首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNase E is an endonuclease that plays a central role in RNA processing and degradation in Escherichia coli. Like its E. coli homolog RNase G, RNase E shows a marked preference for cleaving RNAs that bear a monophosphate, rather than a triphosphate or hydroxyl, at the 5' end. To investigate the mechanism by which 5'-terminal phosphorylation can influence distant cleavage events, we have developed fluorogenic RNA substrates that allow the activity of RNase E and RNase G to be quantified much more accurately and easily than before. Kinetic analysis of the cleavage of these substrates by RNase E and RNase G has revealed that 5' monophosphorylation accelerates the reaction not by improving substrate binding, but rather by enhancing the catalytic potency of these ribonucleases. Furthermore, the presence of a 5' monophosphate can increase the specificity of cleavage site selection within an RNA. Although monomeric forms of RNase E and RNase G can cut RNA, the ability of these enzymes to discriminate between RNA substrates on the basis of their 5' phosphorylation state requires the formation of protein multimers. Among the molecular mechanisms that could account for these properties are those in which 5'-end binding by one enzyme subunit induces a protein structural change that accelerates RNA cleavage by another subunit.  相似文献   

2.
We have determined that 10Sa RNA (one of the small stable RNAs found in Escherichia coli) has an interesting structural feature: the 5' end and the 3' end of 10Sa RNA can be arranged in a structure that is equivalent to a half-molecule (acceptor stem and TFC stem-loop) of alanine tRNA of E. coli. Primer-extension analysis of 10Sa RNA extracted from a bacterial mutant with temperature-sensitive RNase P function revealed that the precursor to 10Sa RNA (pre-10Sa RNA) is folded into a pre-tRNA-like structure in vivo such that it can be cleaved by RNase P to generate the 5' end of the mature 10Sa RNA. The purified 10Sa RNA can be charged with alanine in vitro. Disruption of the gene encoding 10Sa RNA (ssrA) caused a reduction in the rate of cell growth, which was especially apparent at 45 degrees C, and a reduction in motility on semisolid agar. These phenotypic characteristics of the deletion strain (delta ssrA) allowed us to investigate the effects of some mutations in 10Sa RNA in vivo, although the exact function of 10Sa RNA still remains unclear. When the G.U pair (G3.U357) in 10Sa RNA, which may be equivalent to the determinant G.U pair of alanine tRNA, was changed to a G.A or G.C pair, the ability to complement the phenotypic mutations of the delta ssrA strain was lost. Furthermore, this inability to complement the mutant phenotypes that was caused by the substitution of the determinant bases by a G.A pair could be overcome by the introduction of a gene encoding alanyl-tRNA synthetase (alaS) on a multicopy plasmid. The evidence suggests that the proposed structural features of 10Sa RNA are indeed manifested in vivo.  相似文献   

3.
The maturation of 5S RNA in Escherichia coli is poorly understood. Although it is known that large precursors of 5S RNA accumulate in mutant cells lacking the endoribonuclease-RNase E, almost nothing is known about how the mature 5' and 3' termini of these molecules are generated. We have examined 5S RNA maturation in wild-type and single- or multiple-exoribonuclease-deficient cells by Northern blot and primer-extension analysis. Our results indicate that no mature 5S RNA is made in RNase T-deficient strains. Rather, 5S RNA precursors containing predominantly 2 extra nucleotides at the 3' end accumulate. Apparently, these 5S RNAs are functional inasmuch as mutant cells are viable, growing only slightly slower than wild type. Purified RNase T can remove the extra 3' residues, showing that it is directly involved in the trimming reaction. In contrast, mutations affecting other 3' exoribonucleases have no effect on 5S RNA maturation. Approximately 90% of the 5S RNAs in both wild-type and RNase T- cells contain mature 5' termini, indicating that 5' processing is independent of RNase T action. These data identify the enzyme responsible for generating the mature 3' terminus of 5S RNA molecules and also demonstrate that a completely processed 5S RNA molecule is not essential for cell survival.  相似文献   

4.
Recently, we found that a multicomponent ribonucleolytic degradosome complex formed around RNase E, a key mRNA-degrading and 9S RNA-processing enzyme, contains RNA in addition to its protein components. Herein we show that the RNA found in the degradosome consists primarily of rRNA fragments that have a range of distinctive sizes. We further show that rRNA degradation is carried out in the degradosome by RNase E cleavage of A+U-rich single-stranded regions of mature 16S and 23S rRNAs. The 5S rRNA, which is known to be generated by RNase E processing of the 9S precursor, was also identified in the degradosome, but tRNAs, which are not cleaved by RNase E in vitro, were absent. Our results, which provide evidence that decay of mature rRNAs occurs in growing Escherichia coli cells in the RNA degradosome, implicate RNase E in degradosome-mediated decay.  相似文献   

5.
A precursor molecule for 10Sb (M1) RNA, the RNA moiety of the RNA processing enzyme ribonuclease P (EC 3.1.26.5), is accumulated transiently in an Escherichia coli strain containing a plasmid that carries the 10Sb RNA gene. The same RNA precursor molecule is accumulated, in relatively large quantities, in a temperature-sensitive RNase E- mutant at the nonpermissive temperature. The RNA precursor includes 10Sb RNA and an extra 3' fragment that contains a termination stem and loop. It can be processed in vitro to a molecule the size of 10Sb RNA. None of the four endoribonucleases of E. coli--RNase III, RNase E, RNase F, or RNase P--takes part in this cleavage reaction. Therefore, we suggest that the processing of the precursor-10Sb RNA to 10Sb RNA is carried out by a thus-far unidentified endoribonuclease. The accumulation of a RNA molecule in a RNase E- mutant that does not contain a cleavage site for RNase E has been encountered previously and can be explained by assuming the existence of a RNA processing complex in the E. coli cell.  相似文献   

6.
We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.  相似文献   

7.
Phylogenetic comparative analyses of RNase P RNA-encoding gene sequences from Chlorobium limicola, Chlorobium tepidum, Bacteroides thetaiotaomicron, and Flavobacterium yabuuchiae refine the secondary structure model of the general (eu)bacterial RNase P RNA and show that a highly conserved feature of that RNA is not essential. Two helices, comprised of 2 base pairs each, are added to the secondary structure model and form part of a cruciform in the RNA. Novel sequence variations in the B. thetaiotaomicron and F. yabuuchiae RNA indicate the likelihood that all secondary structure resulting from canonical base-pairing has been detected: there are no remaining unpaired, contiguous, canonical complementarities in the structure model common to all bacterial RNase P RNAs. A nomenclature for the elements of the completed secondary structure model is proposed. The Chlorobium RNase P RNAs lack a stem-loop structure that is otherwise universally present and highly conserved in structure in other (eu)bacterial RNase P RNAs. The Chlorobium RNAs are nevertheless catalytic, with kinetic properties similar to those of RNase P RNAs of Escherichia coli and other Bacteria. Removal of this stem-loop structure from the E. coli RNA affects neither its affinity for nor its catalytic rate for cleavage of a precursor transfer RNA substrate. These results show that this structural element does not play a direct role in substrate binding or catalysis.  相似文献   

8.
9.
The early region of T7 DNA is transcribed as a single unit in a Ribonuclease III-deficient E. coli strain to produce large molecules essentially identical to those produced in vitro by E. coli RNA polymerase. As with the in vitro RNAs, these molecules are cut by purified RNase III in vitro to produce the messenger RNAs normally observed in vivo. Thus, the normal pathway for producing the T7 early messenger RNAs in vivo appears to involve endonucleolytic cleavage by RNase III. The uninfected RNase III-deficient strain contains several RNAs not observed in the parent strain. Patterns of labeling in vivo suggest that the largest of these RNAs, about 1.8 x 10(6) daltons, may be a precursor to the 16S and 23S ribosomal RNAs. When this large molecule is treated in vitro with purified RNase III, molecules the size of precursor 16S and 23S ribosomal RNAs are released; hybridization competition experiments also indicate that the 1.8 x 10(6) dalton RNA does indeed represent ribosomal RNA. Thus, RNase III cleavage seems to be part of the normal pathway for producing at least the 16S and 23S ribosomal RNAs in vivo. Several smaller molecules are also released from the 1.8 x 10(6) dalton RNA by RNase III, but it is not yet established whether any of these contain 5S RNA sequences.  相似文献   

10.
RNase P, an enzyme with RNA and protein subunits, cleaves tRNA precursor molecules to form the 5' termini of mature tRNAs in both prokaryotes and eukaryotes. Rabbit antibodies made against the protein subunit, C5 protein, of Escherichia coli RNase P bound RNase P protein from E. coli and Bacillus subtilis in immunoblots and solid-phase immunoassays. These rabbit anti-C5 antibodies also bound a protein (Mr approximately 40,000) in preparations of RNase P from human (HeLa) cells and depleted the enzymatic activity from preparations of RNase P from both human and E. coli cells. Finally, rabbit anti-C5 antibodies immunoprecipitated from crude extracts of human cells a ribonucleoprotein complex containing H1 RNA, the putative RNA component of human RNase P. These results show that an antigenic determinant is shared by C5 protein from E. coli RNase P and a protein component of RNase P from human cells.  相似文献   

11.
12.
The C4 repressor of the temperate bacteriophages P1 and P7 inhibits antirepressor (Ant) synthesis and is essential for establishment and maintenance of lysogeny. C4 is an antisense RNA acting on a target, Ant mRNA, which is transcribed from the same promoter. The antisense-target RNA interaction requires processing of C4 RNA from a precursor RNA. Here we show that 5' maturation of C4 RNA in vivo depends on RNase P. In vitro, Escherichia coli RNase P and its catalytic RNA subunit (M1 RNA) can generate the mature 5' end of C4 RNA from P1 by a single endonucleolytic cut, whereas RNase P from the E. coli rnpA49 mutant, carrying a missense mutation in the RNase P protein subunit, is defective in the 5' maturation of C4 RNA. Primer extension analysis of RNA transcribed in vivo from a plasmid carrying the P1 c4 gene revealed that 5'-mature C4 RNA was the predominant species in rnpA+ bacteria, whereas virtually no mature C4 RNA was found in the temperature-sensitive rnpA49 strain at the restrictive temperature. Instead, C4 RNA molecules carrying up to five extra nucleotides beyond the 5' end accumulated. The same phenotype was observed in rnpA+ bacteria which harbored a plasmid carrying a P7 c4 mutant gene with a single C-->G base substitution in the structural homologue to the CCA 3' end of tRNAs. Implications of C4 RNA processing for the lysis/lysogeny decision process of bacteriophages P1 and P7 are discussed.  相似文献   

13.
RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (K(d)) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the "large" domain (amino acids 1-400, consisting of the RNase H, S1, 5'-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E-membrane interaction enhances the rate of RNA processing and decay.  相似文献   

14.
RNase M5 of Bacillus subtilis cleaves twice in a double-helical region of a 179-nucleotide precursor of 5S rRNA to yield mature 5S rRNA (116 nucleotides) plus fragments (21 and 42 nucleotides) derived from both termini. Previous experiments had shown that the major recognition elements for the highly specific RNase M5 are in the mature domain of the precursor. However, one precursor residue, a G adjacent to the 5' cleavage site, significantly enhances the rate of its own cleavage as well as that of the 3' precursor fragment, so it must be an important component of the features recognized by the enzyme. This G residue is opposed in the helical substrate region to a C residue, which is at the 3' terminus of the mature domain, presenting the question of whether RNase M5 specifically contacts the cleavage site on the basis of nucleotide sequence (the G residue per se) or on the basis of more general aspects of helical conformation. We tested these alternatives by fabricating partially synthetic test substrates for RNase M5. Experiments were performed on 5' and 3' half-molecules derived from mature 5S rRNA. The 3'-terminal C was removed by periodate oxidation and beta elimination and replaced in a T4 RNA ligase condensation with each of the four mononucleoside bisphosphates. Artificial "precursor" segments containing each of the four nucleotides adjacent to the 5' cleavage site were added to the 5' terminus of the 5S rRNA half-molecule. We then annealed the modified half-molecules to yield test substrates containing all permutations of complementary in contrast to noncomplementary nucleotides at the cleavage site. The susceptibilities of these test substrates show that conformation, not sequence, is the important feature in the locale of the cleaved bonds.  相似文献   

15.
The RNA degradosome of Escherichia coli is a ribonucleolytic multienzyme complex containing RNase E, polynucleotide phosphorylase, RhlB, and enolase. Previous in vitro and in vivo work has shown that RhlB facilitates the exonucleolytic degradation of structured mRNA decay intermediates by polynucleotide phosphorylase in an ATPase-dependent reaction. Here, we show that deleting the gene encoding RhlB stabilizes a lacZ mRNA transcribed by bacteriophage T7 RNA polymerase. Deleting the gene encoding enolase has little if any effect. Other messages transcribed by T7 polymerase are also stabilized by DeltarhlB. The effect of point mutations inactivating RhlB is comparable with the effect of deleting the gene. Primer extension analysis of the lacZ message indicates that RhlB facilitates endoribonucleolytic cleavage by RNase E, demonstrating a functional interaction between the RNA helicase and the endoribonuclease. The possible physiological role of an RhlB-RNase E pathway and the mechanisms by which RhlB could facilitate RNase E cleavage are discussed.  相似文献   

16.
RNase E, a multifunctional endoribonuclease of Escherichia coli, attacks substrates at highly specific sites. By using synthetic oligoribonucleotides containing repeats of identical target sequences protected from cleavage by 2'-O-methylated nucleotide substitutions at specific positions, we investigated how RNase E identifies its cleavage sites. We found that the RNase E catalytic domain (i.e., N-Rne) binds selectively to 5'-monophosphate RNA termini but has an inherent mode of cleavage in the 3' to 5' direction. Target sequences made uncleavable by the introduction of 2'-O-methyl-modified nucleotides bind to RNase E and impede cleavages at normally susceptible sites located 5' to, but not 3' to, the protected target. Our results indicate that RNase E can identify cleavage sites by a 3' to 5' "scanning" mechanism and imply that anchoring of the enzyme to the 5'-monophosphorylated end of these substrates orients the enzyme for directional cleavages that occur in a processive or quasiprocessive mode. In contrast, we find that RNase G, which has extensive structural homology with and size similarity to N-Rne, and can functionally complement RNase E gene deletions when overexpressed, has a nondirectional and distributive mode of action.  相似文献   

17.
A general two-metal-ion mechanism for catalytic RNA.   总被引:33,自引:1,他引:32       下载免费PDF全文
A mechanism is proposed for the RNA-catalyzed reactions involved in RNA splicing and RNase P hydrolysis of precursor tRNA. The mechanism postulates that chemical catalysis is facilitated by two divalent metal ions 3.9 A apart, as in phosphoryl transfer reactions catalyzed by protein enzymes, such as the 3',5'-exonuclease of Escherichia coli DNA polymerase I. One metal ion activates the attacking water or sugar hydroxyl, while the other coordinates and stabilizes the oxyanion leaving group. Both ions act as Lewis acids and stabilize the expected pentacovalent transition state. The symmetry of a two-metal-ion catalytic site fits well with the known reaction pathway of group I self-splicing introns and can also be reconciled with emerging data on group II self-splicing introns, the spliceosome, and RNase P. The role of the RNA is to position the two catalytic metal ions and properly orient the substrates via three specific binding sites.  相似文献   

18.
A mutant of E. coli, isolated by Kindler and Hofschneider as a strain defective in RNase III activity, forms a 30S precursor of ribosomal RNA ("30S pre-rRNA"). The half-life of the 30S pre-rRNA in growing cells at 30 degrees , estimated by the rate of specific (3)[H]uridine incorporation, is about 1 min. In rifampicin-treated cells, the RNA is metabolized to mature rRNA with a half-life of about 2 min.The 30S pre-rRNA has been highly purified. DNA-RNA hybridization tests demonstrate that it contains both 16S and 23S rRNA sequences. Also, in cultures treated with rifampicin, the cleavage products of radioactive 30S pre-rRNA include 25S and 17.5S RNA species, destined to becomes 23S and 16S rRNA. Thus, each 30S chain probably contains one 16S and one 23S RNA sequence, as well as additional sequences. Two independent techniques indicate that the additional portions account for about 27% of the total lenght: (1) By comparison to the sedimentation rate and electrophoretic mobility of marker RNAs, the 30S pre-RNA has an apparent molecular weight of 2.3 x 10(6) +/- 5%, or 28% more than the sum of 16S and 23S rRNA; (2) 27% of the 30S pre-rRNA is not competed away from hybridization by mature 16S and 23S rRNA.Thus, bacteria appear to make a pre-rRNA similar in some respects to that observed in eukaryotes; though in normal E. coli cells, the pre-rRNA is ordinarily cleaved endonucleolytically during its formation.  相似文献   

19.
To study the cleavage mechanism of bacterial Nase P RNA, we have synthesized precursor tRNA substrates carrying a single Rp- or Sp-phosphorothioate modification at the RNase P cleavage site. Both the Sp- and the Rp-diastereomer reduced the rate of processing by Escherichia coli RNase P RNA at least 1000-fold under conditions where the chemical step is rate-limiting. The Rp-modification had no effect and the Sp-modification had a moderate effect on precursor tRNA ground state binding to RNase P RNA. Processing of the Rp-diastereomeric substrate was largely restored in the presence of the "thiophilic" Cd2+ as the only divalent metal ion, demonstrating direct metal ion coordination to the (pro)-Rp substituent at the cleavage site and arguing against a specific role for Mg(2+)-ions at the pro-Sp oxygen. For the Rp-diastereomeric substrate, Hill plot analysis revealed a cooperative dependence upon [Cd2+] of nH = 1.8, consistent with a two-metal ion mechanism. In the presence of the Sp-modification, neither Mn2+ nor Cd2+ was able to restore detectable cleavage at the canonical site. Instead, the ribozyme promotes cleavage at the neighboring unmodified phosphodiester with low efficiency. Dramatic inhibition of the chemical step by both the Rp- and Sp-phosphorothioate modification is unprecedented among known ribozymes and points to unique features of transition state geometry in the RNase P RNA-catalyzed reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号