100 KeV/micron). The frequency of cell death (apoptosis and necrosis) was measured by acridine orange/ethidium bromide(AO/EB) double staining for fluorescence microscopy. We found that (1) low-LET radiation induced apoptosis only in SAS/neo cells; (2) high-LET radiation at an iso-survival dose induced apoptosis not but necrosis in SAS/neo cells at a higher frequency; (3) high-LET radiation induced p53-independent apoptosis even in SAS/mp53 cells. Our findings suggest that high-LET radiotherapy is expected to (1) have validity in its application to patients carrying mutated p53 cancer cells and (2) reduce injury to adjacent normal tissue for high-frequency-induced apoptosis without inflammatory response. We propose that elucidation of p53-independent apoptosis-related genes might provide new insights into radiotherapy for cancer.  相似文献   

11.
PURPOSE: There have been no reports about the effects of heavy-ion beams on the expression of the WAF1 gene, although ionizing radiation such as y-rays and X-rays is well known to induce WAF1 (p21/CIP1/sdi1) gene expression in a p53-dependent manner. In the present study, it was examined whether WAF1 accumulation was induced after carbon-ion (C-) beam or alpha-particle irradiation in four glioblastoma cell lines. MATERIALS AND METHODS: A colony assay for radiosensitivity and Western blot analysis of WAF1 were applied to two human glioblastoma cell lines, A-172 bearing wild-type p53 (wtp53) and T98G bearing mutated p53 (mp53). A-172/neo and A-172/mp53 were transfected with a control vector (containing only a neo selection marker) and a mp53 expression vector respectively. RESULTS: The amount of WAF1 increased markedly after X-ray irradiation in A-172 and A-172/neo cells but not in T98G and A-172/mp53 cells. The level of WAF1 reached a plateau at 3-10 h after X-ray irradiation at 5 Gy in A-172 and A-172/neo cells. Likewise, the levels of WAF1 in A-172 and A-172/neo cells reached a plateau at 3-10 h and 6-24 h after C-beam (3.0 Gy) and alpha-particle (4.5 Gy) irradiation respectively. The amount of WAF1 increased markedly in a dose-dependent manner 10 h after X-ray, C-beam or alpha-particle irradiation in A-172 and A-172/neo cells but not in T98G or A-172/mp53 cells. In addition, cell survival assay showed that these cell lines were most sensitive to C-beams, less sensitive to alpha-particles and least sensitive to X-rays at 10% survival. There was no difference in sensitivity among these cell lines against C-beam and alpha-particle irradiation whereas wtp53 cells (A-172 and A-172/neo) were more sensitive to X-rays than mp53 cells (A-172/mp53 and T98G). CONCLUSIONS: These results indicate that C-beams and alpha-particles induce p53-dependent WAF1 accumulation as well as is the case with X-rays, suggesting that WAF1 protein accumulation may not contribute to cell killing.  相似文献   

12.
PURPOSE: We compared the ability of adenoviral-mediated wild-type p53 RPR/INGN201(Ad5/CMV/p53) to radiosensitize non-small cell lung carcinoma (NSCLC) and normal lung fibroblast cells. MATERIALS AND METHODS: NSCLC cell lines (A549 and H322) and human lung fibroblast cells (MRC-9 and CCD-16) were used in this study. Radiosensitivity was determined by clonogenic assay and tumor growth delay. Expression of p53, Bax, and p21WAF1 protein were evaluated by immunoblot. A FITC conjugate of annexin V was used for flow cytometric detection of apoptosis. RESULTS: Clonogenic and apoptotic assays indicated that Ad5/CMV/p53 enhanced the radiosensitivity of both NSCLC cell lines. On the other hand, the two normal human fibroblast cell lines appeared to be resistant to the cytotoxic effects of Ad5/CMV/p53 and were not radiosensitized compared to the NSCLC cells. According to immunoblot analysis, Bax expression was increased in the NSCLC cells treated with the combination therapy; Bax expression, however, was unchanged in normal cells. In in vivo studies, tumor growth suppression was enhanced by this combination strategy in xenograft tumors growing in nude mice compared to Ad5/CMV/p53 or radiation therapy when used alone. CONCLUSIONS: Our data indicate that therapy using Ad5/CMV/p53 and irradiation in combination is more effective than either treatment when used alone on NSCLC cells, is not limited to cells with defective endogenous p53, and does not enhance the radiosensitivity of normal cells.  相似文献   

13.
Purpose : We compared the ability of adenoviral-mediated wildtype p53 RPR/INGN201(Ad5/CMV/p53) to radiosensitize nonsmall cell lung carcinoma (NSCLC) and normal lung fibroblast cells. Materials and methods : NSCLC cell lines (A549 and H322) and human lung fibroblast cells (MRC-9 and CCD-16) were used in this study. Radiosensitivity was determined by clonogenic assay and tumor growth delay. Expression of p53, Bax, and p21 WAF1 protein were evaluated by immunoblot. A FITC conjugate of annexin V was used for flow cytometric detection of apoptosis. Results : Clonogenic and apoptotic assays indicated that Ad5/CMV/p53 enhanced the radiosensitivity of both NSCLC cell lines. On the other hand, the two normal human fibroblast cell lines appeared to be resistant to the cytotoxic effects of Ad5/CMV/p53 and were not radiosensitized compared to the NSCLC cells. According to immunoblot analysis, Bax expression was increased in the NSCLC cells treated with the combination therapy; Bax expression, however, was unchanged in normal cells. In in vivo studies, tumor growth suppression was enhanced by this combination strategy in xenograft tumors growing in nude mice compared to Ad5/CMV/p53 or radiation therapy when used alone. Conclusions : Our data indicate that therapy using Ad5/CMV/p53 and irradiation in combination is more effective than either treatment when used alone on NSCLC cells, is not limited to cells with defective endogenous p53, and does not enhance the radiosensitivity of normal cells.  相似文献   

14.
PURPOSE: To investigate whether unstable types of chromosomal aberrations are more effective in priming apoptotic cell death in comparison with stable ones. Also, to highlight the phase of the cell cycle at which apoptosis occurs and the mechanism of its execution. MATERIALS AND METHODS: G0 human peripheral blood lymphocytes were X-irradiated in the presence or absence of the repair inhibitor cytosine arabinoside (Ara-C). After irradiation, the lymphocytes were analysed for induction of dicentrics, translocations, apoptosis, p53 and survivin expression at various recovery times. RESULTS: A preferential elimination of cells bearing dicentrics with respect to those with balanced translocations was observed. There was a time-dependent correlation between the decrease in the frequency of dicentrics and the increase in the per cent of apoptotic cells. Most of the apoptotic cells were labelled with bromodeoxyuridine and were mononucleated in cytochalasin B-treated cells cultures (blocked cytokinesis). However, after continuous colcemid treatment, the apoptotic pathway was not induced. Moreover, in the G2/M-phase, an increase in p53 and a decrease in survivin occurred that were X-ray and Ara-C dose dependent. CONCLUSIONS: The apoptotic process is primed when the dicentric-bearing human peripheral blood lymphocytes attempt to exit from metaphase. It is possible that unstable aberrations generate changes in the mitotic spindle causing mechanical tension at the kinetochore, activating the mitotic checkpoint and the execution of p53/survivin-dependent apoptosis.  相似文献   

15.
PURPOSE: To obtain evidence that the p53 gene is indispensable for reduction of high teratogenic risk of radiation at a high dose-rate to zero risk by lowering the dose-rate. MATERIALS AND METHODS: Wild-type p53(+/+), heterozygous p53(+/-) and null p53(-/-) mice were exposed to gamma-rays at high or low dose-rates during days 9.5-10.5 of gestation. The incidence of malformations and prenatal deaths was studied. Frequencies of cells dying by apoptosis were measured during or after protracted irradiation. RESULTS: After irradiation with 2 Gy, the frequency of apoptotic cells increased to 20% for p53(+/+) mice and did not increase at all for p53(-/-) mice. For p53(+/+) mice, 2 Gy y-rays induced 70% malformations when given at 1.06 Gy/min, but no malformations above the control when given at 1.2 mGy/min. In contrast, after irradiation of p53(-/-) foetuses with 2 Gy at 1.2mGy/min, the incidence of malformations increased 12% above control levels. CONCLUSION: Foetal irradiation with 2 Gy at 1.2 mGy/min was not teratogenic for p53(+/+) mice but teratogenic for p53(-/-) mice. This indicates that the p53 gene is indispensable for a threshold effect in the risk of radiation at low doses or dose-rates.  相似文献   

16.
Purpose : To investigate how DNA-dependent protein kinase (DNA-PK) contributes to p53-dependent signal transduction after heat shock, thermosensitivity and accumulation of p53 and hsp72 after heat shock in lung fibroblasts derived from the SCID mouse were analysed. Materials and methods : Thermosensitivity at 44°C in colony-forming units and Western blot analysis of p53 and hsp72 were analysed. Results : The results indicated that (1) the thermosensitivity at 44°C of SCID cells was higher than that of parental cells and (2) heat-induced accumulation of p53 and hsp72 was abolished and suppressed in SCID cells as compared with that in parental cells respectively. Conclusions : The findings suggest that the catalytic subunit of DNA-PK may play an important role upstream of p53 and hsp72, which are possible determinants of cellular thermosensitivity.  相似文献   

17.
PURPOSE: To examine the effects of p53 status and wortmannin treatment on potentially lethal damage repair, referring to the response of intratumor quiescent cells. METHODS: Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector as a control (SAS/neo) were injected subcutaneously into both hind legs of Balb/cA nude mice. Mice bearing the tumors received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all proliferating (P) cells in the tumors. The mice then received gamma-rays with or without subsequent wortmannin administration. Right after or 24 h after gamma-ray irradiation alone or 24 h after wortmannin administration following irradiation, the tumors were excised, minced, and trypsinized. The tumor cell suspensions thus obtained were incubated with a cytokinesis blocker (cytochalasin-B), and the micronucleus (MN) frequency in cells without BrdU labeling [quiescent (Q) cells] was determined using immunofluorescence staining for BrdU. The MN frequency in total (P+Q) tumor cells was determined from the tumors that were not pretreated with BrdU. RESULTS: On the whole, larger values of MN frequency and surviving fraction were observed in SAS/mp53 cells than in SAS/neo cells, and Q cells showed lower MN frequencies than total cells. Without wortmannin, SAS/neo tumor cells, especially Q cells within SAS/neo tumors, showed large potentially lethal damage repair (PLDR) capacities, compared with total or Q tumor cells within SAS/mp53 tumors that showed little PLDR capacity. Wortmannin treatment inhibited the PLDR in SAS/neo tumors very effectively, but showed no apparent effect on either total or Q tumor cells within SAS/mp53 tumors. CONCLUSION: PLDR in vivo was thought to be a p53-dependent event whether in total or Q tumor cell populations.  相似文献   

18.
The purpose was to compare the radiation-induced apoptosis in human lymphocytes with DNA-loop relaxation and DNA damage as a function of radiation dose and time after exposure. Morphological changes were analysed by staining with fluorescent dyes and apoptotic fragmentation of DNA with conventional agarose gel electrophoresis, pulsed-field gel electrophoresis (PFGE) and alkaline comet assay. Viability was estimated by trypan blue assay. The levels of protein p53 (TP53) were determined with Western blot. Relaxation of DNA-loops was analysed by the method of anomalous viscosity time dependence (AVTD) and neutral comet assay. Induction and repair of double-strand breaks (DSB) was studied by PFGE and by immunostaining of the TP53 binding protein 1 (53BP1). At various time points of apoptosis, there was a linear dose dependence for all apoptotic end-points up to 1-2 Gy followed by a plateau at higher doses. Immediately after irradiation, relaxation of DNA-loops due to strand breaks was observed. This relaxation had a similar dose-response with saturation at 2-3 Gy. This dose induced approximately one single-strand break (SSB) per 2 Mb of DNA, a value close to the average size of DNA-loops in resting lymphocytes. Similar saturations in dose-responses for apoptosis and DNA-loop relaxation were also observed if cells were treated by camptothecin (CPT) or etoposide VP-16, drugs that relax DNA-loops by induction of SSB and DSB, respectively. The PFGE data showed that the vast majority of DSB were repaired within few hours after irradiation. However, approximately 1.4 foci/Gy/cell, that corresponded to around 3.5% of initial DSB, remained in cells even 24 h after irradiation as measured with immunostaining. The probability to produce one or more than one residual foci per cell was calculated. Radiation at 2-3 Gy induced at least one residual 53BP1 focus per cell. The dose-responses for DNA-loop relaxation, induction of at least one residual 53BP1 foci per cell and apoptosis saturated at 2-3 Gy. The correlation between dose-responses obtained suggested that the DSB in residual foci and relaxation of DNA-loops may be linked to induction of radiation-induced apoptosis in lymphocytes.  相似文献   

19.
目的 观察外源性野生型p53基因(wtp53)对人肺腺癌细胞株的放射增敏作用,比较不同p53基因状态对照射的影响。 方法 免疫组织化学法、聚合酶链反应-单链构象多态性分析(PCR-SSCP法)筛选p53基因状态不同的两种人肺腺癌细胞系A549及GLC-82,用腺病毒介导wtp53 (Ad-p53)转染后分别给予0、2和4 Gy照射,测定集落形成率,流式细胞仪检测细胞周期分布和凋亡。结果 A549细胞的p53基因正常,而GLC-82细胞的p53基因第7外显子突变,转染后wtp53在两种细胞内均成功表达。Ad-p53对A549及GLC-82细胞抑制率分别为55%和88%,对GLC-82抑制作用较强(P<0.01)。转染Ad-p53后照射,两种细胞集落形成率较对照组明显下降(P<0.001)。流式细胞仪分析Ad-p53使G1期细胞比例增加和凋亡指数增高,Ad-p53+照射组最为明显(P<0.001)。结论 Ad-wtp53可以抑制人肺腺癌细胞株的生长,增加其放射敏感性,其放射增敏作用并不依赖于细胞内源性p53基因的状态。  相似文献   

20.
IntroductionThe p53 tumour suppressor protein plays a pivotal role in the response of mammalian cells to DNA damage. It regulates cell cycle progression, apoptosis and DNA repair mechanisms and is therefore likely to influence response to targeted radionuclide therapy. This study investigated the role of p53 in the cellular response to the Auger-emitting radionuclide indium-111.MethodsTwo stable clones of a HT1080 fibrosarcoma cell line, differing only in p53 status due to RNAi-mediated knockdown of p53 expression, were incubated for 1 h with [111In]-oxinate (0–10 MBq/ml). Radiopharmaceutical uptake into HT1080 cells was measured in situ using a non-contact phosphorimager method. Cellular sensitivity and DNA damage were measured by, respectively, clonogenic survival analysis and the single cell gel electrophoresis (Comet) assay.ResultsMean uptake of [111In]-oxinate in HT1080 cells was unaffected by p53 status, reaching a maximum of 9 Bq/cell. [111In]-oxinate-induced cytotoxicity was also identical in both clones, as measured by IC50 (0.68 MBq/ml). However the formation of DNA damage, measured immediately after treatment with [111In]-oxinate, was found to be up to 2.5-fold higher in the p53-deficient HT1080 clone.ConclusionsThe increased DNA damage induced in p53-deficient HT1080 cells suggests an early deficiency in the repair of DNA damage during the treatment period. However, the similarity in cellular sensitivity, irrespective of p53 status, suggests that reduced p53 leads to a concomitant reduction in p53-dependent cytotoxicity despite the persistence of DNA damage. The results may provide insight into how tumours that differ in p53 status respond to therapeutic radionuclides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号