首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
BACKGROUND: Human cancer cell lines grown in the presence of the cytotoxic agent mitoxantrone frequently develop resistance associated with a reduction in intracellular drug accumulation without increased expression of the known drug resistance transporters P-glycoprotein and multidrug resistance protein (also known as multidrug resistance-associated protein). Breast cancer resistance protein (BCRP) is a recently described adenosine triphosphate-binding cassette transporter associated with resistance to mitoxantrone and anthracyclines. This study was undertaken to test the prevalence of BCRP overexpression in cell lines selected for growth in the presence of mitoxantrone. METHODS: Total cellular RNA or poly A+ RNA and genomic DNA were isolated from parental and drug-selected cell lines. Expression of BCRP messenger RNA (mRNA) and amplification of the BCRP gene were analyzed by northern and Southern blot hybridization, respectively. RESULTS: A variety of drug-resistant human cancer cell lines derived by selection with mitoxantrone markedly overexpressed BCRP mRNA; these cell lines included sublines of human breast carcinoma (MCF-7), colon carcinoma (S1 and HT29), gastric carcinoma (EPG85-257), fibrosarcoma (EPF86-079), and myeloma (8226) origins. Analysis of genomic DNA from BCRP-overexpressing MCF-7/MX cells demonstrated that the BCRP gene was also amplified in these cells. CONCLUSIONS: Overexpression of BCRP mRNA is frequently observed in multidrug-resistant cell lines selected with mitoxantrone, suggesting that BCRP is likely to be a major cellular defense mechanism elicited in response to exposure to this drug. It is likely that BCRP is the putative "mitoxantrone transporter" hypothesized to be present in these cell lines.  相似文献   

2.
Fumitremorgin C (FTC) is a potent and specific chemosensitizing agent in cell lines selected for resistance to mitoxantrone that do not overexpress P-glycoprotein or multidrug resistance protein. The gene encoding a novel transporter, the breast cancer resistance protein (BCRP), was recently found to be overexpressed in a mitoxantrone-selected human colon cell line, S1-M1-3.2, which was used to identify FTC. Because the drug-selected cell line may contain multiple alterations contributing to the multidrug resistance phenotype, we examined the effect of FTC on MCF-7 cells transfected with the BCRP gene. We report that FTC almost completely reverses resistance mediated by BCRP in vitro and is a pharmacological probe for the expression and molecular action of this transporter.  相似文献   

3.
Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) mediates multidrug resistance (MDR) in breast cancers. In this study, we aimed to investigate the role of microRNAs in regulation of BCRP expression and BCRP-mediated drug resistance in breast cancer cells. Microarray analysis was performed to determine the differential expression patterns of miRNAs that target BCRP between the MX-resistant breast cancer cell line MCF-7/MX and its parental MX-sensitive cell line MCF-7. MiR-181a was found to be the most significantly down-regulated miRNA in MCF-7/MX cells. Luciferase activity assay showed that miR-181a mimics inhibited BCRP expression by targeting the 3′ untranslated region (UTR) of the BCRP mRNA. Overexpression of miR-181a down-regulated BCRP expression, and sensitized MX-resistant MCF-7/MX cells to MX. In a nude mouse xenograft model, intratumoral injection of miR-181a mimics inhibited BCRP expression, and enhanced the antitumor activity of MX. In addition, miR-181a inhibitors up-regulated BCRP expression, and rendered MX-sensitive MCF-7 cells resistant to MX. These findings suggest that miR-181a regulates BCRP expression via binding to the 3′-UTR of BCRP mRNA. MiR-181a is critical for regulation of BCRP-mediated resistance to MX. MiR-181a may be a potential target for preventing and reversing drug resistance in breast cancer.  相似文献   

4.
Zhang YH  Li G  Yu J  Xu MS  Liu ZX 《中华肿瘤杂志》2011,33(9):654-660
目的 探讨托瑞米芬逆转乳腺癌耐药蛋白(BCRP)介导的多药耐药机制。方法 通过基因扩增,构建分别由BCRP启动子和巨细胞病毒(CMV)启动子启动表达BCRP的重组质粒pcDNA3-Promoter-BCRP和作为对照的质粒pcDNA3-CMV-BCRP,将其分别转染雌激素受体α(ERα)阳性的MCF-7和ERα阴性的MDA-MB-231乳腺癌细胞系,建立由BCRP启动子和CMV启动子启动表达BCRP的4种耐药细胞系MCF-7/Promoter-BCRP、MCF-7/CMV-BCRP、MDA-MB-231/PromoterBCRP和MDA-MB-231/CMV-BCRP。在耐药细胞培养基中加入托瑞米芬,通过逆转录聚合酶链反应(RT-PCR)、Western blot、外排实验以及细胞毒性实验观察托瑞米芬对不同细胞系的耐药逆转效果。结果与空白对照组(未加药物)相比,托瑞米芬以剂量依赖方式抑制BCRP mRNA的表达,0.1、1和10 μmol/L托瑞米芬处理组MCF-7/Promoter-BCRP细胞中BCRP mRNA的表达水平分别下调29.5%(P<0.05)、68.1% (P<0.01)和97.4%(P<0.01);MCF-7/Promoter-BCRP细胞经托瑞米芬和17β-雌二醇联合处理后,细胞中BCRP mRNA的相对表达水平为64.2%±1.3%,明显高于托瑞米芬单独处理组(3.8%±0.2%,P<0.01)。托瑞米芬对各组细胞系中BCRP蛋白表达的调控作用与mRNA相似。经托瑞米芬处理后,MCF-7/Promoter-BCRP细胞内米托蒽醌的荧光强度显著增强,外排米托蒽醌的能力降低了 47.3% (P <0.05);经托瑞米芬和17β-雌二醇联合处理后,MCF-7/Promoter-BCRP细胞内米托蒽醌的荧光强度明显低于托瑞米芬单独处理组,外排米托蒽醌的能力升高了61.5%。托瑞米芬可有效逆转MCF-7/Promoter-BCRP细胞对米托蒽醌的耐药性。上述作用在MCF-7/CMV-BCRP、MDA-MB-231/Promoter-BCRP和MDA-MB-231/CMV-BCRP细胞中未能体现。结论 托瑞米芬可能通过ERot的介导与BCRP启动子上游调控序列中的ERE结合,负性调节BCRP的表达,抑制BCRP蛋白的功能,在体外有效逆转BCRP介导的多药耐药。  相似文献   

5.
Breast cancer resistance protein (BCRP/ABCG2) specifically transports various chemotherapeutic agents and is involved in the development of multidrug resistance (MDR) in cancer cells. MicroRNAs (miRNAs) can play an important role in modulating the sensitivity of cancer cells to chemotherapeutic agents. Therefore, after confirming that BCRP was increased in the mitoxantrone (MX)-resistant MCF-7 breast cancer cell line MCF-7/MX compared with its parental sensitive MCF-7 cell line, we aimed to explore the miRNAs that regulate BCRP expression and sensitize breast cancer cells to chemotherapeutic agents. In the present study, bioinformatic analysis indicated that miR-487a was one of the miRNAs that could bind to the 3′ untranslated region (3′UTR) of BCRP. Quantitative RT-PCR (qRT-PCR) analysis demonstrated that the expression of miR-487a was reduced in MCF-7/MX cells, and a luciferase reporter assay demonstrated that miR-487a directly bound to the 3′UTR of BCRP. Moreover, ectopic miR-487a down-regulated BCRP expression at the mRNA and protein levels, increasing the intracellular accumulation and cytotoxicity of MX in resistant MCF-7/MX breast cancer cells. Meanwhile, inhibition of miR-487a increased BCRP expression at the mRNA and protein levels and induced MX resistance in sensitive MCF-7 breast cancer cells. Furthermore, the reduced expression of BCRP and increased antitumor effects of MX were also detected in MCF-7/MX xenograft tumors treated with the miR-487a agmir. Thus, our results suggested that miR-487a can directly regulate BCRP expression and reverse chemotherapeutic drug resistance in a subset of breast cancers.  相似文献   

6.
7.
Background: Development of a multidrug resistance (MDR) phenotype to chemotherapy remains a major barrier in the treatment of cancer. Gankyrin (p28, p28GANK or PSMD10) is an oncoprotein overexpressed in different carcinoma cell lines. The aim of this study was to compare Gankyrin expression level in MDR cells (MCF-7/ADR and MCF-7/ MX) and non-MDR counterparts (MCF-7). Methods: Gankyrin, MDR1 (also known as ABCB1; the ATP-binding cassette sub-family B member 1) and ABCG2 (also known as BCRP; the human breast cancer resistance protein) mRNA levels were analyzed by real-time RT-PCR. Western blot analysis was used to detect the protein expression levels of Gankyrin. Results: The PCR results showed that the expression of Gankyrin was significantly lower in the ABCG2 overexpressing cell line MCF-7/MX than in non-resistanct MCF-7 cells. In contrast, there were no significant differences in mRNA expression of Gankyrin in the MDR1 overexpressing cell line MCF-7/ADR in comparison with MCF-7 cells. Similarly, Western blot analysis confirmed lower expression of Gankyrin protein in the MCF-7/MX cell line (26% compared to controls) but not in MCF-7/ADR cells. Conclusion: These findings showed that there may be a relation between down-regulation of Gankyrin and overexpression of ABCG2 but without any clear relationship with MDR1 expression in breast cancer cell lines.  相似文献   

8.
目的探讨乳腺癌耐阿霉素细胞株MCF-7/ADM与阿霉素敏感细胞株MCF-7/S中乳腺癌干细胞(BCSCs)含量及乳腺癌耐药蛋白(BCRP)和P-糖蛋白(P-gp)表达的差异,观察中药β-榄香烯(β-ELE)对BCSCs及BCRP和P-gp表达的影响。方法 应用无血清细胞培养法培养MCF-7/ADM和MCF-7/S细胞株,形态学观察不同细胞株无血清细胞球培养的成球率,RT PCR检测两种细胞株中BCRP和P-gp的mRNA水平,流式细胞仪检测BCRP和P-gp的阳性表达率及CD44+CD24-/low细胞比例。应用15μg/ml β-ELE作用MCF-7/ADM细胞株48h后,检测细胞成球率及BCRP、P-gp基因与蛋白表达的变化。结果 与MCF-7/S细胞比较,MCF-7/ADM细胞的成球率及BCRP、P-gp mRNA水平较高。MCF-7/ADM细胞中BCRP和P-gp蛋白的阳性表达率分别为(77.78±9.55)%和(32.33±5.12)%,CD44+CD24-/low细胞比例为(64.79±11.78)%,均高于MCF-7/S细胞的(3.97±1.51)%、(14.26±2.51)%和(18.79±3.28)%,差异均有统计学意义(P<0.01)。β-ELE能明显抑制MCF-7/ADM细胞的成球率及BCRP、P-gp基因与蛋白的表达(P<0.01)。结论 MCF-7/ADM是BCSCs相对富集的一种耐药细胞株且高表达BCRP和P gp,β-ELE能够抑制MCF-7/ADM细胞中BCSCs比例及其成球率,并降低耐药蛋白的表达。  相似文献   

9.
The multidrug resistance phenotype is one of the major problems in development of cancer cell resistanceto chemotherapy. Some natural compounds from medicinal plants have demonstrated promising capacity inenhancing anticancer effects in drug resistant cancer cells. We aimed to investigate whether mangiferin mighthave an ability to re-sensitize MCF-7 breast cancer cells previously treated with short-term doxorubicin in vitro,through the modulation of efflux transporters, P-glycoprotein (P-gp), MRP1 and BCRP. We exposed MCF-7 breastcancer cells pretreated with doxorubicin for 10 days to mangiferin (10, 25 or 50 μM) for 96 hours. Afterwards,we evaluated influence on cell viability and level of mRNA expression of P-gp, MRP1 and BCRP. Doxorubicingiven in combination with mangiferin at low concentrations (10 and 25 μM) failed to give significant reductionin cell viability, while at the highest concentrations, the combination significantly reduced cell viability. ThemRNA expression analysis of P-gp, MRP1 and BCRP showed that mangiferin had inhibitory effects on P-gp butno effects on MRP1 and BCRP. In conclusion, we suggest that mangiferin at high concentrations can be usedas chemosensitizer for doxorubicin therapy. This effect might be attributed by inhibitory effects of mangiferinon P-glycoprotein expression.  相似文献   

10.
11.
12.
13.
14.
背景与目的:丝氨酸/苏氨酸蛋白激酶31(serine/threonine kinases 31,STK31)基因在人类多种癌症中扮演重要角色,且STK31基因的表达受其启动子及第一外显子区甲基化状态的影响;病毒感染与肿瘤组织中某些抑癌基因启动子区高甲基化有关。本研究旨在探讨宫颈癌细胞系中HPV16 E6、E7及E6/E7癌基因对STK31基因甲基化状态及表达的影响,以及不同种类甲基转移酶(DNA methyltransferases,DNMTs)基因在STK31基因甲基化中的潜在作用。方法:构建外源性HPV16 E6、E7以及E6/E7基因共表达慢病毒,分别感染人乳头瘤病毒(human papillomavirus,HPV)阴性宫颈癌细胞系HT-3及C33A,获得稳定转染的细胞系;采用亚硫酸氢盐基因组测序法(bisulfite genomic sequencing,BGS)和甲基化特异性PCR (methylation-specific PCR,MSP)检测3种HPV阳性宫颈癌细胞系HeLa、SiHa和CasKi以及HPV阴性宫颈癌细胞系HT-3和C33A转染前后STK31基因的甲基化状态;RT-PCR及蛋白[质]印迹法(Western blot)检测上述宫颈癌细胞系中STK31基因的表达以及DNMT1、DNMT2、DNMT3a、DNMT3b和DNMT3L基因在HPV16转染前后宫颈癌细胞系及HPV阳性、HPV阴性宫颈癌组织中的表达情况。结果:外源性HPV16 E6、E7以及E6/E7基因可在HPV阴性宫颈癌细胞系中稳定表达。3种HPV阳性细胞系HeLa、SiHa和CasKi中STK31基因呈低甲基化状态,STK31 mRNA及蛋白质表达阳性;2种HPV阴性细胞系HT-3、C33A中STK31基因则表现为高甲基化状态,STK31 mRNA及蛋白质表达缺失;与未感染慢病毒HT-3和C33A细胞系比较,外源性HPV16 E7以及E6/E7表达的HT-3和C33A细胞系STK31基因甲基化程度降低,其mRNA及蛋白质重新表达。DNMT1、DNMT3a和DNMT3b基因在HT-3E6/E7和C33AE6/E7细胞系中mRNA水平分别高于HT-3空载细胞系和C33A空载细胞系,差异有统计学意义(P<0.001)。DNMT1、DNMT3a和DNMT3b基因的mRNA水平在HPV16阳性宫颈癌组织中的表达高于其在HPV阴性宫颈癌组织中的表达,差异有统计学意义(t=5.997,P<0.001;t=6.743,P<0.001;t=7.926,P<0.001)。DNMT2在HT-3E6/E7和C33AE6/E7细胞系中mRNA表达水平分别低于HT-3空载细胞系和C33A空载细胞系,差异有统计学意义(t=7.451,P<0.001;t=2.451,P<0.05);DNMT2基因转录水平在HPV16阳性宫颈癌组织中低于HPV阴性宫颈癌组织(t=9.134,P<0.001)。DNMT3LmRNA表达水平在宫颈癌细胞系转染前后及HPV阴阳性宫颈癌组织中的差异无统计学意义(P>0.05)。结论:HPV感染可导致STK31基因启动子及第1外显子区甲基化状态降低,低甲基化状态促进该基因表达。STK31基因的表达受其启动子及第1外显子区甲基化状态的调控。HPV16 E7、E6/E7基因可能通过影响DNMT2的表达参与调控癌基因STK31基因启动子及第1外显子区甲基化状态。  相似文献   

15.
16.
17.
Our study examines the ability of LY335979 (Zosuquidar trihydrochloride) to modulate 3 distinct ABC transporters that are mechanisms of drug resistance: P-glycoprotein (Pgp, ABCB1), multidrug resistance associated protein (MRP1, ABCC2) and breast cancer resistance protein (BCRP, ABCG2). Pgp-mediated resistance can be modulated by coadministration with the highly potent, selective inhibitor, LY335979. Modulation of resistance by mitoxantrone and vinorelbine, 2 drugs used to treat certain solid tumors, was examined in a 3-day cytotoxicity assay using a panel of HL60 leukemia cell lines or MCF-7 breast cancer transfectants. LY335979, at 0.5 microM, substantially reversed mitoxantrone resistance and fully reversed vinorelbine resistance of Pgp-expressing HL60/Vinc cells. However, LY335979 did not modulate drug resistance in the MRP1-expressing HL60/ADR or drug-sensitive parental HL60 cells. To ascertain if LY335979 modulates BCRP-mediated drug resistance, the sensitivity of 26-fold mitoxantrone resistant, BCRP-transfected MCF-7 cells was evaluated. Addition of 5 microM LY335979, a concentration approximately 100-fold higher than the affinity of Pgp, had little to no effect on the BCRP transfectant. [(125)I]Iodomycin photolabeled Pgp in CEM/VLB(100) membranes and was inhibited by 5 microM LY335979 and GF120918. No photolabeling of MRP or BCRP occurred in H69AR or MCF-7/BCRP membranes, respectively. These results further demonstrate that LY335979 is highly specific for Pgp and does not modulate MRP1- or BCRP-mediated resistance and can be used in combination with mitoxantrone and vinorelbine in tumor cells.  相似文献   

18.
Breast cancer resistance protein (BCRP/ABCG2) of an ATP-binding cassette half-transporter confers resistance against mitoxantrone and camptothecin derivatives of topotecan and irinotecan. Novobiocin, a coumermycin antibiotic, is known to enhance anticancer drug sensitivity of cancer cells in vitro and in vivo, the mechanism of which remains undetermined. Here we focused on drug efflux pump and examined whether novobiocin reversed drug resistance in multidrug-resistant cells highly expressing BCRP. To explore the reversal mechanisms, intracellular drug accumulation was measured by flow cytometry, and a topotecan transport study using plasma membrane vesicles was performed. We used PC-6/SN2-5H2 small cell lung cancer and MCF-7/MX breast cancer cells selected with SN-38 of the active irinotecan metabolite and mitoxantrone, respectively, and the BCRP cDNA transfectant MCF-7/clone 8 cells. These cells expressed high levels of BCRP mRNA but not other known transporters. Compared to the parental PC-6 cells, PC-6/SN2-5H2 cells were 141-, 173- and 57.2-fold resistant to topotecan, SN-38 and mitoxantrone, respectively. Novobiocin at 60 microM decreased the degree of the above resistance by approximately 26-fold in PC-6/SN2-5H2 cells, and similarly reversed resistance in MCF-7/MX, MCF-7/clone 8 and un-selected NCI-H460 cells highly expressing BCRP. Furthermore, novobiocin increased the intracellular topotecan accumulation in these cells and inhibited the topotecan transport into the membrane vesicles of PC-6/SN2-5H2 cells. No effects of novobiocin in these assay were observed in the parental PC-6 and MCF-7 cells. The kinetic parameters in the transport study indicated that novobiocin was a inhibitor for BCRP, resulting in competitive inhibition of BCRP-mediated topotecan transport. These findings suggest that novobiocin effectively overcomes BCRP-mediated drug resistance at acceptable concentrations.  相似文献   

19.
Doyle L  Ross DD 《Oncogene》2003,22(47):7340-7358
Observations of functional adenosine triphosphate (ATP)-dependent drug efflux in certain multidrug-resistant cancer cell lines without overexpression of P-glycoprotein or multidrug resistance protein (MRP) family members suggested the existence of another ATP-binding cassette (ABC) transporter capable of causing cancer drug resistance. In one such cell line (MCF-7/AdrVp), the overexpression of a novel member of the G subfamily of ABC transporters was found. The new transporter was termed the breast cancer resistance protein (BCRP), because of its identification in MCF-7 human breast carcinoma cells. BCRP is a 655 amino-acid polypeptide, formally designated as ABCG2. Like all members of the ABC G (white) subfamily, BCRP is a half transporter. Transfection and enforced overexpression of BCRP in drug-sensitive MCF-7 or MDA-MB-231 cells recapitulates the drug-resistance phenotype of MCF-7/AdrVp cells, consistent with current evidence suggesting that functional BCRP is a homodimer. BCRP maps to chromosome 4q22, downstream from a TATA-less promoter. The spectrum of anticancer drugs effluxed by BCRP includes mitoxantrone, camptothecin-derived and indolocarbazole topoisomerase I inhibitors, methotrexate, flavopiridol, and quinazoline ErbB1 inhibitors. Transport of anthracyclines is variable and appears to depend on the presence of a BCRP mutation at codon 482. Potent and specific inhibitors of BCRP are now being developed, opening the door to clinical applications of BCRP inhibition. Owing to tissue localization in the placenta, bile canaliculi, colon, small bowel, and brain microvessel endothelium, BCRP may play a role in protecting the organism from potentially harmful xenobiotics. BCRP expression has also been demonstrated in pluripotential "side population" stem cells, responsible for the characteristic ability of these cells to exclude Hoechst 33342 dye, and possibly for the maintenance of the stem cell phenotype. Studies are emerging on the role of BCRP expression in drug resistance in clinical cancers. More prospective studies are needed, preferably combining BCRP protein or mRNA quantification with functional assays, in order to determine the contribution of BCRP to drug resistance in human cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号