首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of hPMS1 and hPMS2 in predisposing to colorectal cancer.   总被引:5,自引:0,他引:5  
Hereditary nonpolyposis colorectal cancer (HNPCC) is attributable to a deficiency of mismatch repair. Inactivation of DNA mismatch repair underlies the genesis of microsatellite instability in colorectal cancer. Germline mutations in three DNA mismatch repair genes, hMSH2, hMLH1, and hMSH6, have been found to segregate in HNPCC and HNPCC-like families. The two DNA mismatch repair genes hPMS1 and hPMS2 have also been suggested to predispose to HNPCC. In this study, 84 HNPCC and HNPCC-like kindreds without known mutations in the other three known DNA mismatch repair genes were screened for germline mutations in the hPMS1 or hPMS2 gene. No clear-cut pathogenic mutations were identified. Conversion technology was used to detect a large hMSH2 deletion in two affected members of the kindred in which the hPMS1 mutation was originally reported, whereas the hPMS1 mutation was only present in one of these two individuals. Since the hPMS1 and hPMS2 genes were first reported, germline mutations in hPMS2 have been demonstrated primarily in patients with Turcot's syndrome. However, no mutation in any of the two genes has been found to segregate in HNPCC families. Until there is better evidence for an increased colorectal cancer risk associated with germline mutations in these genes, a conservative interpretation of the role of mutations in these genes is advised.  相似文献   

2.
Hereditary non polyposis colorectal cancer (HNPCC) is characterized by the presence of early onset colorectal cancer and other epithelial malignancies. The genetic basis of HNPCC is a deficiency in DNA mismatch repair, which manifests itself as DNA microsatellite instability in tumours. There are four genes involved in DNA mismatch repair that have been linked to HNPCC; these include hMSH2, hMLH1, hMSH6 and hPMS2. Of these four genes hMLH1 and hMSH2 account for the majority of families diagnosed with the disease. Notwithstanding, up to 40 percent of families do not appear to harbour a change in either hMSH2 or hMLH1 that can be detected using standard screening procedures such as direct DNA sequencing or a variety of methods all based on a heteroduplex analysis.In this report we have screened a series of 118 probands that all have the clinical diagnosis of HNPCC for medium to large deletions by the Multiplex Ligation-Dependent Probe Amplification assay (MLPA) to determine the frequency of this type of mutation. The results indicate that a significant proportion of Australian HNPCC patients harbour deletion or duplication mutations primarily in hMSH2 but also in hMLH1.  相似文献   

3.
Hereditary non polyposis colorectal cancer (HNPCC) is characterized by the presence of early onset colorectal cancer and other epithelial malignancies. The genetic basis of HNPCC is a deficiency in DNA mismatch repair, which manifests itself as DNA microsatellite instability in tumours. There are four genes involved in DNA mismatch repair that have been linked to HNPCC; these include hMSH2, hMLH1, hMSH6 and hPMS2. Of these four genes hMLH1 and hMSH2 account for the majority of families diagnosed with the disease. Notwithstanding, up to 40 percent of families do not appear to harbour a change in either hMSH2 or hMLH1 that can be detected using standard screening procedures such as direct DNA sequencing or a variety of methods all based on a heteroduplex analysis.In this report we have screened a series of 118 probands that all have the clinical diagnosis of HNPCC for medium to large deletions by the Multiplex Ligation-Dependent Probe Amplification assay (MLPA) to determine the frequency of this type of mutation. The results indicate that a significant proportion of Australian HNPCC patients harbour deletion or duplication mutations primarily in hMSH2 but also in hMLH1.  相似文献   

4.
Germline mutations in human mismatch repair (MMR) genes yield a predisposition for the hereditary nonpolyposis colon cancer (HNPCC) syndrome. In contrast to hMLH1 and hMSH2, little is known about the overall involvement of hMSH6 in colorectal cancer. We investigated 82 tumors from patients who fulfilled the Bethesda guidelines for HNPCC as well as 146 sporadic tumors, analyzing microsatellite instability and expression of the 4 MMR proteins hMSH6, hMSH2, hMLH1 and hPMS2. Four tumors with lost expression and 1 tumor with cytoplasmic expression of hMSH6 were identified. Sequence analysis revealed germline mutations in 4 of the 5 patients, including 1 patient with sporadic disease. The lost or reduced expression of hMSH2 and hMLH1 was always identical to its heterodimerization partners, hMSH6 and hPMS2, respectively. Furthermore, hMSH2 expression was reduced upon hMSH6 deficiency. Abnormal expression of 1 or more of the 4 proteins was always associated with a high level of microsatellite instability (MSI-H). Conversely, all but 1 of the 44 MSI-H tumors had abnormal expression of 1 or more of the proteins, basically excluding additional genes associated with the MSI-H phenotype. We conclude that the involvement of somatic or epigenetic hMSH6 inactivation in colorectal cancer is rare.  相似文献   

5.
DNA mismatch repair (MMR) mechanism contributes to the maintenance of genomic stability. Loss of MMR function predisposes to a mutator cell phenotype, microsatellite instability (MSI) and cancer, especially hereditary non-polyposis colorectal cancer (HNPCC). To date, five MMR genes, hMSH2, hMSH6, hMLH1, hPMS2, and hMLH3 are associated with HNPCC. Although, hMLH3 is suggested to be causative in HNPCC, its relevance to MMR needs to be confirmed to reliably assess significance of the inherited sequence variations in it. Recently, a human heterodimer hMLH1/hMLH3 (hMutLgamma) was shown to be able to assist hMLH1/hPMS2 (hMutLalpha) in the repair of mismatches in vitro. To repair mismatches in vivo, hMLH3 ought to localize in the nucleus. Our immunofluorescence analyses indicated that when all the three MutL homologues are natively expressed in human cells, endogenous hMLH1 and hPMS2 localize in the nucleus, whereas hMLH3 stays in the cytoplasm. Absence of hPMS2 and co-expression of hMLH3 with hMLH1 results in its partial nuclear localization. Our results are clinically relevant since they show that in the nuclear localization hMLH3 is dependent on hMLH1 and competitive with hPMS2. The continuous nuclear localization of hMLH1 and hPMS2 suggests that in vivo, hPMS2 (hMutLalpha) has a major activity in MMR. In absence of hPMS2, hMLH3 (hMutLgamma) is located in the nucleus, suggesting a conditional activity in MMR and supporting its role as a low-risk gene in HNPCC.  相似文献   

6.
Optimising methods for determining RER status in colorectal cancers   总被引:5,自引:0,他引:5  
Approximately 13% of colorectal cancers display microsatellite instability (MSI), a form of replication error repair. Colorectal cancers developing in individuals with constitutional defects in the mismatch repair (MMR) genes hMLH1, hMSH2, hPMS1 and hPMS2 consistently show evidence of this phenomenon. Since MSI is indicative of MMR deficiency, testing colorectal cancers for MSI provides a method of refining the identification of carriers of germline MMR mutations. To assess which microsatellites represent the best reporters of replication error (RER) status we have examined 116 early onset colorectal cancers for MSI. MSI was assessed using eight dinucleotide- and two mononucleotide-repeat fluorescently labelled polymerase chain reaction (PCR) markers. The two mononucleotide repeat markers (BAT25 and BAT26) were highly sensitive and typing of either represents an efficient strategy for defining RER status of colorectal cancers and obviates the requirement of typing numerous microsatellite markers.  相似文献   

7.
The role of hMLH3 in familial colorectal cancer   总被引:10,自引:0,他引:10  
Hereditary nonpolyposis colorectal cancer (HNPCC) is commonly associated with at least three currently known DNA mismatch repair genes: (a) hMSH2; (b) hMLH1; and (c) hMSH6. A majority of HNPCC families has identifiable mutations in hMLH1 and hMSH2. When these mutations cause an inherited risk of colorectal cancer, they are also most often associated with microsatellite instability in the tumors. Recently, hMLH3 was suggested to be causative in HNPCC. We screened 70 index patients suggestive of a genetic predisposition for germ-line mutations in hMLH3 with denaturing high-performance liquid chromatography. One frameshift mutation and 11 missense mutations were identified in 16 index patients (23%). Most families presented evidence against hMLH3 as a high risk factor in familial colorectal cancer, and most of the mutations were found in the low risk patients, suggesting hMLH3 to be a low risk gene for colorectal cancer. We demonstrate in one family that a hMLH3 mutation segregated with disease together with a missense mutation in hMSH2, which makes us hypothesize that these mutations work together in an additive manner and result in an elevated risk of colorectal tumors in the family. None of the tumors with hMLH3 mutations showed microsatellite instability, which demonstrates that hMLH3 does not make its contribution to carcinogenesis through an impaired DNA mismatch repair function.  相似文献   

8.
9.
Genomic instability has been proposed as a new mechanism of carcinogenesis involved in hereditary non-polyposis colorectal cancer (HNPCC) and in a large number of sporadic cancers like pancreatic and colon tumours. Mutations in human mismatch repair genes have been found in HNPCC patients, but their involvement in sporadic cancer has not been clarified yet. In this study we screened 21 pancreatic and 23 colorectal sporadic cancers for microsatellite instability by ten and six different microsatellite markers respectively. Microsatellite alterations were observed at one or more loci in 66.6% (14/21) of pancreatic cancers and in 26% (6/23) colon tumours, but all the pancreatic and half of the colon samples showed a low rate of microsatellite instability. All the unstable samples were further analysed for mutations in the hMLH1 and hMSH2 genes and for hypermethylation of the hMLH1 promoter region. Alterations in the hMLH1 gene were found only in colorectal tumours with a large presence of microsatellite instability. None of the pancreatic tumours showed any alteration in the two genes analysed. Our results demonstrate that microsatellite instability is unlikely to play a role in the tumorigenesis of sporadic pancreatic cancers and confirm the presence of mismatch repair gene alterations only in sporadic colon tumours with a highly unstable phenotype.  相似文献   

10.
To study the involvement of DNA mismatch-repair genes in sporadic breast cancer, matched normal and tumoral DNA samples of 22 patients were analysed for genetic instability and loss of heterozygosity (LOH) with 42 microsatellites at or linked to hMLH1 (3p21), hMSH2 (2p16), hMSH3 (5q11-q13), hMSH6 (2p16), hPMS1 (2q32) and hPMS2 (7p22) loci. Chromosomal regions 3p21 and 5q11-q13 were found hemizygously deleted in 46% and 23% of patients respectively. Half of the patients deleted at hMLH1 were also deleted at hMSH3. The shortest regions of overlapping (SRO) deletions were delimited by markers D3S1298 and D3S1266 at 3p21 and by D5S647 and D5S418 at 5q11-q13. Currently, the genes hMLH1 (3p21) and hMSH3 (5q11-q13) are the only known candidates located within these regions. The consequence of these allelic losses is still unclear because none of the breast cancers examined displayed microsatellite instability, a hallmark of mismatch-repair defect during replication error correction. We suggest that hMLH1 and hMSH3 could be involved in breast tumorigenesis through cellular functions other than replication error correction.  相似文献   

11.
Microsatellite instability, monitored by replication error (RER), bas been observed in both sporadic and hereditary types of endometrial carcinoma. In the hereditary tumors, this instability is considered to be caused by a germline defect in the DNA mismatch-repair system. We previously reported that nearly one-quarter of sporadic endometrial carcinomas examined revealed an RER-positive phenotype at multiple microsatellite loci. To investigate the role of genetic alterations of DNA mismatch-repair genes in sporadic endometrial carcinomas, we screened 18 RER(+) endometrial carcinomas for mutations of hMLH1 and hMSH2 . Although we found no germline mutations, we detected two somatic mutations of hMLH1 in a single endometrial cancer; these two mutations had occurred on different alleles, suggesting that two separate mutational events had affected both copies of hMLH1 in this particular tumor. These data implied that mutations of hMLH1 or hMSH2 play limited roles in the development of sporadic endometrial carcinomas, and that the tumors with genetic instability might have alterations of other mismatch-repair genes, such as hPMS1 and hPMS2 , or of unknown genes related to the mismatch-repair system.  相似文献   

12.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a major cancer susceptibility syndrome known to be caused by the inheritance of mutations in DNA mismatch repair genes, such as hMSH2, hMLH1, hPMS1 and hPMS2 . To investigate the role of genetic alterations of hMSH2 in HNPCC tumorigenesis, we analyzed 36 Japanese HNPCC kindreds as to hMSH2 germline mutations. Moreover, we also examined somatic mutations of hMSH2 or loss of heterozygosity at or near the hMSH2 locus in the tumors from the hMSH2 -related kindreds. Germline mutations were detected in five HNPCC kindreds (5/36, 14%). Among them, three were nonsense mutations, one was a frameshift mutation and the other was a mutation in an intron where the mutation affected splicing. Loss of heterozygosity in four and somatic mutations in one were detected among the eight tumors with hMSH2 germline mutations. All these alterations were only detected in genomic instability(+) tumors, i.e., not in genomic instability(-) ones, indicating that mutations of hMSH2 were responsible for at least some of the tumors with genomic instability. These data establish a basis for the presymptomatic diagnosis of HNPCC patients, and constitute further evidence that both DNA mismatch repair genes and tumor suppressor genes may share the same requirement, i.e., two hits are necessary to inactivate the gene function.  相似文献   

13.
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant genetic predisposition syndrome that accounts for 2-7% of all colorectal cancers. Diagnosis of HNPCC is based on family history (defined by Amsterdam or Bethesda Criteria), which often includes a history of multiple synchronous or metachronous cancers. The majority of HNPCC results from germ-line mutations in the DNA mismatch repair (MMR) genes hMSH2 and hMLH1 with rare alterations in hMSH6 and hPMS2 in atypical families. Both HNPCC and sporadic MMR-deficient tumors invariably display high microsatellite instability (MSI-H). Two types of HNPCC families can be distinguished: type I (Lynch I) with tumors exclusively located in the colon; and type II (Lynch II) with tumors found in the endometrium, stomach, ovary, and upper urinary tract in addition to the colon. A proposed association of breast cancer with type II HNPCC is controversial. To address this important clinical question, we examined MSI in a series of 27 female patients who presented with synchronous or metachronous breast plus colorectal cancer. Although MSI-H was found in 5 of 27 (18.5%) of the colon cancers, in all cases the matched breast cancer was microsatellite stable. We also examined the breast tumors from three women who were carriers of MMR gene mutations from HNPCC families. None of these three breast tumors displayed MSI nor was the expression of MMR proteins altered in these tumors. We conclude that breast cancer largely arises sporadically in HNPCC patients and is rarely associated with the HNPCC syndrome.  相似文献   

14.
hMLH1 and hMSH2 expression in human hepatocellular carcinoma   总被引:10,自引:0,他引:10  
The role of microsatellite instability (MSI) in the pathogenesis of hepatocellular carcinoma (HCC) is incompletely defined. Although high-frequency MSI (MSI-H) is infrequently seen in HCC, some studies have suggested a role for MSI in HCC development. While MSI has been clearly defined for a subset of tumors, in particular colorectal, gastric and endometrial cancers, generally accepted criteria have not been developed for other tumors. Colorectal cancers (CRC) are classified as MSI-H if >30-40% of >5 microsatellite loci analyzed show instability. The MSI-H phenotype is associated with defective DNA mismatch repair (MMR) and is observed in the majority of tumors from patients with hereditary non-polyposis colon cancer (HNPCC) and also in 15% of sporadic CRCs. Inactivating mutations of the hMLH1 or hMSH2 genes lead to defects in MMR in HNPCC. In sporadic CRCs, MMR is usually due to hypermethylation of the hMLH-1 promoter. The role of defective MMR in hepatocellular carcinogenesis is controversial. Immunohistochemistry for hMLH1 and hMSH2 reliably indicates hMLH1 or hMSH2 loss in MSI-H CRC tumors. To investigate the role of defective MMR in HCC carcinogenesis, we performed immunohistochemistry for hMLH1 and hMSH2 on 36 HCCs. BAT26, a microsatellite marker that reliably predicts MSI-H was also examined. All 36 of the tumors stained positively for both hMLH1 and hMSH2, strongly suggesting an absence of either inactivating mutations of hMLH1 and hMSH2 or promoter hypermethylation of hMLH1. None of the tumors showed MSI at the BAT26 locus. These findings suggest that defective MMR does not contribute significantly to hepatocellular carcinogenesis.  相似文献   

15.
Inactivation of DNA-mismatch repair underlies the genesis of microsatellite unstable (MSI) colon cancers. hPMS2 is one of several genes encoding components of the DNA-mismatch repair complex, and germline hPMS2 mutations have been found in a few kindreds with hereditary nonpolyposis colorectal carcinoma (HNPCC), in whom hereditary MSI colon cancers develop. However, mice bearing null hPMS2 genes do not develop colon cancers and hPMS2 mutations in sporadic human colon cancers have not been described. Here we report that in Vaco481 colon cancer the hPMS2 gene is inactivated by somatic mutations of both hPMS2 alleles. The cell line derived from this tumor is functionally deficient in DNA mismatch repair. This deficiency can be biochemically complemented by addition of a purified hMLH1-hPMS2 (hMutLalpha) complex. The hPMS2 deficient Vaco481 cancer cell line demonstrates microsatellite instability, an elevated HPRT gene mutation rate, and resistance to the cytotoxicity of the alkylator MNNG. We conclude that somatic inactivation of hPMS2 can play a role in development of sporadic MSI colon cancer expressing the full range of cancer phenotypes associated with inactivation of the mismatch repair system.  相似文献   

16.
17.
Hereditary non-polyposis colon cancer (HNPCC) is a common hereditary disease characterized by a predisposition to an early onset of colorectal cancer. The majority of the HNPCC families carry germline mutations of either hMSH2 or hMLH1 genes, whereas germline mutations of hPMS1 and hPMS2 genes have rarely been observed. Almost all of the germline mutations reported so far concern typical HNPCC families. However, there are families that display aggregations of colon cancer even though they do not fulfil all HNPCC criteria (incomplete HNPCC families) as well as sporadic cases of early onset colon cancers that could be related to germline mutations of these genes. Therefore, we screened germline mutations of hMSH2 and hMLH1 genes in 3 groups of patients from France and Turkey: typical HNPCC (n = 3), incomplete HNPCC (n = 9) and young patients without apparent familial history (n = 7). By in vitro synthesis of protein assay, heteroduplex analysis and direct genomic sequencing, we identified 1 family with hMSH2 mutation and 5 families with hMLH1 mutations. Two of the 3 HNPCC families (66%) displayed hMLH1 germline mutations. Interestingly, 4 of 9 families with incomplete HNPCC (44%) also displayed mutations of hMSH2 or hMLH1 genes. In contrast, no germline mutation of these genes was found in 7 young patients. Our results show that germline mutations of hMSH2 and hMLH1 genes contribute to a significant fraction of familial predisposition to colon cancer cases that do not fulfil all diagnostic criteria of HNPCC. Int. J. Cancer 73:831–836, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
19.
Lynch syndrome (LS), or hereditary non-polyposis colorectal cancer (HNPCC), is an autosomal dominant condition responsible for early onset cancer mostly in the colonrectum and endometrium as well as in other organ sites. Lynch syndrome is caused by germline mutations in mismatch repair genes, prevalently in hMSH2, hMLH1, and less frequently in hMSH6 and hPMS2. Twenty-nine non-related index cases with colorectal cancer (CRC) were collected from a region in southeast Italy (Apulia). Among this set of patients, fifteen fulfilled the Amsterdam criteria II. The presence of tumor microsatellite instability (MSI) was assessed in all index cases and 19 (15 AC+/4 AC-) were classified as MSI-H. Mutation analysis performed on all patients, identified 15 pathogenic mutations in hMLH1 and 4 in hMSH2. 4/15 mutations in hMLH1 and 2/4 hMSH2 mutations have not been previously reported. Three previously reported mutations were further investigated for the possibility of a common founder effect. Genetic counseling was offered to all probands and extended to 183 relatives after molecular testing and 85 (46%) mutation carriers were identified. Eighty mutation carriers underwent an accurate clinical and instrumental surveillance protocol. Our results confirm that the identification of LS patients based exclusively on family history may miss patients carrying germline mutations in the MMR genes. Moreover, our results demonstrated that molecular screening and subsequent instrumental surveillance are very effective in identifying CRCs at earlier stages and reducing the number of deaths from secondary cancers in HNPCC patients.  相似文献   

20.
Normal and tumor DNA samples of 35 patients with sporadic colorectal carcinoma were analyzed for microsatellite alterations at 12 markers linked to mismatch repair loci: hMLH1, hMSH2, hMSH3, hMSH6, hPMS1 and hPMS2. Remarkably, no correlation was observed between the replication error phenotype (RER+) and allelic losses at these loci. Hemizygous deletions, seen in 6/35 (17%) informative cases at hMLH1, 4/27 (15%) at hMSH2/hMSH6 and 6/34 (18%) at hMSH3, were rarely found in RER+ tumors. Since mismatch repair protein components act in molecular complexes of defined stoichiometry we propose that hemizygous deletion of the corresponding loci may be involved in colorectal tumorigenesis through defects in cellular functions other than replication error correction. The analysis of the methylation status of the promoter region of hMLH1 revealed that methylation might be an important mechanism of this locus inactivation in RER+ sporadic colorectal cancer.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号