首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
视觉信息在视网膜中传递和调控杨雄里(中国科学院,上海生理研究所,上海生命科学联合开放实验室,上海20031)光感受器(视杆和视锥)信号在视网膜中是通过各种信息通道(channel)进行传递的。这些通道包括:视杆一视锥通道,颜色信号通道,给光一撤光(O...  相似文献   

2.
We examined function of the feedback pathway from A17 GABAergic amacrine cells to rod bipolar cells (A17 feedback), a critically located inhibitory circuit in the classic rod pathway of the mammalian retina whose role in processing of scotopic visual information is still poorly understood. We show evidence that this A17 feedback has a profound influence on the temporal properties of rod-driven postphotoreceptoral responses (assessed with the scotopic electroretinogram b-wave). Application of a GABA(c) antagonist prolonged preferentially the decay of the scotopic b-wave. The degree of prolongation increased as the light intensity decreased. Application of selective GABA(a) antagonists accelerated the kinetics of the scotopic b-wave. This effect was abolished when the GABA(c) antagonist was coapplied. Selective ablation of A17 cells mimicked the action of the GABA(c) antagonist. In A17 cell-ablated retinas, the GABA(c) antagonist was no longer very effective to slow the decay of the scotopic b-wave. Thus the A17 feedback, activated by light stimulation and mediated mainly by the GABA(c) receptors, makes the scotopic b-wave more transient by accelerating preferentially its decay. The strength of the feedback can be modulated by GABA(a) receptor-mediated inhibition and by light intensity. Our results also suggest that in the mammalian retina the feedback may be a novel mechanism that contributes postphotoreceptorally to the termination of rod signals, especially those elicited by very dim light stimuli.  相似文献   

3.
Light-evoked currents in depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs) were recorded under voltage-clamp conditions in living retinal slices of the larval tiger salamander. Responses to illumination at the center of the DBCs' and HBCs' receptive fields were mediated by two postsynaptic currents: DeltaI(C), a glutamate-gated cation current with a reversal potential near 0 mV, and DeltaI(Cl), a chloride current with a reversal potential near -60 mV. In DBCs DeltaI(C) was suppressed by L-2-amino-4-phosphonobutyric acid (L-AP4), and in HBCs it was suppressed by 6,7-dinitroquinoxaline-2,3-dione (DNQX). In both DBCs and HBCs DeltaI(Cl) was suppressed by imidazole-4-acetic acid (I4AA), a GABA receptor agonist and GABA(C) receptor antagonist. In all DBCs and HBCs examined, 10 microM I4AA eliminated DeltaI(Cl) and the light-evoked current became predominately mediated by DeltaI(C). The addition of 20 microM L-AP4 to the DBCs or 50 microM DNQX to HBCs completely abolished DeltaI(C). Focal application of glutamate at the inner plexiform layer elicited chloride currents in bipolar cells by depolarizing amacrine cells that release GABA at synapses on bipolar cell axon terminals, and such glutamate-induced chloride currents in DBCs and HBCs could be reversibly blocked by 10 microM I4AA. These experiments suggest that the light-evoked, I4AA-sensitive chloride currents (DeltaI(Cl)) in DBCs and HBCs are mediated by narrow field GABAergic amacrine cells that activate GABA(C) receptors on bipolar cell axon terminals. Picrotoxin (200 microM) or (1,2,5,6-tetrahydropyridine-4yl) methyphosphinic acid (TPMPA) (2 other GABA(C) receptor antagonists) did not block (but enhanced and broadened) the light-evoked DeltaI(Cl), although they decreased the chloride current induced by puff application of GABA or glutamate. The light response of narrow field amacrine cells were not affected by I4AA, but were substantially enhanced and broadened by picrotoxin. These results suggest that there are at least two types of GABA(C) receptors in bipolar cells: one exhibits stronger I4AA sensitivity than the other, but both can be partially blocked by picrotoxin. The GABA receptors in narrow field amacrine cells are I4AA insensitive and picrotoxin sensitive. The light-evoked DeltaI(Cl) in bipolar cells are mediated by the more strongly I4AA-sensitive GABA(C) receptors. Picrotoxin, although acting as a partial GABA(C) receptor antagonist in bipolar cells, does not suppress DeltaI(Cl) because its presynaptic effects on amacrine cell light responses override its antagonistic postsynaptic actions.  相似文献   

4.
In the vertebrate retina, the rod bipolar cells make reciprocal synapses with amacrine cells at the axon terminal. Amacrine cells may perform a fine control of the transmitter release from rod bipolar cells by means of GABAergic synapses acting on different types of GABA receptors. To clarify this possibility GABA-induced currents were recorded by the patch-clamp whole cell method in rod bipolar cells enzymatically dissociated from the mouse retina. All cells tested showed a desensitising chloride-sensitive GABA-induced current. When GABA 30 microM was applied in presence of 100 microM biccuculine, a blocker of the GABA(A) receptors, a slow-desensitising component of the current still remains. This current was blocked when GABA 30 microM was applied in presence of 100 microM 3-aminopropylphosphonic acid, an antagonist of the GABA(C) receptors. The current mediated by GABA(C) receptors showed an EC50 of less that 5 microM; the ionic current through the GABA(A) receptor showed an EC50 of ca. 30 microM. Two pieces of evidence demonstrated that the GABA(C)-mediated current was localised at the axon terminal of rod bipolar cells: (1) cells lacking the axon terminal only showed the biccuculine-sensitive GABA-induced current; and (2) after mechanical section of the axon terminal, bipolar cells lost the slow-desensitising component of the GABA-induced current. We conclude that the rod bipolar cells express two types of ionotropic GABA receptors, and that the high sensitive GABA(C) receptors are mainly localised at the level of the axon terminal and therefore may contribute to the modulation of the transmitter release from the rod bipolar cell.  相似文献   

5.
The nervous system frequently integrates parallel streams of information to encode a broad range of stimulus strengths. In mammalian retina it is generally believed that signals generated by rod and cone photoreceptors converge onto cone bipolar cells prior to reaching the retinal output, the ganglion cells. Near absolute visual threshold a specialized mammalian retinal circuit, the rod bipolar pathway, pools signals from many rods and converges on depolarizing (AII) amacrine cells. However, whether subsequent signal flow to OFF ganglion cells requires OFF cone bipolar cells near visual threshold remains unclear. Glycinergic synapses between AII amacrine cells and OFF cone bipolar cells are believed to relay subsequently rod-driven signals to OFF ganglion cells. However, AII amacrine cells also make glycinergic synapses directly with OFF ganglion cells. To determine the route for signal flow near visual threshold, we measured the effect of the glycine receptor antagonist strychnine on response threshold in fully dark-adapted retinal cells. As shown previously, we found that response threshold for OFF ganglion cells was elevated by strychnine. Surprisingly, strychnine did not elevate response threshold in any subclass of OFF cone bipolar cell. Instead, in every OFF cone bipolar subclass strychnine suppressed tonic glycinergic inhibition without altering response threshold. Consistent with this lack of influence of strychnine, we found that the dominant input to OFF cone bipolar cells in darkness was excitatory and the response threshold of the excitatory input varied by subclass. Thus, in the dark-adapted mouse retina, the high absolute sensitivity of OFF ganglion cells cannot be explained by signal transmission through OFF cone bipolar cells.  相似文献   

6.
Inhibitory feedback shapes bipolar cell responses in the rabbit retina   总被引:1,自引:0,他引:1  
Retinal bipolar cells can be divided into on and off types based on the polarity of their response to light. Bipolar activity is further shaped by inhibitory inputs, characterized here by the events that occur immediately after the onset of a light step: 1) in most off bipolar cells, excitatory current decreased, whereas inhibitory current increased. These currents reinforced each other, enhancing the light response. 2) In about half of the on cone bipolar cells, the excitatory current increased, whereas inhibitory current decreased, also reinforcing the light response. Both of these reinforcing interactions were mediated by glycinergic inhibition. 3) In the remaining on cone bipolar cells, excitation and inhibition both increased, but inhibition was delayed so that these cells responded transiently. 4) Finally, in rod bipolar cells, excitation and inhibition both increased so that inhibition suppressed excitation, reducing the light response at all time scales. The suppressive inhibition seen in on cone and rod bipolar cells was mediated by GABA. Thus morphologically diverse bipolar cells receive only four main types of inhibitory input, and the majority of "inhibitory" inputs actually serve to enhance excitation.  相似文献   

7.
Reciprocal synaptic transmission between rod bipolar cells and presumed A17 amacrine cells was studied by whole cell voltage-clamp recording of rod bipolar cells in a rat retinal slice preparation. Depolarization of a rod bipolar cell evoked two identifiable types of Ca2+ current, a T-type current that activated at about -70 mV and a current with L-type pharmacology that activated at about -50 mV. Depolarization to greater than or equal to -50 mV also evoked an increase in the frequency of postsynaptic currents (PSCs). The PSCs reversed at approximately ECl (the chloride equilibrium potential), followed changes in ECl, and were blocked by gamma-aminobutyric acidA (GABAA) and GABAC receptor antagonists and thus were identified as GABAergic inhibitory PSCs (IPSCs). Bipolar cells with cut axons displayed the T-type current but lacked an L-type current and depolarization-evoked IPSCs. Thus L-type Ca2+ channels are placed strategically at the axon terminals to mediate transmitter release from rod bipolar cells. The IPSCs were blocked by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, indicating that non-NMDA receptors mediate the feed-forward bipolar-to-amacrine excitation. The NMDA receptor antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid had no consistent effect on the depolarization-evoked IPSCs, indicating that activation of NMDA receptors is not essential for the feedforward excitation. Tetrodotoxin (a blocker of voltage-gated Na+ channels) reversibly suppressed the reciprocal response in some cells but not in others, indicating that graded potentials are sufficient for transmitter release from A17 amacrine cells, but suggesting that voltage-gated Na+ channels, under some conditions, can contribute to transmitter release.  相似文献   

8.
Characterization of receptors for glutamate and GABA in retinal neurons   总被引:11,自引:0,他引:11  
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.  相似文献   

9.
In many vertebrate CNS synapses, the neurotransmitter glutamate activates postsynaptic non-N-methyl-D-aspartate (NMDA) and NMDA receptors. Since their biophysical properties are quite different, the time course of excitatory postsynaptic currents (EPSCs) depends largely on the relative contribution of their activation. To investigate whether the activation of the two receptor subtypes is affected by the synaptic interaction in the inner plexiform layer (IPL) of the mouse retina, we analyzed the properties of the light-evoked responses of ON-cone bipolar cells and ON-transient amacrine cells in a retinal slice preparation. ON-transient amacrine cells were whole cell voltage-clamped, and the glutamatergic synaptic input from bipolar cells was isolated by a cocktail of pharmacological agents (bicuculline, strychnine, curare, and atropine). Direct puff application of NMDA revealed the presence of functional NMDA receptors. However, the light-evoked EPSC was not significantly affected by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), but suppressed by 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) or 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). These results indicate that the light-evoked EPSC is mediated mainly by AMPA receptors under this condition. Since bipolar cells have GABA(C) receptors at their terminals, it has been suggested that bipolar cells receive feedback inhibition from amacrine cells. Application of (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), a specific blocker of GABA(C) receptors, suppressed both the GABA-induced current and the light-evoked feedback inhibition observed in ON-cone bipolar cells and enhanced the light-evoked EPSC of ON-transient amacrine cells. In the presence of TPMPA, the light-evoked EPSC of amacrine cells was composed of AMPA and NMDA receptor-mediated components. Our results suggest that photoresponses of ON-transient amacrine cells in the mouse retina are modified by the activation of presynaptic GABA(C) receptors, which may control the extent of glutamate spillover.  相似文献   

10.
Diverse retinal outputs are mediated by ganglion cells that receive excitatory input from distinct classes of bipolar cells (BCs). These classes of BCs separate visual signals into rod, ON and OFF cone pathways. Although BC signalling is a major determinant of the ganglion cell-mediated retinal output, it is not fully understood how light-evoked, presynaptic inhibition from amacrine cell inputs shapes BC outputs. To determine whether differences in presynaptic inhibition uniquely modulate BC synaptic output to specific ganglion cells, we assessed the inhibitory contributions of GABAA, GABAC and glycine receptors across the BC pathways. Here we show that different proportions of GABAA and GABAC receptor-mediated inhibition determined the kinetics of GABAergic presynaptic inhibition across different BC classes. Large, slow GABAC and small, fast GABAA receptor-mediated inputs to rod BCs prolonged light-evoked inhibitory postsynaptic currents (L-IPSCs), while smaller GABAC and larger GABAA receptor-mediated contributions produced briefer L-IPSCs in ON and OFF cone BCs. Glycinergic inhibition also varied across BC class. In the rod-dominant conditions studied here, slow glycinergic inputs dominated L - IPSCs in OFF cone BCs, attributable to inputs from the rod pathway via AII amacrine cells, while rod and ON cone BCs received little and no glycinergic input, respectively. As these large glycinergic inputs come from rod signalling pathways, in cone-dominant conditions L-IPSCs in OFF cone bipolar cells will probably be dominated by GABAA receptor-mediated input. Thus, unique presynaptic receptor combinations mediate distinct forms of inhibition to selectively modulate BC outputs, enhancing the distinctions among parallel retinal signals.  相似文献   

11.
In the retina, rod signal pathways process scotopic visual information. Light decrements are mediated by two distinct groups of rod pathways in the dark-adapted retina that can be differentiated on the basis of their sensitivity to the glutamate agonist dl-2-amino-4-phosphonobutyric acid (APB). We have found that the APB sensitive and insensitive rod Off-pathways signal different light decrement information: the APB sensitive rod Off-pathway conveys slow and low frequency light signals, whereas the APB insensitive rod Off-pathways mediate fast and high frequency light signals [Wang GY (2006) Unique functional properties of the APB sensitive and insensitive rod pathways signaling light decrements in mouse retinal ganglion cells. Vis Neurosci 23:127–135]. However, the mechanisms which limit the frequency following through the APB sensitive and insensitive rod Off-pathways remain unknown. In the current study, whole-cell patch-clamp recordings were made from ganglion cells in dark and light adapted mouse retina to identify the mechanisms that limit the frequency following through the APB sensitive and insensitive rod Off-pathways. The results showed that the sites from AII amacrine cells to Off cone bipolar cells are the major mechanisms that limit the frequency following through the APB sensitive rod Off-pathway. In the APB insensitive rod Off-pathways, rods themselves limited the frequency following through these pathways. Moreover, ganglion cells were able to follow higher frequencies under photopic conditions than under scotopic conditions. The Off responses followed lower frequencies than On responses under photopic conditions. This finding was observed in cells that yielded On or Off responses only as well as in On–Off cells.  相似文献   

12.
Rod signals traverse several synapses en route to cone bipolar cells. In one pathway, rods communicate directly with cones via gap junctions. In a second pathway, signals flow rods-rod bipolars-AII amacrines-cone bipolars. The relative contribution of each pathway to retinal function is not well understood. Here we have examined this question from the perspective of the AII amacrine. AIIs form bidirectional electrical synapses with on cone bipolars. Consequently, as on cone bipolars are activated by outer plexiform inputs, they too should contribute to the AII response. Rod bipolar inputs to AIIs were blocked by AMPA receptor antagonists, revealing a smaller, non-AMPA component of the light response. This small residual response did not reverse between -70 and +70 mV and was blocked by carbenoxolone, suggesting that the current arose in on cone bipolars and was transmitted to AIIs via gap junctions. The residual component was evident for stimuli 2 log units below cone threshold and was prolonged for bright stimuli, demonstrating that it was rod driven. Because the rod bipolar-AII pathway was blocked, the rod-driven residual current likely was generated via the rod-cone pathway activation of on cone bipolars. Thus for a large range of intensities, rod signals reach the inner retina by both rod bipolar-AII and rod-cone coupling pathways.  相似文献   

13.
Previous studies have revealed that the expression pattern of the neurokinin 1 receptor (the preferred receptor for substance P, SP) varies in different mammalian retinas. We investigated NK1 receptor expression in the mouse retina to provide background information for future studies in transgenic mice on SP functional roles in the retina. Mouse retinal sections were treated for single and double-label immunofluorescence. NK1 receptor immunoreactivity was in bipolar cells and in numerous amacrine cells. Double-label studies showed that NK1 receptor-expressing bipolar cells constituted a population of ON-type cone bipolar cells, since they were distinct from rod bipolar cells and contained glycine. They were nonrandomly distributed with highest density in central retina. These cells were similar and may correspond to the population of NK1 receptor-expressing bipolar cells of the rabbit retina. Different subsets of NK1 receptor-expressing amacrine cells were identified on the basis of the expression of selected neurotransmitter substances: i) about 23% of NK1 receptor-expressing amacrine cells also contained glycine; ii) the remaining 77% were likely to be GABAergic, although some inconsistency was observed in the GABA immunostaining obtained with two different GABA antibodies; iii) all dopaminergic amacrine cells also expressed NK1 receptors; iv) about one third of SP-containing amacrine cells also expressed NK1 receptors. These findings confirm and expand previous observations in rat and rabbit retinas. In particular, common to all three species is the expression of NK1 receptors in dopaminergic amacrine cells, indicating that SP neurotransmission may be a universal feature of the circuitry of the dopaminergic amacrine cell. Peculiar to the mouse retina is the presence of putative NK1 autoreceptors expressed by SP-containing amacrine cells.  相似文献   

14.
When intravitreally injected in the frog, GABA reduced the receptive field area of transient retinal ganglion cells, and it decreased the response duration and the number of spikes both at ON and at OFF. Conversely, its antagonist picrotoxin provoked an increase in the duration of both ON and OFF discharges as well as a marked increase in the number of spikes. Furthermore, picrotoxin provoked a marked increase in the size of the receptive field of both sustained and ON-OFF cells by abolishing the inhibition exerted by the surround upon the centre of the field. Glycine and taurine did not affect the size of the receptive field of these ganglion cells. They had no effect on the responses of sustained ganglion cells, while they totally suppressed OFF discharges of transient ganglion cells, without modifying their ON discharges. Conversely, their antagonist strychnine totally suppressed the ON discharges while the OFF discharges were still recorded, though with a reduced number of spikes and an increased latency. An histoautoradiographic study, carried out in parallel, showed that GABA is taken up by both horizontal cells and amacrine cells, while glycine and taurine are taken up by the amacrine cells only.  相似文献   

15.
The influence of dim diffuse adapting fields upon the sensitivity to focal photic stimulation was studied by means of intracellular recording in retinal neurons of the south african clawed frog, Xenopus and the mudpuppy, Necturus. In cones and in most horizontal and bipolar cells lacking color opponency, dim diffuse backgrounds have little influence upon the response to diffuse flicker of low (less than 2 Hz) temporal frequencies; however, with small diameter test probes of higher temporal frequencies, presentation of dim backgrounds enhance the peak-to-peak amplitude of responses to sinusoidal flicker by as much as 800%. This background enhancement effect adheres to the spectral sensitivity of the green-absorbing rod photopigment, and appears to be largely independent of the influence of the adapting field upon cone photopigment or ambient membrane potential in the recorded neuron. This effect cannot be obtained with rod-driven flicker responses. We designate this background influence on flicker, suppressive rod-cone interaction (SRCI) and attribute it to a tonic suppressive (probably inhibitory) influence of rods upon cone pathways that is removed by rod light adaptation. SRCI is also observed in the response of most sustained ON and OFF ganglion cells. However, no corresponding effect occurs in rods, color-opponent second-order neurons, ON-OFF amacrine cells, or most ON-OFF ganglion cells. The spatial and temporal limitations of SRCI observed by means of intracellular recording in amphibians are very similar to those documented by means of psychophysical or electroretinogram (ERG) procedures in a wide variety of species including humans (2, 4, 11, 22, 23, 29). SRCI most probably reflects a process that is mediated by horizontal cells. The specifics of the underlying mechanism remain unclear.  相似文献   

16.
In the dark, light signals are conventionally routed through the following circuit: rods synapse onto rod bipolar (RB) cells, which in turn contact AII amacrine cells. AII cells segregate the light signal into the on and off pathways by making electrical synapses with on cone bipolar (CB) cells and glycinergic inhibitory chemical synapses with off CB cells. These bipolar cells synapse onto their respective ganglion cells, which transfer on and off signals to the visual centers of the brain. Two alternative pathways have recently been postulated for the signal transfer in scotopic conditions: 1) electrical coupling between rods and cones, and 2) a circuit independent of cone photoreceptors, implying direct contacts between rods and off CB cells. Anatomical evidence supports the existence of both these circuits. To investigate the contribution of these alternative pathways to scotopic vision in the mammalian retina, we have performed patch-clamp recordings from ganglion cells in the dark-adapted retina of the rabbit, mouse, and rat. Approximately one-half of the ganglion cells in the rabbit retina received off signals through a circuit that was independent of RB cells. This was shown by their persistence in the presence of the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), which blocks rod-->RB cell signaling. Consistent with this result, strychnine, a glycine receptor antagonist, was unable to abolish these off responses. In addition, we were able to show that some off cone bipolar dendrites terminate at rod spherules and make potential contacts. In the mouse retina, however, there seems to be a very low proportion of off signals carried by an APB-resistant pathway. No ganglion cells in the rat retina displayed APB- and strychnine-resistant responses. Our data support signaling through flat contacts between rods and off CB cells as the alternative route, but suggest that the significance of this pathway differs between species.  相似文献   

17.
Chen S  Li W 《Nature neuroscience》2012,15(7):954-956
Retinal amacrine cells are thought to lack chromatic or color-selective light responses and have only a minor role in color processing. We found that a type of mammalian (Ictidomys tridecemlineatus) amacrine cell selectively carries a blue-On signal, which is received from a blue or short wavelength-sensitive (S) cone On bipolar cell. This glycinergic inhibitory S-cone amacrine cell is ideally placed for driving blue-Off responses in downstream ganglion cells.  相似文献   

18.
Summary With indirect immunofluorescence, glutamate decarboxylase (GAD), the GABA synthesizing enzyme, was localized to cell bodies in the inner half of the inner nuclear layer and a few in the outer tier of the ganglion cell layer in the rhesus monkey retina. In the inner plexiform layer there were three strongly GAD-immunoreactive laminae separated by two less immunoreactive laminae. Electron microscopy demonstrated that the GAD was contained in amacrine cells and these GAD-immunoreactive amacrines were primarily pre- and postsynaptic to biopolar cell axon terminals. The GAD-containing processes possessed small synaptic vesicles and formed synapses that could be characterized as symmetrical. Large, dense-cored vesicles were often found in the cell bodies and synaptic processes of the GAD-immunoreactive amacrine cells. As the vast majority of the synaptic input and output of the GAD-containing amacrine cells was to and from bipolar cells and the strongest GAD-immunoreactivity correlated with the endings of bipolar cells that connect with a single cone, the functional effects of GABA in the primate retina are likely to be found in the responses of single cone pathways in the inner plexiform layer.  相似文献   

19.
Pharmacological modulation of the rod pathway in the cat retina   总被引:6,自引:0,他引:6  
1. In the intact cat eye, the responses of ganglion cells to light stimulation were recorded extracellularly and the actions of iontophoretically applied 2-amino-4-phosphonobutyrate (APB), a potent agonist at ON-bipolars, and of strychnine, a glycine antagonist, were investigated. 2. Under light-adapted conditions, the activity of ON-center ganglion cells is decreased by APB but is increased by strychnine. APB and strychnine act independently of one another. 3. The activity of light-adapted OFF-center ganglion cells is increased by APB and by strychnine. The light response remains clearly modulated. Strychnine blocks the action of simultaneously applied APB. The results are in agreement with the action of a push-pull mechanism, according to which ON-cone-bipolars provide a glycinergic input into OFF-center ganglion cells. 4. Under dark-adapted conditions, APB blocks the light responses of both ON-center and OFF-center ganglion cells. The discharge rate of ON-center ganglion cells is completely suppressed; OFF-center ganglion cells show a high maintained discharge. 5. Strychnine blocks the scotopic light response of OFF-center ganglion cells and blocks the action of simultaneously applied APB. The light response of ON-center ganglion cells is hardly affected by strychnine. 6. The effects of strychnine on OFF-center ganglion cells are in agreement with the hypothesis that the glycinergic AII amacrine cells modulate the activity of the scotopic OFF-channel. 7. Intravitreally applied APB abolished the scotopic b-wave of the electroretinogram at concentrations of 100 microM. 8. Our data suggest that as in rabbit (10) the rod bipolars in cat retina are depolarizing (ON) bipolar cells.  相似文献   

20.
Evidence from toxicological studies suggested that an ionotropic GABA receptor of novel pharmacology (picrotoxin-insensitive, bicuculline-sensitive) exists in the chick embryo retina. In this report, we provide direct morphological and electrophysiological evidence for the existence of such an iGABA receptor. Chick embryo retinas (14-16 days old) incubated in the presence of kainic acid showed pronounced histopathology in all retinal layers. Maximal protection from this toxicity required a combination of bicuculline and picrotoxin. Individual application of the antagonists indicated that a picrotoxin-insensitive, bicuculline-sensitive GABA receptor is likely to be present on ganglion and amacrine, but not bipolar, cells. GABA currents in embryonic and mature chicken retinal neurons were measured by whole cell patch clamp. GABA was puffed at the dendritic processes in the IPL. Picrotoxin (500 microM, in the bath) eliminated all (>95%) the GABA current in the majority of ganglion and amacrine cells tested, but many cells possessed a substantial picrotoxin-insensitive component. This current was eliminated by bicuculline (200 microM). This current was not a transporter-associated current, since it was not altered by GABA transport blockers or sodium removal. The current-voltage relation was linear and reversed near E(Cl), as expected for a ligand-gated chloride current. Both pentobarbital and lorazepam enhanced the picrotoxin-insensitive current. We conclude that chicken retinal ganglion and amacrine cells express a GABA receptor that is GABA-A-like, in that it can be blocked by bicuculline, and positively modulated by barbiturates and benzodiazepines, but is insensitive to the noncompetitive blocker picrotoxin. Understanding the molecular properties of this receptor will be important for understanding both physiological GABA neurotransmission and the pathology of GABA receptor overactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号