首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The present study addressed whether endothelium-dependent vasodilatation evoked by acetylcholine and flow are mediated by the same mechanisms in isolated rat mesenteric small arteries, suspended in a pressure myograph for the measurement of internal diameter. 2. In pressurized arterial segments contracted with U46619 in the presence of indomethacin, shear stress generated by the flow evoked relaxation. Thus, in endothelium-intact segments low (5.1+/-0.6 dyn cm(-2)) and high (19+/-2 dyn cm(-2)) shear stress evoked vasodilatations that were reduced by, respectively, 68+/-11 and 68+/-8% (P<0.05, n=7) by endothelial cell removal. Acetylcholine (0.01-1 microM) evoked concentration-dependent vasodilatation that was abolished by endothelial cell removal. 3. Incubation with indomethacin alone did not change acetylcholine and shear stress-evoked vasodilatation, while the combination of indomethacin with the nitric oxide (NO) synthase inhibitor, N(G),N(G)-asymmetric dimethyl-L-arginine (ADMA 1 mM), reduced low and high shear stress-evoked vasodilatation with, respectively, 52+/-15 and 58+/-10% (P<0.05, n=9), but it did not change acetylcholine-evoked vasodilatation. 4. Inhibition of Ca(2+)-activated K(+) channels with a combination of apamin (0.5 microM) and charybdotoxin (ChTX) (0.1 microM) did not change shear stress- and acetylcholine-evoked vasodilatation. In the presence of indomethacin and ADMA, the combination of apamin (0.5 microM) and ChTx (0.1 microM) increased contraction induced by U46619, but these blockers did not change the vasodilatation evoked by shear stress. In contrast, acetylcholine-evoked vasodilatation was abolished by the combination of apamin and charybdotoxin. 5. In the presence of indomethacin, the tyrosine kinase inhibitor, herbimycin A (1 microM), inhibited low and high shear stress-evoked vasodilatation with, respectively, 32+/-12 and 68+/-14% (P<0.05, n=8), but it did not change vasodilatation induced by acetylcholine. In the presence of indomethacin and ADMA, herbimycin A neither changed shear stress nor acetylcholine-evoked vasodilatation. 6. The present study suggests that Ca(2+)-activated K(+) channels sensitive for the combination of apamin and ChTx are involved in acetylcholine-evoked, mainly non-NO nonprostanoid factor-mediated, vasodilatation, while an Src tyrosine kinase plays a role for flow-evoked NO-mediated vasodilatation in rat mesenteric small arteries.  相似文献   

2.
We investigated the effect of morphine in phenylephrine (PE)- or KCl-precontracted rat small mesenteric arteries. Morphine (10(-6)-10(-4) M) administration caused concentration-dependent relaxation responses in small mesenteric arteries precontracted by PE or KCl. Removal of endothelium did not significantly alter the relaxation responses to morphine. The relaxant responses to morphine were partially inhibited by pre-treatment of tissues with naloxone (NAL, 10(-5) M) for 20 min. The inhibitory effect of NAL on relaxant responses to morphine in PE- or KCl-precontracted arteries did not differ significantly between endothelium-intact and endothelium-denuded preparations. Incubation of endothelium-intact or endothelium-denuded arterial segments with NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) or cyclooxygenase (COX) inhibitor indomethacin (10(-5) M) or histamine H(1)-receptor blocker diphenhydramine (10(-6) M), for 20 min did not inhibit the relaxation responses to morphine. Small mesenteric arterial segment contractions induced by stepwise addition of calcium to high KCl solution with no calcium were almost completely inhibited by morphine. These findings suggested that morphine-induced relaxation responses in isolated rat small mesenteric arteries were neither dependent on endothelium nor blocked by NOS or COX inhibition but they rather seem to depend on an interaction of morphine with calcium influx pathways.  相似文献   

3.
1. The influence of 17 beta-oestradiol on pressurized isolated rat mesenteric and coronary small arteries was investigated. 2. 17 beta-oestradiol caused rapid (t1.0 < 5 mins) concentration-dependent relaxations of pre-contracted pressurized (50 mmHg) isolated rat mesenteric and coronary arteries. Similar responses were observed in both vessel types. Significant relaxations were only observed at concentrations exceeding 3 microM. 3. The vasodilatory responses in both types of artery were unaffected by 10 microM L-nitro arginine (L-NNA) alone or in the presence of 10 microM indomethacin, inhibitors of nitric oxide and prostaglandin synthesis respectively. They were also unaffected by the pre-contracting agent used i.e. high K+ or U46619 (a thromboxane analogue). 4. Neither the oestrogen receptor antagonist ICI 182,780 (10 microM) nor the protein synthesis inhibitor cycloheximide (100 microM) had any effect on the responses of mesenteric arteries to 17 beta-oestradiol. 5. 17 alpha-oestradiol had only a minor effect on mesenteric arterial diameter over a concentration range similar to the effective vasodilatory range for 17 beta-oestradiol. 6. Membrane impermeant 17 beta-oestradiol conjugated to bovine serum albumin (beta-oestradiol-17-hemisuccinate-BSA) (E-H-BSA) resulted in a vasodilatation of pressurized arteries. 7. Wortmannin, an inhibitor of myosin light chain kinase, near maximally relaxed pressurized mesenteric arteries although the time course for the response was significantly slower than that for 17 beta-oestradiol. 8. These results taken together suggest that the acute effects of 17 beta-oestradiol on isolated pressurized arterial tone may be due to effects directly on the vascular smooth muscle via non-genomic mechanisms that involve a stereospecific interaction at the plasma membrane.  相似文献   

4.

BACKGROUND AND PURPOSE

5-HT is taken up by and stored in adrenergic nerves and periarterial nerve stimulation (PNS) releases 5-HT to cause vasoconstriction in rat mesenteric arteries. The present study investigated whether PNS-released 5-HT stored in adrenergic nerves affects the function of perivascular calcitonin gene-related peptide-containing (CGRPergic) nerves.

EXPERIMENTAL APPROACH

Rat mesenteric vascular beds without endothelium and with active tone were perfused with Krebs solution. Changes in perfusion pressure in response to PNS and CGRP injection were measured before (control) and after perfusion of Krebs solution containing 5-HT (10 µM) for 20 min. Distributions of 5-HT- and TH-immunopositive fibres in mesenteric arteries were studied using immunohistochemical methods.

KEY RESULTS

PNS (1–4 Hz) frequency dependently caused adrenergic nerve-mediated vasoconstriction followed by CGRPergic nerve-mediated vasodilatation. 5-HT treatment inhibited PNS-induced vasodilatation without affecting exogenous CGRP-induced vasodilatation, while it augmented PNS-induced vasoconstriction. Guanethidine (adrenergic neuron blocker), methysergide (non-selective 5-HT receptor antagonist) and BRL15572 (selective 5-HT1D receptor antagonist) abolished inhibition of PNS-induced vasodilatation in 5-HT-treated preparations. Combined treatment with 5-HT and desipramine (catecholamine transporter inhibitor), but not fluoxetine (selective 5-HT reuptake inhibitor), did not inhibit PNS-induced vasodilatation. Exogenous 5-HT inhibited PNS-induced vasodilatation, which was antagonized by methysergide. In immunohistochemical experiments, 5-HT-immunopositive nerves, colocalized with adrenergic TH-immunopositive nerves, were observed only in 5-HT-treated mesenteric arteries, but not in control preparations or arteries co-treated with desipramine.

CONCLUSIONS AND IMPLICATIONS

These results suggest that 5-HT can be taken up by and released from adrenergic nerves in vitro by PNS to inhibit CGRPergic nerve transmission in rat mesenteric arteries.  相似文献   

5.
  1. Rat mesenteric arteries (∼250 μm) were set up in a single-channel isometric myograph designed to allow fluorescence measurements concurrent with field stimulation of intramural nerves. Vessels were loaded with 6 μM fura-2AM for 2 h and simultaneous recordings of neurogenic contraction (force) and intracellular calcium [Ca2+]i were obtained. In other experiments, arteries were loaded with 1 μCi ml−1 [3H]-noradrenaline (NA) for 30 min in order to measure release of [3H]-NA in response to field stimulation to examine whether ryanodine directly inhibited neuronal release of NA.
  2. Arteries were activated by single intermittent field stimulation or continuously to excite intrinsic sympathetic nerves, or by cumulative addition of noradrenaline (1 nM–10 μM) to the bathing solution.
  3. Pre-incubation with ryanodine markedly inhibited the contraction and [Ca2+]i release in response to single-pulse nerve stimulation. Ryanodine also inhibited an early phasic component of the response to continuous field stimulation and reduced the rate of rise in force in response to continuous field stimulation. However, stable maximal contraction and [Ca2+]i in response to continuous field stimulation as well as maximal responses to exogenous NA were unaffected. Release of [3H]-NA in response to single intermittent field stimulation was not affected by ryanodine when compared to vehicle.
  4. Our results suggest that brief intermittent activation of intramural sympathetic nerves increases [Ca2+]i and contracts small arteries primarily by releasing Ca2+ from a ryanodine-sensitive intracellular store. In contrast, the stable rise in tone and [Ca2+]i resulting from continuous nerve stimulation may largely depend on sources of Ca2+ other than the ryanodine-sensitive intracellular store.
  相似文献   

6.
  1. We used whole-cell patch clamp to investigate the currents activated by nicorandil in smooth muscle cells isolated from rat small mesenteric arteries, and studied the relaxant effect of nicorandil using myography.
  2. Nicorandil (300 μM) activated currents with near-linear current-voltage relationships and reversal potentials near to the equilibrium potential for K+.
  3. The nicorandil-activated current was blocked by glibenclamide (10 μM), but unaffected by iberiotoxin (100 nM) and the guanylyl cyclase inhibitor LY 83583 (1 μM). During current activation by nicorandil, openings of channels with a unitary conductance of 31 pS were detected.
  4. One hundred μM nicorandil had no effect on currents through Ca2+ channels recorded in response to depolarizing voltage steps using 10 mM Ba2+ as a charge carrier. A small reduction in current amplitude was seen in 300 μM nicorandil, though this was not statistically significant.
  5. In arterial rings contracted with 20 mM K+ Krebs solution containing 200 nM BAYK 8644, nicorandil produced a concentration-dependent relaxation with mean pD2=4.77±0.06. Glibenclamide (10 μM) shifted the curve to the right (pD2=4.32±0.05), as did 60 mM K+. LY 83583 caused a dose-dependent inhibition of the relaxant effect of nicorandil, while LY 83583 and glibenclamide together produced greater inhibition than either alone.
  6. Metabolic inhibition with carbonyl cyanide m-chlorophenyl hydrazone (30 nM), or by reduction of extracellular glucose to 0.5 mM, increased the potency of nicorandil.
  7. We conclude that nicorandil activates KATP channels in these vessels and also acts through guanylyl cyclase to cause vasorelaxation, and that the potency of nicorandil is increased during metabolic inhibition.
  相似文献   

7.
1. Endothelium-derived hyperpolarizing factor (EDHF) has recently been identified as potassium released from endothelial cells into the myo-endothelial space. The present study was designed to test this hypothesis. 2. In rat small mesenteric arteries, mounted in a wire myograph, relaxation to acetylcholine or potassium was not significantly changed following incubation with oxadiazolo-quinoxalin-1-one (ODQ, 4 microM) and indomethacin (10 microM, n = 9). 3. Maximal relaxations to acetylcholine occurred in all arteries, were maintained and were significantly greater (P < 0.01, n = 9) than the transient relaxations to potassium, which only occurred in 30-40% of vessels. 4. Removal of the vascular endothelium abolished relaxant responses both to potassium and acetylcholine (P < 0.005, n = 9). 5. Compared with responses in 5.5 mM potassium PSS, relaxation responses to added potassium in arteries maintained in 1.5 mM potassium PSS were more marked and were not dependent on the presence of an intact endothelium (n = 8). 6. Incubation with BaCl2 (50 microM) significantly inhibited the maximal relaxant response to potassium in the presence of an intact endothelium in 5.5 mM potassium PSS (P < 0.05, n = 4), but had no effect on relaxation of de-endothelialized preparations in 1.5 mM potassium PSS (n = 5). 7. Treatment with ouabain (0.1 mM) abolished the relaxant response to potassium in 1.5 mM potassium PSS (P < 0.001, n = 9), but only partly inhibited the maximal relaxant response to acetylcholine in 5.5 mM potassium PSS (P < 0.01, n = 5). 8. These data show that at physiological concentrations of potassium an intact endothelium is necessary for potassium-induced relaxation in rat mesenteric arteries. Furthermore, the response to potassium is clearly different to that from acetylcholine, indicating that potassium does not mimic EDHF released by acetylcholine in these arteries.  相似文献   

8.
1 We have compared vasoconstriction responses in isolated mesenteric small arteries from mice and rats as elicited by KCl, noradrenaline and the lysosphingolipids sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC). 2 Contractile responses to KCl and noradrenaline, but not those of S1P or SPC, were significantly related to vessel diameter in both species. 3 When comparing vessels of similar diameter, contractile responses for KCl and the three agonists were much smaller in mice than in rats, e.g. 8.3 +/- 0.4 vs. 14.7 +/- 0.7 mn for noradrenaline. 4 Based upon the antagonist rank order of potency of prazosin (pKB 8.80) > B8805-033 (pKB 7.89) > yohimbine (pKB 6.18) approximately BMY 7378 (pA2 6.03), noradrenaline responses in mice were mediated solely via alpha1A-adrenoceptors, similar to what repeatedly has been shown in rats. 5 The S1P3 receptor antagonist suramin (100 microM) significantly inhibited responses to S1P and SPC in rats but not in mice, and did not affect noradrenaline responses in either species. 6 We conclude that for any given diameter, mouse mesenteric arteries develop less contraction in response to various stimuli. Noradrenaline acts via alpha1A-adrenoceptors in both species. Responses to S1P and SPC differ between both species with regard to suramin-sensitivity indicating involvement of different receptor subtypes for lysosphingolipids in both species.  相似文献   

9.
BACKGROUND AND PURPOSE: The vascular endothelium regulates vascular tone by releasing various endothelium-derived vasoactive substances to counteract excess vascular response. We investigated whether the vascular endothelium regulates vasodilatation via released endothelium-derived contracting factors (EDCFs), by examining the effect of endothelium removal on responses to periarterial nerve stimulation (PNS) and various vasodilator agents. EXPERIMENTAL APPROACH: The rat mesenteric vascular bed was perfused with Krebs solution. Vasodilator responses to PNS and 5 min perfusion of vasodilator agents in preparations with endothelium were compared with those in the same preparations without endothelium. The endothelium was removed by 30 s perfusion with sodium deoxycholate. KEY RESULTS: Endothelium removal significantly augmented vasodilator responses to PNS and calcitonin gene-related peptide (CGRP), isoprenaline (beta-adrenoceptor agonist), SNP and 8-bromo-cGMP (8-Br-cGMP; cGMP analogue) but not BAY41-2272 (soluble guanylate cyclase activator). The augmentation of SNP-induced vasodilatation after denudation was much greater than that of CGRP- or isoprenaline-induced vasodilatation. In the preparations with an intact endothelium, L-NAME (nitric oxide synthase inhibitor) significantly augmented vasodilator responses to PNS and CGRP, isoprenaline, SNP and 8-Br-cGMP, but not BAY41-2272. Indomethacin (cyclooxygenase inhibitor) and seratrodast (thromboxane A(2) receptor antagonist), but not phosphoramidon (endothelin-1-converting enzyme inhibitor) or BQ-123 (selective endothelin type A receptor antagonists), significantly augmented vasodilator responses to PNS and CGRP, isoprenaline, SNP and BAY41-2272. CONCLUSION AND IMPLICATION: These results suggest that the endothelium in rat mesenteric arteries regulates and maintains vascular tone via counteracting not only vasoconstriction through releasing endothelium-derived relaxing factors, but also vasodilatation, in part by releasing an EDCF, thromboxane A(2).  相似文献   

10.
  1. We have studied the effect of endothelin-1 stimulation on protein tyrosine phosphorylation levels in intact small mesenteric arteries of the rat and investigated the effects of tyrosine kinase inhibition on the contractile response to this agonist.
  2. Endothelin-1 stimulated a rapid (20 s), sustained (up to 20 min) and concentration-dependent (1–100 nM) increase in protein tyrosine phosphorylation levels which coincided temporally with the contractile response in intact and α-toxin permeabilized small artery preparations. Tyrosine phosphorylation was increased in four main clusters of proteins of apparent molecular mass 28–33, 56–61, 75–85 and 105–115 kDa. Endothelin-1-induced protein tyrosine phosphorylation was independent of extracellular calcium, antagonized by the tyrosine kinase inhibitor tyrphostin A23 but not by the inactive tyrphostin A1.
  3. In intact small arteries tyrphostin A23 inhibited the force developed to endothelin-1 at all concentrations studied; at higher concentrations (10 and 100 nM) the profile of contraction was altered from a sustained to a transient response. Tyrphostin A1 inhibited the contractile response to endothelin-1 at all concentrations except 100 nM; the profile of the response was not altered. Neither tyrphostin affected the transient phasic contraction induced by endothelin-1 (100 nM) in the absence of extracellular calcium.
  4. In rat α-toxin permeabilized mesenteric arteries endothelin-1 caused a concentration-dependent increase in force in the presence of 10 μM GTP and low (pCa 6.7) constant calcium, demonstrating increased sensitivity of the contractile apparatus to calcium. Tyrphostin A23 inhibited this response by approximately 50%, tyrphostin A1 did not affect endothelin-1-induced calcium sensitization of force.
  5. We conclude that increased tyrosine phosphorylation is important in the contractile response induced by endothelin-1 in intact small mesenteric arteries. Furthermore our data implicate activation of this signalling pathway in the tonic phase of contraction possibly through modulation of the sensitivity of the contractile apparatus to calcium.
  相似文献   

11.
AIM: To test the possible involvement of TRPC3 in agonist-induced relaxation and flow-induced vasodilation in rat small mesenteric arteries. METHODS: Male Sprague-Dawley rats were used in the present study. After 72 h-treatment of antisense oligo via tail vein injection, isometric tension and isobaric diameter measurement were carried out with isolated mesenteric artery segments by using either a Pressure Myograph or a Multi Myograph system. Endothelial [Ca(2+)]i changes were measured with a MetaFluor imaging system in response to flow or to 30 nmol/L bradykinin. RESULTS: Immunohistochemical study showed that the 72 h-treatment of antisense oligo via tail vein injection markedly decreased the TRPC3 expression in mesenteric arteries, indicating the effectiveness of the antisense oligo. Isometric tension and isobaric diameter measurement showed that, although the antisense oligo treatment did not affect histamine-, ATP-, and CPA-induced relaxation, it did reduce the magnitude of flow-induced vasodilation by approximately 13% and decreased bradykinin-induced vascular relaxation with its EC50 value raised by nearly 3-fold. Endothelial [Ca(2+)]i measurement revealed that treatment of the arteries with antisense oligos significantly attenuated the magnitude of endothelial [Ca(2+)]i rise in response to flow and to 30 nmol/L bradykinin. CONCLUSION: The results suggest that TRPC3 is involved in flow- and bradykinin-induced vasodilation in rat small mesenteric arteries probably by mediating the Ca(2+) influx into endothelial cells.  相似文献   

12.
The mechanism underlying the vasodilator effect of the flavonoid floranol was studied in rat small mesenteric arteries. Floranol produced a concentration-dependent vasorelaxant effect in endothelium-containing and endothelium-denuded vessels pre-contracted with phenylephrine, which was more potent in endothelium-intact vessels. In endothelium-intact mesenteric arteries, l-NAME but not indomethacin produced a shift to the right in the vasorelaxant effect of floranol. In endothelium-denuded vessels TEA and BaCl2 did not change the floranol-induced vasorelaxation. When endothelium-denuded vessels were pre-contracted with 50 mM KCl, floranol induced a vasorelaxant effect comparable with phenylephrine pre-contracted vessels. We conclude that floranol is a new vasodilator compound in rat small mesenteric arteries. Part of this effect is dependent on endothelial nitric oxide (NO) and part is dependent on the inhibition of voltage-dependent calcium channels in the smooth muscle cells.  相似文献   

13.
1 Heptanol, 18alpha-glycyrrhetinic acid (18alphaGA) and 18beta-glycyrrhetinic acid (18betaGA) are known blockers of gap junctions, and are often used in vascular studies. However, actions unrelated to gap junction block have been repeatedly suggested in the literature for these compounds. We report here the findings from a comprehensive study of these compounds in the arterial wall. 2 Rat isolated mesenteric small arteries were studied with respect to isometric tension (myography), [Ca2+]i (Ca(2+)-sensitive dyes), membrane potential and--as a measure of intercellular coupling--input resistance (sharp intracellular glass electrodes). Also, membrane currents (patch-clamp) were measured in isolated smooth muscle cells (SMCs). Confocal imaging was used for visualisation of [Ca2+]i events in single SMCs in the arterial wall. 3 Heptanol (150 microm) activated potassium currents, hyperpolarised the membrane, inhibited the Ca2+ current, and reduced [Ca2+]i and tension, but had little effect on input resistance. Only at concentrations above 200 microm did heptanol elevate input resistance, desynchronise SMCs and abolish vasomotion. 4 18betaGA (30 microm) not only increased input resistance and desynchronised SMCs but also had nonjunctional effects on membrane currents. 18alphaGA (100 microm) had no significant effects on tension, [Ca2+]i, total membrane current and synchronisation in vascular smooth muscle. 5 We conclude that in mesenteric small arteries, heptanol and 18betaGA have important nonjunctional effects at concentrations where they have little or no effect on intercellular communication. Thus, the effects of heptanol and 18betaGA on vascular function cannot be interpreted as being caused only by effects on gap junctions. 18alphaGA apparently does not block communication between SMCs in these arteries, although an effect on myoendothelial gap junctions cannot be excluded.  相似文献   

14.
Calcium dynamics and vasomotion in rat mesenteric arteries   总被引:2,自引:0,他引:2  
Smooth muscle cell calcium dynamics and diameter were measured in intact pressurized rat mesenteric artery segments during vasoconstriction and vasomotion. Arteries showed a certain norepinephrine (NE) threshold (0.3-0.4 microM) for the onset of vasomotion, during a cumulative NE concentration-response curve. This was due to a necessary [Ca2+]i threshold (increase over basal level of 22.2 +/- 2.6%) to elicit oscillations. The calcium oscillations obtained were synchronous over the entire vessel length and phase-shifted (in advance by 1.7 +/- 0.3 seconds) with respect to the diameter oscillations. A similar result was obtained using a KCl depolarization to contract the arteries, even though the [Ca2+]i threshold was much smaller in this case (increase over basal level of 9.9 +/- 4.3%), as compared with the NE-elicited vasomotion. Blockade of the Na+/K+-ATPase with 1 microM ouabain, or of the Na+/Ca2+ exchanger (NCX) with 1 microM KB-R 7943, did not abolish the calcium oscillations, thus showing that these two pumps are only modulatory elements, while on the other hand, voltage-gated calcium channels have been found to be important in the vasomotion mechanism.  相似文献   

15.
1. The present study was designed to determine the role of protein kinase C (PKC) in the myogenic response of small arteries. In particular, we tested whether inhibition of PKC reverses the previously found pressure-induced elevation of contractile element calcium sensitivity. 2. Rat mesenteric small arteries were cannulated and pressurized. The internal diameter was continuously monitored with a video camera and intracellular calcium levels were measured by means of fura-2. Myogenic responses were observed when the pressure was raised stepwise from 20 to 60 and then to 100 mmHg in physiological saline solution and during application of phenylephrine (0.1 or 1 micromol/L) or potassium (36 mmol/L). 3. The PKC inhibitors H-7 (20 micromol/L), staurosporine (100 nmol/L) and calphostin C (10 nmol/L) all completely abolished the myogenic response. Whereas staurosporine caused an ongoing reduction in intracellular calcium, pressure-induced calcium transients were not affected by either H-7 or calphostin C. In particular, the slope of the wall tension-calcium relationship remained similar in the presence of both H-7 and calphostin C, despite an upward shift of this relationship to higher calcium levels in the case of calphostin C. 4. These results show that activity of PKC isoform(s) is essential for myogenic calcium-contraction coupling.  相似文献   

16.
1. Raised extracellular K(+) relaxes some arteries, and has been proposed as Endothelium-Derived Hyperpolarizing Factor (EDHF). However, relaxation of rat small mesenteric arteries to K(+) is highly variable. We have investigated the mechanism of K(+)-induced dilatation and relaxation of pressurized arteries and arteries mounted for measurement of isometric force. 2. Raising [K(+)](o) from 5.88 - 10.58 mM did not dilate or relax pressurized or isometric arteries. Relaxation to raised [K(+)](o) was revealed in the presence of 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB); this effect of NPPB was concentration-dependent (IC(50): 1.16 microM). 3. Relaxations to raised [K(+)](o) in the presence of NPPB, were abolished by 30 microM Ba(2+) or endothelial-denudation. Acetycholine (10 microM) relaxed endothelium-intact arteries in presence of raised [K(+)](o) NPPB and Ba(2+). 4. Relaxations to raised [K(+)](o) were revealed in hyperosmotic superfusate (+60 mM sucrose). These relaxations were abolished by 30 microM Ba(2+). In the presence of raised [K(+)](o), 60 mM sucrose and 30 microM Ba(2+), 10 microM acetycholine still relaxed all arteries. 5. Fifty microM 18 alpha-glycyrrhetinic acid (18 alpha-GA), a gap junction inhibitor, depressed relaxations to both 10 microM acetylcholine and raised [K(+)](o), in the presence of 10 microM NPPB. 6. In summary, blockade of a volume-sensitive Cl(-) conductance in small rat mesenteric arteries, using NPPB or hyperosmotic superfusion, reveals a endothelium-dependent, Ba(2+) sensitive dilatation or relaxation of rat mesenteric arteries to raised [K(+)](o). We conclude that inwardly rectifying potassium channels on the endothelium underlie relaxations to raised [K(+)](o) in rat small mesenteric arteries.  相似文献   

17.
Nebivolol is a newer beta1-selective adrenergic receptor antagonist, which unlike classic beta-blockers, lowers systemic vascular resistance by direct vasodilator effects possibly involving NO. This study was designed to determine the effects of nebivolol on small arteries, which contribute to the most part of systemic vascular resistance. Mesenteric arteries, isolated from 9-week-old Wistar-Kyoto (WKY) rats, were studied under perfused and pressurized conditions using a video dimension analyzer. Aortic rings from the same animals were suspended in organ chambers, and isometric tension was measured. Experiments were performed during contraction to prostaglandin F2alpha. In small arteries, nebivolol (10(-9) to 3 x 10(-5) M) induced concentration-dependent relaxations (maximum, 55 +/- 8%). The relaxations were less pronounced as compared with those to acetylcholine (maximum, 99 +/- 2%; p < 0.05), but were significantly greater than those to atenolol (maximum, 2 +/- 0%; p < 0.05). Nebivolol-induced responses were markedly reduced by the NO-synthase inhibitor N(omega)-nitro-L-arginine methylester (L-NAME; 10(-4) M; maximum, 11 +/- 2%; p < 0.05). This inhibition could be entirely reversed by pretreatment with L-arginine (10(-3) M; maximum, 46 +/- 7%), a precursor of NO. In contrast to mesenteric arteries, nebivolol did not affect vascular tension of precontracted aortas. These findings indicate that nebivolol induces NO-mediated relaxations in small arteries but not large elastic vessels and therefore, independent of its antihypertensive action, might be effective in protecting the microcirculation in various cardiovascular disease states.  相似文献   

18.
A single gene encodes both calcitonin and the calcitonin gene-related peptide (CGRP). Human and rat alpha-CGRP were compared with sodium nitroprusside in the rat and rabbit isolated mesenteric vascular preparation perfused at constant flow. In the presence of the vasoconstrictor noradrenaline (10(-5) M), rat alpha-CGRP was about 10 times as potent as either human alpha-CGRP or sodium nitroprusside as a vasodilator in the rat mesenteric vasculature. In the rabbit mesenteric vasculature the order of potency was rat alpha-CGRP greater than human alpha-CGRP greater than sodium nitroprusside. Human and salmon calcitonin showed no vasodilator activity at doses 100 times greater than human alpha-CGRP. These results show that human and rat alpha-CGRP are potent vasodilators in the mesenteric vasculature, an effect not mimicked by the alternative gene product, the plasma calcium lowering hormone calcitonin.  相似文献   

19.
1. We have investigated the effects of the N-type calcium channel blocker, omega-conotoxin GVIA, on contractile responses to nerve stimulation, noradrenaline and KCl in rat small mesenteric arteries. In separate experiments, single and summated excitatory junctional potentials (e.j.ps) evoked by nerve stimulation were recorded with an intracellular electrode in the absence and presence of omega-conotoxin. 2. Electrical field stimulation of intramural sympathetic nerves (30 V; 0.25 ms pulse width; 3 s train length; 4-24 Hz) caused frequency-dependent contractions. Cumulative concentration-response curves for the contractions induced by noradrenaline and KCl were constructed in the same preparations. Stimulation at 0.2 Hz and 10 Hz induced respectively single e.j.ps without contractions and summated e.j.ps associated with a contractile response. 3. omega-Conotoxin (0.1 to 3 nM) inhibited markedly and in a concentration-dependent manner both the contractions and e.j.ps to electrical field stimulation. The concentration-response curves to exogenous noradrenaline and KCl remained unaffected. 4. The time-course for the effects of omega-conotoxin (0.3 to 3 nM) indicated a slow onset of action with at least one hour to achieve an equilibrium. 5. The experiments indicate that omega-conotoxin acts prejunctionally to inhibit sympathetic neurotransmission in rat small arteries presumably by inhibition of noradrenaline release. We suggest that omega-conotoxin could be a useful tool to study the control of vascular tone through the autonomic nervous system.  相似文献   

20.
In the present study, the vasodilator actions of methanandamide and capsaicin in the rat isolated mesenteric arterial bed and small mesenteric arterial segments were investigated. Methanandamide elicited concentration-dependent relaxations of preconstricted mesenteric arterial beds (pEC(50)=6.0+/-0.1, E(max)=87+/-3%) and arterial segments (pEC(50)=6.4+/-0.1, E(max)=93+/-3%). In arterial beds, in vitro capsaicin pre-treatment blocked vasorelaxation to 1 and 3 microM methanandamide, and reduced to 12+/-7% vasorelaxation to 10 microM methanandamide. Methanandamide failed to relax arterial segments pre-treated in vitro with capsaicin. In arterial beds from rats treated as neonates with capsaicin to cause destruction of primary afferent nerves, methanandamide at 1 and 3 microM did not evoke vasorelaxation, and relaxation at 10 microM methanandamide was reduced to 26+/-4%. Ruthenium red (0.1 microM), an inhibitor of vanilloid responses, attenuated vasorelaxation to methanandamide in arterial beds (pEC(50)=5.6+/-0.1, E(max)=89+/-1%). Ruthenium red at 1 microM abolished the response to 1 microM methanandamide, and greatly attenuated relaxation at 3 and 10 microM methanandamide in arterial beds. In arterial segments, ruthenium red (0.15 microM) blocked vasorelaxation to methanandamide, but not to CGRP. In arterial segments, the vanilloid receptor antagonist capsazepine (1 microM) inhibited, and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8 - 37) (3 microM) abolished, methanandamide-induced relaxations. CGRP(8 - 37), but not capsazepine, attenuated significantly relaxation to exogenous CGRP. These data show that capsaicin and ruthenium red attenuate vasorelaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments. In addition, CGRP(8 - 37) and capsazepine antagonize responses to methanandamide in mesenteric arterial segments. In conclusion, vanilloid receptors on capsaicin-sensitive sensory nerves play an important role in the vasorelaxant action of methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号