首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, a kind of biodegradable poly(epsilon-caprolactone)-Poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) copolymer was synthesized by ring-opening polymerization method. The PCEC nanoparticles were prepared at one-step by modified emulsion solvent evaporation method using CTAB as stabilizer. With increase in PCEC concentration, the particle size increased obviously, but zeta potential only increased slightly. The obtained cationic PCEC nanoparticle was employed to condense and adsorb DNA onto its surface. Plasmid GFP (pGFP) was used as model plasmid to evaluate the loading capacity of cationic PCEC nanoparticles in this work. The DNA/nanoparticles weight ratio at 1:16 induced almost neutral zeta potential of DNA-nanoparticles complex. At this time, the size of complex became abnormally large which implied aggregates formed. So DNA-nanoparticles weight ratio should be chosen carefully. The cationic PCEC nanoparticles had the capacity of condensing plasmid DNA into complex when the DNA/nanoparticles weight ratio was lower than 1:8, which was evidenced by gel retardation assay. In vitro release behavior of DNA/nanoparticle complexes was also studied here. The obtained cationic PCEC nanoparticles might have great potential application in DNA delivery.  相似文献   

2.
3.
Hsu SH  Tang CM  Lin CC 《Biomaterials》2004,25(25):5593-5601
In this study, we prepared diblock copolymers of poly(epsilon-caprolactone) (PCL) and poly(ethylene glycol) (PEG) by aluminum alkoxide catalysts. The biological responses to the spin cast surface of different PCL/PEG diblock copolymers were investigated in vitro. Our results showed that surface hydrophilicity improved with the increased PEG segments in diblock copolymers and that bacteria adhesion was inhibited by increased PEG contents. PCL-PEG 23:77 showed nanotopography on the surface. The number of adhered endothelial cells, platelets and monocytes on diblock copolymer surfaces was inhibited in PCL-PEG 77:23 and enhanced in PCL-PEG 23:77. Nevertheless, the platelet and monocyte activation on PCL-PEG 23:77 was reduced. PCL-PEG 23:77 had better cellular response as well as lower degree of platelet and monocyte activation. The current study was the first one to demonstrate that surface nanotopography could influence not only cell adhesion and growth but also platelet and monocyte activation.  相似文献   

4.
Choi Y  Kim SY  Moon MH  Kim SH  Lee KS  Byun Y 《Biomaterials》2001,22(9):995-1004
Sterilization procedure is one of the most important obstacles in the clinical applications of biodegradable microspheres. The microspheres prepared with poly(alpha-hydroxy acid) were severely aggregated during ethylene oxide (EO) gas sterilization, and could not be used in clinical applications. In this study, the effects of EO gas sterilization on the poly(L-lactide) (PLLA) microspheres were analyzed by nuclear magnetic resonance spectroscopy (1H-NMR), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), scanning electron microscope (SEM) and size fractionation. The aggregation between the microspheres might be stimulated by high mobility of amorphous regions of PLLA on the microsphere surfaces since both water vapor and gas mixture can reduce glass transition temperature (Tg) of PLLA below the sterilization temperature. During EO gas sterilization, there were no changes in the molecular structure and the molecular weight of PLLA in microspheres, but there were changes in the crystallinity of PLLA in microspheres. In this study, poly(L-lactide)-poly(ethylene glycol) diblock copolymers (PLE) were blended with PLLA homopolymers in various ratios to design the microsphere suitable for EO gas sterilization. Aggregation of PLLA microspheres was markedly prevented when more than 4wt% of PLE was blended in the microspheres. This inhibition effect on aggregation may be due to the increased initial crystallinity of the microspheres, which help to maintain the microsphere morphology during EO gas sterilization.  相似文献   

5.
Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) triblock co-polymers with number-average molar mass (Mn) over 20000 g/mol were prepared by ring-opening polymerization of epsilon-caprolactone initiated by poly(ethylene glycol) under microwave irradiation. This method was proposed as a means to improve in vivo compatibility as no harmful chemicals were involved in the polymerization except epsilon-caprolactone and poly(ethylene glycol). The resulting tri-block co-polymers were characterized by FT-IR, H-NMR, GPC and WAXD. Their Mn and their composition was controlled by the amount and the chain length of the poly(ethylene glycol) macromers involved in the feed. The ability of poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) co-polymers to entrap and deliver drugs was investigated with ibuprofen as a model drug. The release of ibuprofen was significantly influenced by the co-polymer composition and the extent of loading. The in vitro release of ibuprofen was sustained from 3 to 15 days for 10% loading, depending on the ratio of epsilon-caprolactone to ethylene glycol-derived subunits in co-polymer chains. This ratio ranged from 0.97 to 9.78. In the case of the co-polymer whose epsilon-caprolactone molar ratio to ethylene glycol-derived subunits was 2.49, the ibuprofen release was sustained for 2 to 24 days for ibuprofen loads going from 5 to 20 wt%.  相似文献   

6.
The aqueous solutions of triblock copolymers of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) [PEG-P(CL-GA)-PEG] undergoing sol-gel transition as the temperature increases from 20 to 60 degrees C were successfully prepared. The thermogelling block copolymers were synthesized by subtle control of the hydrophilic/hydrophobic balance and the chain microstructures. The amphiphilic block copolymer formed micelles in aqueous solution, and the micelle aggregated as the temperature increased. The sol-gel transition of the copolymer aqueous solutions was studied focusing on the structure-property relationship. GA was incorporated into the polymer chain to prevent crystallization of PCL component and increase the polymer degradation. It is expected to be a promising long-term delivery system for pH-sensitive drugs, proteins, and genes.  相似文献   

7.
In this work, the feasibility to develop micelle carriers of griseofulvin based on PLA-PEG copolymers was investigated. With the use of the dialysis method of micelle formation, the micellization behavior of a range of PLA(X)-PEG(5) copolymers was investigated. At copolymer concentrations in the organic solvent 10-20 mg/mL, stable micelles with 100% yield could only be prepared from PLA(X)-PEG(5) copolymers with molar composition in the range 50-70% PEG. The copolymers exhibited sufficiently low CMC to provide stable micelles in vivo. The loading capacity of PLA(4)-PEG(5) micelles with griseofulvin was 6.5 mg of drug/1 g of copolymer. The release of griseofulvin from the PLA-PEG micelles in vitro in phosphate-buffered saline (PBS) was sustained over 30 days. No burst effect was observed. Analysis of the release kinetics suggested that the release was erosion-controlled. The release profile was biphasic. Micelle degradation data in PBS indicated that the second phase of release was induced by copolymer degradation. The PLA-PEG micelles of griseofulvin were stable in simulated gastric and intestinal fluids for a long-enough time for oral application. Overall, the PLA-PEG micelles have suitable properties to be considered as potential oral or topical formulations of griseofulvin, provided that the drug-loading capacity of the micelles is sufficiently improved.  相似文献   

8.
Micellization in water of two homologous series of AB-type diblock copolymers, composed of polystyrene (PS) as the A block and poly(ethylene oxide) (PEO) as the B block, were investigated by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The copolymers have molecular weights M n in the range 2 000—34 800, and have in a given series, the same number of repeating units of the PS block, (NPS = 10 and 38), and a variable number of repeating units of the PEO block (NPEO values in the range 23–704). In order to avoid secondary association of micelles, a dialysis technique was used to prepare the micellar systems, in the case of copolymers having high M n values of the PS block. The experimental micelle properties such as the core radius Rc and the aggregation number N of non-equilibrium structures, so called “frozen micelles”, obtained by dialysis, were found to be independent of the copolymer characteristics. However, for equilibrium structures, obtained by direct solubilization of the copolymers (NPS = 10) in water, Rc and N were found to decrease with increasing NPEO for the homologous series.  相似文献   

9.
Wan Y  Chen W  Yang J  Bei J  Wang S 《Biomaterials》2003,24(13):2195-2203
A series of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers (Multi-PLE) with high molecular weight were synthesized and successfully used to fabricate three-dimensional scaffolds. Using mouse NIH 3T3 fibroblasts as model cells, the cell affinity of various Multi-PLE copolymers was evaluated and compared with that of poly(L-lactide) (PLLA) by means of cell attachment efficiency measurement, scanning electron microscopy observation and MTT assay. On one hand, the results showed that the cell attachment efficiency on Multi-PLE 4/1(4/1 refers to the molar ratio of lactidyl units to ethylene oxide units) films was close to that on PLLA film, however, the other Multi-PLE films exhibited much lower cell attachment efficiency than PLLA film, such as Multi-PLE 2/1 and Multi-PLE 1/1, which had higher PEG content. On the other hand, it was interesting to find that cell proliferation on Multi-PLE4/1 and Multi-PLE2/1 scaffolds was better than that on PLLA scaffold, which was closely related to the improved hydrophilicity of Multi-PLE copolymers due to the incorporation of PEG in comparison with pure PLLA. The Multi-PLE copolymer scaffolds with appropriate hydrophilicity were in favor of mass transportation, and then of cell proliferation and cell affinity. It meant that the cell proliferation would be much improved by increasing the hydrophilicity of the three-dimensional scaffolds, which even outweighed the disadvantages of the cell attachment efficiency reduction with the incorporation of PEG.  相似文献   

10.
Kim SY  Lee YM 《Biomaterials》2001,22(13):1697-1704
We prepared the methoxy poly(ethylene glycol) (MePEG)/poly(epsilon-caprolactone) (PCL) amphiphilic block copolymeric nanospheres containing taxol which has promising anticancer activity. MePEG/PCL block copolymeric nanospheres (MEP50) showed a narrow size distribution and an average diameter of less than 100 nm. When the initial weight ratio of taxol to polymer was 0.5:1.0, we could obtain the nanospheres having a relatively high drug-loading of more than about 20%. The size of the MePEG/PCL nanospheres also increased according to the taxol loading. However, the nanospheres did not exhibit a significant change in the size distribution and also showed a size of less than 100 nm for even that with drug-loading content (DLC) of about 20%. From the 1H NMR analysis, we identified that the MePEG/PCL nanospheres prepared by dialysis procedure have core-shell structure consisting of the hydrophilic outer shell of MePEG and the hydrophobic inner core of PCL. We confirmed the low toxicity of MePEG/PCL nanospheres (MEP70) in the acute toxicity study using male ICR mice. In addition, considering the extremely lipophilic characteristics of taxol, this MePEG/PCL, nanosphere system with high taxol loading content and suspended properties in water could be useful for the delivery of taxol.  相似文献   

11.
Qiu LY  Bae YH 《Biomaterials》2007,28(28):4132-4142
A series of amphiphilic cationic graft polymers (PEC) were synthesized by coupling poly(epsilon-caprolactone) of differing molecular weights (MW) to low MW branched polyethylenimine via an amide group. IR, (1)H-NMR and GPC were employed to characterize the graft copolymers. The self-assembly characteristics of these copolymers in an aqueous solution were studied by fluorescence techniques. The critical micelle concentration (CMC) varied from 0.044 to 0.032g/L when the MW of poly(epsilon-caprolactone) increased from 1,800 to 5,500. The micelles formed electrostatic complexes with a reporter gene (pCMV-Luc) after an anticancer drug, Doxorubicin (DOX), was loaded by dialysis method. Gel retardation studies proved that micelles with or without DOX were able to complex with DNA completely at an equivalent N/P ratio of around 2.0, indicating that drug loading did not interfere in the interaction between the PEI shell and DNA. Particle size slightly decreased at higher N/P ratios of polyplexes, but increased with drug encapsulation. It was also noted that DNA/micelle complexes were significantly less toxic to HepG2 cells than blank PEC micelles, and improved gene transfection efficiency (about 3 orders of magnitude greater than PEI 25K alone at most) whether DOX was present in the system or not. These results suggest that this group of cationic graft polymers may be a potential candidate for the development of a drug delivery system that can examine the synergistic effects of combined drug and gene therapy.  相似文献   

12.
背景:目前生物降解水凝胶已被广泛应用于抗癌药物及生物活性大分子的装载,但为了保护生物活性大分子的活性,需要得到凝胶化条件更温和,凝胶化时间更短的凝胶体系。 目的:制备对映异构聚乳酸∕聚乙二醇的空间异构复合水凝胶,使其具有更短的凝胶化时间,实现对模拟药物溶菌酶的装载和控释。 方法:以聚乙二醇为引发剂,辛酸亚锡为催化剂,丙交酯与聚乙二醇发生开环聚合反应,得到聚乳酸/聚乙二醇的三嵌段共聚物(PLLA-PEG-PLLA 和 PDLA-PEG-PDLA)。用1H NMR,FT-IR 和 XRD表征三嵌段共聚物。10% PLLA20-PEG227-PLLA20的水溶液和10%PDLA21-PEG227-PDLA21的水溶液在室温下混合,12 h后形成凝胶。通过XRD考察凝胶化机制,以溶菌酶为模拟药物,考察凝胶的释药特性,通过扫描电镜考察凝胶的形貌,采用MTT法考察凝胶的细胞毒性。 结果与结论:成功得到聚乳酸/聚乙二醇的三嵌段共聚物,在嵌段共聚物中,聚乳酸嵌段和聚乙二醇嵌段都能结晶,但以聚乙二醇嵌段的结晶为主。通过XRD证明凝胶中存在空间异构复合作用,溶菌酶在凝胶中通过凝胶的溶蚀和降解行为,在7 d之内释放完全。通过扫描电镜观察到冻干的水凝胶呈三维贯穿的多孔结构,空隙尺寸在50~100 μm 之间。鼠成纤维细胞与浓度为100%的凝胶浸提液共培养72 h之后,细胞的存活率为99.3%。  相似文献   

13.
Polymeric micelles prepared from a series of poly(ethylene glycol)-poly(lactide) (PEG-PLA) diblock copolymers with various PLA chain lengths were designed as drug carriers for water insoluble drug amphotericin B (AmB). Physicochemical properties of AmB-loaded micelles were evaluated. Micelles were freeze-dried to obtain long-time stable formulations. The redispersibility of the freeze-dried samples was poor when the weight ratio of PLA block was bigger than the PEG block of the copolymer. Various types of lyoprotectants including saccharides and PEGs with different molecular weight were tested to improve the redispersion performance of the freeze-dried samples. PEG was proved to be more effective than saccharides on stabilizing the micelles during lyophilization when the weight ratio of PLA block was bigger than PEG block. The sustained release in vitro of AmB was evidenced. About 80% of AmB was released in 80 h. The in vitro release behavior could be best described by the first-order equation. The release rate was reduced as enhancing PLA chain length due to the stronger interaction between poorly water-soluble AmB and longer hydrophobic chain length of PLA.  相似文献   

14.
Growth factors have been shown to be potent mediators of osteogenesis. However, their use in tissue-engineered scaffolds not only can be costly but also can induce undesired responses in surrounding tissues. Thus, the ability to specifically induce osteogenic differentiation in the absence of exogenous growth factors through manipulation of scaffold material properties would be desirable for bone regeneration. Previous research indicates that addition of inorganic or hydrophobic components to organic, hydrophilic scaffolds can enhance multipotent stem cell (MSC) osteogenesis. However, the combined impact of scaffold inorganic content and hydrophobicity on MSC behavior has not been systematically explored, particularly in three-dimensional (3D) culture systems. The aim of the present study was therefore to examine the effects of simultaneous increases in scaffold hydrophobicity and inorganic content on MSC osteogenic fate decisions in a 3D culture environment toward the development of intrinsically osteoinductive scaffolds. Mouse 10T? MSCs were encapsulated in a series of novel scaffolds composed of varying levels of hydrophobic, inorganic poly(dimethylsiloxane) (PDMS) and hydrophilic, organic poly(ethylene glycol) (PEG). After 21 days of culture, increased levels of osteoblast markers, runx2 and osteocalcin, were observed in scaffolds with increased PDMS content. Bone extracellular matrix (ECM) molecules, collagen I and calcium phosphate, were also elevated in formulations with higher PDMS:PEG ratios. Importantly, this osteogenic response appeared to be specific in that markers for chondrocytic, smooth muscle cell, and adipocytic lineages were not similarly affected by variations in scaffold PDMS content. As anticipated, the increase in scaffold hydrophobicity accompanying increasing PDMS levels was associated with elevated scaffold serum protein adsorption. Thus, scaffold inorganic content combined with alterations in adsorbed serum proteins may underlie the observed cell behavior.  相似文献   

15.
Zhou S  Deng X  Yang H 《Biomaterials》2003,24(20):3563-3570
Poly(epsilon-caprolactone)-poly(ethylene glycol) (PECL) copolymers were synthesized from polyethylene glycol (PEG) and epsilon-caprolactone (epsilon-CL) using stannous octoate as catalyst at 160 degrees C by bulk polymerization. The effect of the molecular weight of PEG and the copolymer ratio on the properties of the copolymers was investigated by (1)H-NMR, IR, DSC and GPC. PCL and PECL microspheres containing human serum albumin were elaborated by solvent extraction method based on the formation of double w/o/w emulsion. Microspheres were characterized in terms of morphology, size, loading efficiency, and the efficiency of microspheres formation. The results show that the microspheres prepared from PECL-10 and PECL-15 copolymers achieved the highest loading efficiency (about 50%) among all copolymers. These results indicate that the properties of copolymers could be tailored by adjusting polymer composition. It is suggested that these matrix polymers may be optimized as carriers in the protein (antigen) delivery system for different purposes.  相似文献   

16.
Polyion complex (PIC) micelles composed of the poly(ethylene glycol)-poly(L-lysine) (PEG-PLL) block copolymer and plasmid DNA (pDNA) were investigated in this study from a physicochemical viewpoint to get insight into the structural feature of the PIC micellar vector system to show practical gene transfection efficacy particularly under serum-containing medium. The residual ratio (r) of the lysine units in PEG-PLL to the phosphate units of pDNA in the system significantly affects the size of the PIC micelles evaluated from dynamic light scattering, being decreased from approximately 120 to 80 nm with an increase in the r value for the region with r > or = 1.0. The zeta potential of the complexes slightly increased with r in the same region, yet maintained a very small absolute value and leveled off to a few mV at r approximately 2.0. These results suggest that the micelles are most likely to take the core-shell structure with dense PEG palisades surrounding the PIC core to compartmentalize the condensed pDNA. Furthermore, an increasing r value in the region of r > or = 1 induces a rearrangement of the stoichiometric complex formed at r=1.0 to the non-stoichiometric complex composed of the excess block copolymer. The association number of pDNA and the block copolymer in the micelle was estimated from the apparent micellar molecular weight determined by static light scattering measurements, indicating that a single pDNA molecule was incorporated in each of the micelles prepared from the PEG (Mw=12,000 g/mol)-PLL (polymerization degree of PLL segment: 48) (12-48) block copolymer at r=2.0. These 12-48/pDNA micelles showed a gene expression comparable to the lipofection toward cultured 293 cells, though 100 microM chloroquine was required in the transfection medium. Notably, even in the presence of serum, the PIC micelles achieved appreciable cellular association to attain a high gene expression, which is in sharp contrast with the drastic decrease in the gene expression for lipoplex system in the presence of serum. A virus-comparable size (approximately 100 nm) with a serum-tolerable property of the PIC micelles indeed suggests their promising feasibility as non-viral gene-vector systems used for clinical gene therapy.  相似文献   

17.
Dai J  Zou S  Pei Y  Cheng D  Ai H  Shuai X 《Biomaterials》2011,32(6):1694-1705
A major challenge in gene therapy is the development of effective gene delivery vectors with low toxicity. In the present study, linear poly(ethylenimine) (lPEI) with low molecular weight was grafted onto the block copolymer (PPL) of poly(l-lysine) (PLL) and poly(ethylene glycol)(PEG), yielding a ternary copolymer PEG-b-PLL-g-lPEI (PPI) for gene delivery. In such molecular design, PLL, lPEI and PEG blocks were expected to render the vector biodegradability, proton buffering capacity, low cationic toxicity and potentially long circulation in vivo, respectively. Given proper control of molecular composition, the copolymers demonstrated lower cytotoxicity, proton buffering capacity, ability to condense pDNA and mediate effective gene transfection in various cell lines. With folate as an exemplary targeting ligand, the FA-PPI/pDNA complex showed much higher transgene activity than its nontargeting counterpart for both reporter and therapeutic genes in folate receptor(FR)-positive cells. FA-PPI mediated effective transfection of the TNF-related apoptosis-inducing ligand gene (TRAIL) in human hepatoma Bel 7402 cells, leading to cell apoptosis and great suppression of cell viability. Our results indicate that the copolymers might be a promising vector combining low cytotoxicity, biodegradability, and high gene transfection efficiency.  相似文献   

18.
S Y Kim  Y M Lee  H J Shin  J S Kang 《Biomaterials》2001,22(14):2049-2056
We prepared the drug-loaded polymeric nanospheres composed of the methoxy poly(ethylene glycol) (MePEG) and poly(epsilon-caprolactone) (PCL) that showed a narrow size distribution and average diameter of less than 200 nm. We could obtain the nanosphere having a relatively high drug-loading efficiency of about 42% when the feed weight ratio of indomethacin (IMC) to polymer was 1:1. To investigate the IMC pharmacokinetics in the IMC-loaded MePEG/PCL nanosphere (DMEP70) using the rats as animal model, we analyzed the IMC concentration in plasma with HPLC after i.v. bolus administered at a dose of 10 mg/kg in free IMC (control) and IMC-loaded MePEG/PCL nanosphere (DMEP70) groups via tail vein. Pharmacokinetics parameters (mean +/- s.d.) such as the mean residence time (MRT, h), the steady-state volume of distribution (Vdss, l), the terminal half-time (t 1/2, h) and the plasma clearance (CL, l/h) of IMC in each groups (control vs. DMEP70) were determined; MRT (16.97 +/- 4.83 vs. 28.69 +/- 11.28, p < 0.01); Vdss (14.26 +/- 4.86 vs. 20.37 +/- 12.04, p < 0.05); t 1/2 (15.12 +/- 4.77 vs. 23.1 +/- 8.24, p < 0.01); CL (0.84 +/- 0.27 vs. 0.71 +/- 0.41). From these results, we could concluded that MEP70 has a significant potential for sustained release and the enhancement of circulation time of loaded drug by prolonging terminal half-life, increasing MRT and Vdss of IMC. Therefore, The MePEG/PCL block copolymeric nanosphere system is being considered as promising biodegradable and biocompatible drug carrier vehicles for parentral use and may be useful as sustained release injectable delivery systems for hydrophobic drugs.  相似文献   

19.
Shim WS  Kim JH  Park H  Kim K  Chan Kwon I  Lee DS 《Biomaterials》2006,27(30):5178-5185
A pH- and thermo-sensitive block copolymer was synthesized by adding pH-sensitive sulfamethazine oligomers (SMOs) to either end of a thermo-sensitive poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) (PCLA-PEG-PCLA) block copolymer. The resulting pH- and thermo-sensitive SMO-PCLA-PEG-PCLA-SMO block copolymer solution did not form a gel at high pH (pH 8.0) or at increased temperatures (ca. 70 degrees C), but did form a stable gel under physiological conditions (pH 7.4 and 37 degrees C). The degradation rate of the pH- and thermo-sensitive block copolymer decreased substantially compared with the control block copolymer of PCLA-PEG-PCLA, due to the buffering effect of the SMO-PCLA-PEG-PCLA-SMO sulfonamide groups on the acidic monomer-induced rapid degradation of PCLA-PEG-PCLA. This suitable sol-gel transition and sustained biodegradability of the pH- and thermo-sensitive SMO-PCLA-PEG-PCLA-SMO block copolymer resolves two of the major drawbacks associated with thermo-sensitive block copolymers, namely premature gelation and rapid degradation. Interestingly, SMO-PCLA-PEG-PCLA-SMO showed no evidence of cytotoxicity in vitro. However, subcutaneous injection of the pH- and thermo-sensitive block copolymer solution (20wt% in PBS at pH 8.0) into Sprague-Dawley (SD) rats resulted in rapid, stable gel formation, with the injected hydrogel being completely degraded in vivo in just 6 weeks. The injected hydrogel in vivo presented a typical acute inflammation within 2 weeks, although chronic inflammation was not observed during the first 6-week period. As such, the pH- and thermo-sensitive hydrogel of the SMO-PCLA-PEG-PCLA-SMO block copolymer is a suitable candidate for use in drug delivery systems and cell therapy.  相似文献   

20.
The aggregation of poly(alpha-hydroxy acid) microspheres during ethylene oxide (EO) gas sterilization makes it difficult for the microspheres to be used in clinical applications. In this study, six kinds of PLLA-PEG-PLLA triblock copolymers (TriPLE) were synthesized with various composition ratios of PEG/PLLA in the range of 0.012 to 0.103. TriPLE microspheres were prepared by the oil-in-water emulsion method. TriPLE microspheres were characterized by using 1H-NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). After sterilization by EO gas at 55 degrees C, the microspheres were analyzed by scanning electron microscope (SEM), laser diffractometry, standard sieves, X-ray diffraction (XRD), GPC, and DSC. When the composition ratio of PEG/PLLA was above 0.02, the initial crystallinity of TriPLE in microspheres was as high as 50%, and the microspheres were suitable to be sterilized by EO gas. On the other hand, TriPLE microspheres, which had composition ratios of PEG/PLLA below 0.02, had low initial crystallinities of about 30%, and aggregated during EO gas sterilization. For these microspheres, crystallinity increased up to 50% during the sterilization, whereas other TriPLE microspheres did not show any changes in crystallinity. Therefore, the aggregation of TriPLE microspheres during EO gas sterilization was markedly reduced as the initial crystallinity of TriPLE in the microspheres was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号