首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study demonstrates that a single subcutaneous injection of gonadotrophin-releasing hormone (GnRH) (60 ng) to GnRH-deficient (hpg) male mice causes a doubling of pituitary GnRH receptors (GnRH-R). No change in GnRH-R occurs during the time of LH release (15-60 min) or up until 4 h post-GnRH. Between 4 and 12 h there is a progressive increase in GnRH-R, which is still apparent 24 h later. No induction of GnRH-R occurs after the same treatment of intact adult normal mice. The same degree of GnRH-R induction occurs 12 h after a single GnRH injection (60 ng) to orchidectomized hpg male mice, indicating that this effect is mediated by a direct action of GnRH on the pituitary gonadotroph, rather than being secondary to stimulation of some gonadal product. Homologous ligand GnRH-R induction in hpg mouse pituitaries in vivo is prevented by prior treatment with cycloheximide, a non-specific protein synthesis inhibitor. Cycloheximide alone had no effect on GnRH-R in normal male mice but when combined with GnRH caused a 40% depletion of receptors, implying ligand-induced receptor loss without subsequent replenishment. The similarity between the extent, time-course, and dependence on protein synthesis of GnRH induction of its own receptors in vivo and in cultured pituitary cells in vitro indicates that the hpg mouse pituitary behaves like an in vivo pituitary cell culture system in this respect. Similarity of data derived from this in vivo model provides direct support for the view that in vitro studies on the cellular mechanism of GnRH action can be physiologically relevant to the intact animal.  相似文献   

2.
Exogenous cyclic adenosine nucleotides increase gonadotrophin-releasing hormone (GnRH) receptors in intact cultured rat pituitary cells in a similar manner to that observed with GnRH itself. In this study the calcium and microtubule dependency of GnRH receptor up-regulation was examined in vitro. Treatment of pituitary cells in Ca2+ and serum-containing media with either GnRH (1 nmol/l), K+ (58 mmol/l) or dibutyryl cyclic AMP (dbcAMP; 1 mmol/l) for 7-10 h routinely resulted in a 50-100% increase in GnRH receptors. Incubation of pituitary cells with the calcium channel blocker verapamil, for 7 h, or the calcium chelator EGTA, for 10 h, had no effect on basal receptor levels but prevented the increase in GnRH receptors stimulated by either GnRH, K+ or dbcAMP. Luteinizing hormone release measured with the same stimulators over a 3-h period was prevented by both verapamil and EGTA. Calcium ionophore (A23187) increased GnRH receptors by 40-60% at low concentrations (10 and 100 nmol/l) while higher concentrations (10 and 100 mumol/l) reduced receptor levels. Luteinizing hormone release was not increased by receptor-stimulating concentrations of A23187, but was by higher concentrations (10 mumol/l). None of these pretreatments, for up to 10 h, impaired the subsequent LH response of the cells to increasing doses of GnRH. Vinblastine (1 mumol/l did not affect basal receptor levels but markedly reduced the increase in GnRH receptors stimulated by GnRH, K+ and dbcAMP. This concentration of vinblastine had no effect on LH release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
L S Young  S I Naik  R N Clayton 《Endocrinology》1984,114(6):2114-2122
In this study the GnRH receptors (GnRH-R) in cultured rat pituitary cells were examined after treatment with GnRH and cyclic nucleotide derivatives. GnRH at doses of between 10(-11) and 10(-8) M caused GnRH-R increases, 10(-9) M resulting in a 50% stimulation of both GnRH-R and LH release. (Bu)2cAMP increased GnRH-R in a dose dependent manner, with a maximal 2-fold increase at 1 mM, with no effect on LH release in serum-containing medium. The time-course of both the GnRH and (Bu)2cAMP stimulation of GnRH-R was similar, with maximal levels being reached between 6-12 h. There was no difference in the GnRH receptor affinity subsequent to either GnRH or (Bu)2cAMP treatment. GnRH-R increases of 70% were observed when pituitary cells were treated with 1 mM cAMP and 8- bromocAMP , but n-butyric acid, adenosine, and cyclic guanosine monophosphate (all 1 mM) were not effective. Fifty eight millimolar KCl resulted in a 2-fold elevation of GnRH-R. Isobutylmethylxanthine (0.2 mM) did not affect basal receptor levels and slightly enhanced the GnRH-and potassium-stimulated increase of GnRH-R, whereas the increase caused by (Bu)2cAMP was completely prevented. Simultaneous treatment of cultured pituitary cells with either GnRH, KCl, or (Bu)2cAMP and cycloheximide completely prevented GnRH-R increases, while not affecting either basal or GnRH and KCl-stimulated LH secretion. None of the cyclic nucleotides stimulated LH release under the culture conditions employed to examine receptor regulation. However, when incubated in medium not containing serum, both (Bu)2cAMP and cyclic guanosine monophosphate stimulated significant LH release. When the pituitary cells were treated with GnRH in medium without serum, no increase in GnRH-R was measured, although LH release was unaffected. However, absence of serum in the medium did not affect either the K+ or (Bu)2cAMP stimulation of GnRH-R. The GnRH antagonist ( DpGlu1 , D-Phe2, D-Trp3,6) GnRH (1 microM) prevented both GnRH- and (Bu)2cAMP-induced increases in GnRH-R, although not that of 58 mM KCl. The antagonist also inhibited GnRH-stimulated LH secretion, although not that caused by KCl.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
B E Hawes  P M Conn 《Endocrinology》1992,131(6):2681-2689
After initial GnRH pretreatment (10 nM, 5 h), subsequent GnRH-stimulated LH release from the gonadotrope was diminished (1 microM GnRH stimulated release of 36.4 +/- 1.4% total cellular LH over 3 h in cells initially pretreated with medium alone compared to 27.4 +/- 1.2% in GnRH-pretreated cells); however, inositol phosphate (IP) production in response to the releasing hormone remained unaffected (1 microM GnRH provoked IP accumulation of 161 +/- 9% above basal levels after 45 min in control cells and 162 +/- 11% in GnRH-pretreated cells). Pretreatment of pituitary cell cultures with NaF (a guanyl nucleotide binding protein activator, 10 mM, 3 h) also decreased subsequent GnRH-stimulated LH release, and in addition, provoked a decrease in GnRH receptor number, an increase in GnRH receptor affinity, reduction of GnRH-stimulated IP production to basal levels, and an increase in the amount of LH released in response to stimulation with the calcium ionophore A23187. In order to determine if the changes in LH release were a result of decreased IP production and/or decreased GnRH receptor binding, the time course of recovery to control levels of these processes was assessed. GnRH receptor binding continued to decrease after NaF pretreatment, reaching a nadir (62% of control) at 6 h after the pretreatment period and recovering at 48 h (90% of control). In contrast, GnRH-provoked IP accumulation did not return to control levels even after 48 h of recovery after NaF pretreatment (1 microM GnRH-stimulated IP accumulation in NaF-pretreated cells was 57% compared to control cells after 48 h of recovery). GnRH-stimulated LH release was inhibited immediately after NaF pretreatment (1 microM GnRH-stimulated LH release in NaF-pretreated cells was 65% of control levels). Cells began to recover within 3 h (80% of control) and were almost completely recovered by 6 h (90% of control). A23187-provoked LH release was enhanced immediately after NaF pretreatment (30 microM A23187-stimulated LH release in NaF-pretreated cells was 170% of control levels). Responsiveness to ionophore was 133% of control by 0.5 h, and complete recovery was measured within 1 h (100% of control). Furthermore, both NaF and GnRH pretreatment still provoked a decrease in gonadotrope responsiveness when IP production was inhibited by the phospholipase C inhibitor U-73122. The results suggest that the development of gonadotrope desensitization (by either NaF or GnRH pretreatment) can be uncoupled from changes in IP production.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Ovariectomized (OVX) rats suckling 8 pups have a complete suppression of pulsatile LH secretion and a decrease in pituitary GnRH receptor (GnRH-R) content. Removing the suckling stimulus for 24 h results in a sharp increase in GnRH-R and a restoration of pulsatile LH secretion. These findings suggest that the suckling stimulus induces a suppression of GnRH secretion, and removal of the suckling stimulus permits the restoration of GnRH secretion. Indeed, if GnRH antiserum is injected at the time of pup removal, the restoration of pituitary GnRH-R and LH secretion is prevented. The present studies were designed to test our hypothesis that the deficits in pituitary gonadotroph function observed during lactation are due to suckling-induced suppression of GnRH. Exogenous GnRH was administered in a pulsatile regimen to OVX lactating rats on days 10 and 11 postpartum, and the effects on pituitary GnRH-R levels, pituitary sensitivity to GnRH, and pulsatile LH secretion were assessed. GnRH doses of 0, 0.5, 2.0 or 5.0 ng/pulse were administered every 50 min for 24 h beginning on day 10. Administration of 0.5 ng GnRH/pulse for 24 h increased GnRH-R from 35 +/- 3 to 63 +/- 8 fmol/pituitary. There was a clear GnRH dose-related upregulation of GnRH-R to approach nonsuckling levels (140-160 fmol/pituitary) with the 5 ng GnRH dose. At the beginning of GnRH administration, the pituitary was very unresponsive to GnRH. Consistent LH pulses were only observed with 5 ng GnRH/pulse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Increased hypothalamic GnRH secretion appears to influence positively the number of pituitary GnRH receptors (GnRH-R). GnRH-R increase after castration in male rats, and this rise can be prevented by testosterone (T), anti-GnRH sera, or hypothalamic lesions. GnRH also increases serum LH and GnRH-R in hypothalamus-lesioned rats, and these animals injected with exogenous GnRH are, therefore, a good model in which to study the site of steroid feedback at the pituitary level. Adult male and female rats were gonadectomized, and radiofrequency lesions were placed in the hypothalamus. Males received T implants, and females received estradiol implants at the time of surgery. Empty capsules were placed in the control animals. Beginning 3-5 days later, animals in each group were injected every 8 h with vehicle (BSA) or GnRH (0.002-200 micrograms/day) for 2 days. After these GnRH injections, all rats received 6.6 micrograms GnRH, sc, 1 h before decapitation to determine acute LH and FSH responses. GnRH-R were determined by saturation analysis using 125I-D-Ala6-GnRH ethylamide as ligand. In males, GnRH injections increased GnRH-R. T inhibited acute LH and FSH responses to GnRH in all groups, but had little effect on GnRH-R, indicating that T inhibits gonadotropin secretion at a post-GnRH receptor site. In females, the GnRH-R response to GnRH was less marked, and only the 200 micrograms/day dose of GnRH increased GnRH-R, indicating that the positive feedback effects of estradiol at the pituitary level are also exerted at a site distal to the GnRH receptor. There was no positive correlation between the number of GnRH-R and GnRH-stimulated gonadotropin release in males or females. Female rats with hypothalamic lesions had markedly elevated serum PRL levels (greater than 300 ng/ml). Suppression of PRL secretion by bromocryptine resulted in augmented GnRH-R responses to GnRH, and GnRH-R concentrations rose to the same values induced in males. This suggests that hyperprolactinemia inhibits GnRH-R responses to GnRH in females by a direct action on the pituitary gonadotroph.  相似文献   

7.
Previous reports have demonstrated that chronic exposure to high concentrations of gonadotropin-releasing hormone (GnRH) induces a state of refractoriness to GnRH in the pituitary. In order to determine the role of the GnRH receptor in desensitization, we have compared the ability of GnRH to stimulate luteinizing hormone (LH) secretion with changes in GnRH binding. Cultured rat anterior pituitary cells exposed to 1 nM GnRH for 12 h became refractory to this dose of GnRH but were able to release LH in response to higher concentrations of GnRH. Exposure to 1 nM or 10 nM GnRH not only caused a shift in the EC50 of GnRH to release LH from 0.28 nM to about 4.5 nM, but also produced a decrease in the maximal response which could not be fully explained by the reduced LH cell content. Examination of GnRH receptor binding to cells pretreated with similar doses of GnRH revealed no change in receptor affinity and a 10–90% increase in receptor number. This paradoxical up-regulation of GnRH receptor number occurred over a period of 6 h and was completely abolished in the presence of cycloheximide. The continuous presence of GnRH was not required for receptor up-regulation since pulses of GnRH were just as effective in increasing GnRH binding. The results indicate that changes in GnRH receptor affinity and number do not always parallel the changes in pituitary responsiveness to GnRH. Therefore, GnRH-induced desensitization cannot be fully explained by down-regulation of receptors and must involve a post-receptor mechanism.  相似文献   

8.
Recent evidence indicates that endogenous GnRH is required for maintenance of its own pituitary receptors (GnRH-R). We have measured GnRH-R in pituitaries of hypogonadotrophic hypogonadal (hpg) mice, in whom hypothalamic GnRH is deficient or absent. The GnRH-R concentration in hpg male mouse pituitaries was 10.6 +/- 1 fmol/pituitary vs. 30.9 +/- 1 fmol/pituitary in normal male littermate pituitaries. Similarly, GnRH-R in female hpg mice (15.2 +/- 1.7 fmol/pituitary) were 30% those of normal random cycling females (51.4 +/- 3.5 fmol/pituitary). There was no difference in receptor affinity (Ka = 1.5-3 C 10(9) M-1) of hpg mouse pituitaries. The pituitary LH content in hpg male and female mice was very similar (range 3.4-4.8 micrograms/pituitary) representing 5% and 19% of normal male (95 +/- 7.2 micrograms/pituitary) and female (18.1 +/- 1.5 micrograms/pituitary) values, respectively. The administration of 50 ng GnRH sc 10 times daily to male hpg mice, increased GnRH-R to 80% of normal values within 3 days. Serum FSH and pituitary FSH content rose to normal male values after 7 days of GnRH injections. However, serum LH remained undetectable and pituitary LH reached only 20% of normal male levels, even after 15 days of GnRH administration. Treatment of hpg male mice with 60 ng GnRH either once daily for 6 days, or 12 times daily for 5 days, increased GnRH-R to 50% of normal male values. Twelve daily injections of GnRH elevated serum FSH to above the normal male range, whereas daily GnRH only doubled untreated hpg levels. Pituitary FSH was stimulated to 50% of normal with 12 daily injections, whereas once daily administration elevated pituitary FSH to 30% of normal values. Both pulsatile regimes depleted pituitary LH. These data demonstrate that: 1) despite absence of bioactive GnRH, GnRH-R values are only reduced to 30% of normal in hpg mouse pituitaries, suggesting that little, if any, endogenous GnRH is required for expression of GnRH receptors. 2) Pituitary GnRH-R number rapidly increase when GnRH is administered to hpg male mice indicating that, as in the rat, GnRH positively regulates its own receptor concentration. 3) The pituitary FSH and LH responses to GnRH treatment in hpg mice depends to a different extent on the frequency and duration of GnRH administration. 4) The hpg mouse provides an ideal animal model for investigating the interaction of defined regiments of exogenous GnRH and gonadal steroids on pituitary GnRH receptor and gonadotroph function.  相似文献   

9.
Pretreatment of pituitary cell cultures with GnRH causes altered gonadotrope responsiveness to LH secretagogues. The precise mechanism by which this occurs is not understood. Because a G protein appears to be activated after GnRH stimulation of the gonadotrope, a role for this moiety in GnRH-stimulated alterations in gonadotrope responsiveness was assessed. We show that 3 h pretreatment of pituitary cell cultures with 10 mM NaF (a G protein activator), resulted in decreased gonadotrope responsiveness to subsequent GnRH treatment (3 h, 100 nM; 34.4 +/- 1.6% vs. 23.4 +/- 1.5% of total cellular LH). NaF-provoked gonadotrope desensitization to GnRH also occurred in the presence of 3 mM EGTA and in cells which had been depleted of protein kinase C. Desensitization to GnRH did not occur in response to pretreatment with (Bu)2cAMP (8 h, 1 mM). In addition, neither GnRH nor NaF stimulated inositol phosphate production above basal levels after the NaF pretreatment. GnRH receptor binding also decreased by 30% with NaF pretreatment. In contrast, 3 h NaF (10 mM) pretreatment enhanced responsiveness of the gonadotrope to the Ca2+ ionophore A23187 in a protein kinase C- and cAMP-dependent manner. Responsiveness to the phorbol ester, phorbol 12-myristate 13-acetate, was also increased, whereas responsiveness to the Ca2+ channel activator maitotoxin was unchanged. These data suggest that G protein activation by NaF provokes gonadotrope desensitization to GnRH stimulation by both decreasing receptor numbers and by uncoupling of the receptors from inositol phosphate production. In addition, a distinct G protein action appears to be involved in sensitizing the gonadotrope to A23187 and phorbol 12-myristate 13-acetate.  相似文献   

10.
We examined by Real-time PCR how prolonged inhibition of dopaminergic D-2 receptors (DA-2) in the hypothalamus of anestrous ewes by infusion of sulpiride into the third cerebral ventricle affected GnRH and GnRH-R gene expression in discrete parts of this structure and GnRH-R gene expression in the anterior pituitary. Blockaded DA-2 receptors significantly decreased GnRH mRNA levels in the ventromedial hypothalamus but did not evidently affect GnRH mRNA in the preoptic/ anteriorhypothalamicarea. Blockaded DA-2 receptors led to different responses in GnRH-R mRNA in various parts of the hypothalamus; increased GnRH-R mRNA levels in the preoptic/anterior hypothalamic area, and decreased GnRH-R mRNA amounts in the ventromedial hypothalamus stalk/median eminence. An infusion of sulpiride into the III-rd ventricle increased GnRH mRNA levels in the anterior pituitary gland and LH secretion. It is suggested that the increase of GnRH gene expression in the anterior pituitary gland and LH secretion in sulpiride-treated ewes are related with an increase of biosynthesis GnRH with concomitant decreased biosynthesis of GnRH-R protein in the ventromedial hypothalamus/stalk median eminence allowing to an increase of GnRH release.  相似文献   

11.
Dispersed estradiol-treated rat pituitary cells were used to characterize progesterone (P) modulation of luteinizing hormone (LH) secretion in response to a variety of pharmacologic secretagogues which influence cell biochemistry. Acute (less than 3 h) and chronic (24 h) exposures to P prior to secretagogue challenge respectively enhanced and inhibited Ca2+ ionophore (A23187)-stimulated and gonadotropin-releasing hormone (GnRH)-stimulated LH release in similar quantitative fashion without any effect on concurrent prolactin release. Similar responses were also noted with cholera toxin-stimulated secretion. However, when protein kinase C activators such as phorbol esters and dioctanoylglycerol were used to trigger LH release, chronic exposure to P did not inhibit, but rather enhanced, LH release. Again, P had no effect on prolactin release. 'Washout' studies indicated that chronic treatments with P would suppress LH secretion stimulated by these compounds, but only when the steroid was cleared from the cells 4 h beforehand. These studies provide further evidence that P specifically modulates gonadotroph secretory function via mechanisms which bypass GnRH receptors. Moreover, they suggest that P exerts many different actions within the gonadotroph and question the role of protein kinase C in GnRH action.  相似文献   

12.
Dexamethasone (Dex), when administered in high doses, has been shown to suppress spontaneous and GnRH-induced gonadotropin secretion, but the level and the mechanism(s) of this effect are unknown. We administered Dex to castrate testosterone-replaced male rats to determine if gonadotropin gene expression is affected and whether Dex differentially influences GnRH-modulated parameters of gonadotrope function: induction of GnRH receptors (GnRH-R) and gonadotropin synthesis and secretion. GnRH was given iv at 25 ng/pulse at 8, 30, and 120 min intervals for 48 h. Rapid GnRH injection frequency preferentially increased alpha and LH-beta messenger RNA (mRNA) responses to GnRH as well as LH secretion. Slower GnRH injection frequencies were required to increase levels of GnRH-R, FSH-beta mRNA, and FSH secretion. Dex selectively inhibited the serum LH, alpha, and LH-beta mRNA responses to GnRH, but not the serum FSH or FSH-beta mRNA responses. Additionally, it augmented the GnRH-induced increase in GnRH-R. We conclude: 1) induction of GnRH-R, gonadotropin synthesis, and secretion require different modes of GnRH stimulation; 2) Dex acts directly on the gonadotrope to differentially modulate GnRH-induced increases in GnRH-R levels, gonadotropin gene expression, and gonadotropin secretion; and 3) GnRH effects upon induction of GnRH-R, LH, and FSH synthesis and secretion are likely to be mediated via different cellular pathways.  相似文献   

13.
The demonstration of an inhibitory effect of gonadotropin-releasing hormone (GnRH) agonists upon steroidogenesis in hypophysectomized rats and the presence of mRNA coding for GnRH and GnRH receptors (GnRH-R) in rat gonads suggests that GnRH can act locally in the gonads. To assess this hypothesis, we investigated the effects of GnRH analogs, gonadotropins and testosterone on the levels of both GnRH and GnRH-R mRNA in the rat testis. Using dot blot hybridization, we measured the mRNA levels 2 to 120 h after the administration of the GnRH agonist, triptorelin. We observed an acute reduction of both GnRH and GnRH-R mRNAs 24 h after the injection (about 38% of control). However, the kinetics for testis GnRH-R mRNA were different from those previously found for pituitary GnRH-R mRNA under the same conditions. Initially, the concentrations of serum LH and FSH peaked, then declined, probably due to the desensitization of the gonadotrope cells. In contrast, the GnRH antagonist, antarelix, after 8 h induced a 2.5-fold increase in GnRH-R mRNA, but not in GnRH mRNA, while gonadotropins levels were reduced. Human recombinant FSH had no significant effect on either GnRH or GnRH-R mRNA levels. Inversely, GnRH-R mRNA levels markedly decreased by 21% of that of control 24 h after hCG injection. Finally, 24 h after testosterone injection, a significant increase in GnRH-R mRNA levels (2.3 fold vs control) was found, but a reduction in the concentration of serum LH, probably by negative feedback on the pituitary, was observed. In contrast, GnRH mRNA levels were not significantly altered following testosterone treatment. Since LH receptors, GnRH-R and testosterone synthesis are colocalized in Leydig cells, our data suggest that LH could inhibit the GnRH-R gene expression or decrease the GnRH-R mRNA stability in the testis. However, this does not exclude the possibility that GnRH analogs could also affect the GnRH-R mRNA levels via direct binding to testicular GnRH-R. In contrast, the regulation of GnRH mRNA levels appeared to be independent of gonadotropins. Taken together, our results suggest a regulation of GnRH and GnRH-R mRNA specific for the testis.  相似文献   

14.
A perifusion method consisting of dispersed chicken anterior pituitary cells suspended in columns of Bio-Gel was developed to monitor the dynamics of LH release. The perifused cells responded to chicken I GnRH (Gln8-GnRH) in a dose-dependent manner. The ED50 was 3 X 10(-10) M, and maximal LH release occurred in response to 4 X 10(-9) M Gln8-GnRH. Continuous administration of 10(-7) M Gln8-GnRH and agonist stimulated an initial 8- to 10-fold increase in LH release within minutes. LH release then declined rapidly, reaching basal levels within 100 min. A biphasic response was noted. Calcium ionophore A23187 was effective in releasing additional LH from cells desensitized to 10(-7) Gln8-GnRH and agonist, indicating that total cellular LH was not depleted. In contrast, delivery of 2-min pulses of 10(-7) M and 10(-9) M Gln8-GnRH at a frequency of one pulse every 30 or 60 min for 3-5 h maintained pituitary responsiveness. Exposure to 10(-7) M Gln8-GnRH for 20 min was sufficient to desensitize pituitary cells to subsequent Gln8-GnRH stimulation. However, 20-min exposure to 10(-7) M GnRH antagonist neither evoked LH release nor had a desensitizing effect on subsequent stimulation by 10(-7) M Gln8-GnRH, indicating that receptor activation, not merely receptor binding, is necessary for Gln8-GnRH-mediated homologous desensitization. Pituitary cells desensitized by 20-min exposure to 10(-8) M Gln8-GnRH maintained responsiveness to a higher dose (10(-6 M) of Gln8-GnRH, suggesting that down-regulation of pituitary GnRH receptors might play a part in desensitization. Calcium ionophore A23187 partially desensitized pituitary cells to subsequent stimulation with Gln8-GnRH, probably due to depletion of releasable LH or desensitization of calcium-coupled secretory mechanisms. In calcium-free medium, 10(-7) M Gln8-GnRH did not evoke LH release, but nevertheless partially desensitized cells to subsequent 10(-7) M Gln8-GnRH stimulation. Thus desensitization is partially calcium-dependent. These findings demonstrate that the GnRH-mediated desensitization of gonadotrophs is a characteristic of chicken pituitary cells as in the mammal. However, chicken pituitary cells differ from mammalian cells in that desensitization is more rapid and partially dependent on extracellular calcium.  相似文献   

15.
Experiments were performed to study gonadotroph responsiveness to gonadotrophin releasing hormone (GnRH) in vitro in dispersed pituitary cells from ovariectomised rats and mice when GnRH binding sites were increased or reduced, respectively. Maximal/basal LH release after GnRH treatment of intact female rat pituitary cells was 4.7 to 9.7-fold (range n = 3 expts.) compared to 3.4 to 5.0-fold for cells from ovariectomised rat donors. Both basal and maximal GnRH-stimulated LH release from ovariectomised (OVX) rat pituitary cells were 1.5 to 3-fold greater than from intact rat cells, which corresponded to increased LH content of the cells. There was no significant change in the GnRH ED50 concentration (intact = 2.3 +/- 0.03 X 10(-10) M; OVX = 3.3 +/- 0.08 X 10(-10) M (mean +/- SEM, n = 3 expts.)), despite a 57-88% increase in GnRH binding sites in ovariectomised rat pituitary cells. Basal and maximal LH release from ovariectomised mouse pituitary cells was 1.5 to 3-fold greater than that from intact mouse pituitary cells. There was no change in the GnRH ED50 concentration (intact = 4.3 +/- 2.3 X 10(-9) M; OVX = 3.4 +/- 0.9 X 10(-9) M (mean +/- SEM, n = 3 expts.)), even though GnRH binding sites were reduced by 40-73% in the cells from ovariectomised mice. These data indicate that changes in GnRH binding sites of the magnitude observed after ovariectomy play no part in the regulation of gonadotroph responsiveness to GnRH, which is determined by changes in post-receptor events, one of which is an increase in cellular LH.  相似文献   

16.
The effect of prolonged intermittent infusion of beta-endorphin or naloxone into the third cerebral ventricle in ewes during the follicular phase of the estrous cycle on the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland was examined by Real time-PCR. Activation of micro opioid receptors decreased GnRH mRNA levels in the hypothalamus and led to complex changes in GnRH-R mRNA: an increase of GnRH-R mRNA in the preoptic area, no change in the anterior hypothalamus and decrease in the ventromedial hypothalamus and stalk/median eminence. In beta-endorphin treated ewes the levels of GnRH-R mRNA in the anterior pituitary gland also decreased significantly. These complex changes in the levels of GnRH mRNA and GnRH-R mRNA were reflected in the decrease of LH secretion. Blockade of micro opioid receptors affected neither GnRH mRNA and GnRH-R mRNA nor LH levels secretion. These results indicate that beta-endorphin displays a suppressive effect on the expression of the GnRH gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland, but affects GnRH-R gene expression in a specific manner in the various parts of hypothalamus; altogether these events lead to the decrease in GnRH/LH secretion.  相似文献   

17.
GnRH has been shown to modulate the concentration of its own pituitary receptors (GnRH-R), and changes in GnRH-R during the rat estrous cycle may reflect changes in GnRH secretion. To examine the relationship between GnRH and GnRH-R in female rats, we measured GnRH-R and serum gonadotropin responses to pulsatile GnRH in restrained ovariectomized (OVX) and ovariectomized estradiol-implanted (OVX-E2) rats. In addition, we examined the effects of suppression of serum PRL. Pulsatile injections of GnRH (10-250 ng/pulse) given every 30 min for 24 or 48 h did not increase GnRH-R in OVX or OVX-E2 rats compared to that in saline controls (246 +/- 27 fmol/mg). Bromocriptine treatment (2 mg/day) had no effect on GnRH-R in OVX animals. In contrast, OVX-E2 rats treated with bromocriptine showed significantly increased GnRH-R (500 +/- 43 fmol/mg) in response to GnRH injections. When ovine PRL was administered to bromocriptine-treated OVX-E2 rats, the GnRH induced rise in GnRH-R was abolished. Gonadotropin responses to GnRH were not correlated with changes in GnRH-R. In OVX animals, LH was only elevated in response to 250-ng pulses of GnRH. In OVX-E2 animals, basal LH was increased by all doses of GnRH, and acute responses to 50- and 250-ng pulses were observed. Bromocriptine treatment resulted in increased LH sensitivity to GnRH in OVX rats, but did not further enhance the responses in OVX-E2 animals. We conclude that in female rats, the presence of both E2 and a low serum PRL level is necessary for GnRH to increase GnRH-R, and the interaction of these factors may be involved in the regulation of GnRH-R during the estrous cycle.  相似文献   

18.
Gonadotropin-releasing hormone (GnRH) induces both synthesis and release of pituitary gonadotropins, but rapid or slow frequencies of stimulation result in reduced LH and FSH secretion. We determined the effects of frequency of GnRH stimulation on pituitary GnRH receptors (GnRH-R). Castrate male rats received testosterone implants (cast + T) to inhibit endogenous GnRH secretion. GnRH pulses were injected by a pump into a carotid cannula and animals received GnRH (25 ng/pulse) at various frequencies for 48 h. In control animals (saline pulses) GnRH-R was 307 +/- 21 fmol/mg protein (+/- SE) in cast + T and 598 +/- 28 in castrates. Maximum GnRH-R was produced by 30-min pulses and was similar to that seen in castrate controls. Faster or slower frequencies resulted in a smaller GnRH-R response and GnRH given every 240 min did not increase GnRH-R over saline controls. Equalization of the total GnRH dose/48 h (6.6 ng/pulse every 7.5 min or 200 ng/pulse every 240 min) did not increase receptors to the maximum concentrations seen after 30-min (25 ng) pulses. Serum LH responses after 48 h of injections were only present after 30-min pulses, and peak FSH values were also seen after this frequency. Serum LH was undetectable in most rats after other GnRH frequencies, even though GnRH-R was increased. These data show that GnRH pulse frequency is an important factor in the regulation of GnRH-R. A reduction of GnRH-R is part of the mechanism of down-regulation of LH secretion by fast or slow GnRH frequencies, but altered frequency also exerts effects on secretory mechanisms at a site distal to the GnRH receptor.  相似文献   

19.
The regulation of pituitary GnRH receptors (GnRH-R) has been examined in male mice (C3H/HeH/101H F1 hybrid) after castration and testosterone replacement. GnRH-R were quantified in individual mouse pituitaries by equilibration with 125I(D-Ser(tBut)6) des Gly10 GnRH N ethylamide and compared with serum and pituitary LH and FSH concentrations. The equilibrium association constant was 2.7 X 10(9) M-1 for both intact and castrated male mouse pituitary GnRH-R. Six hours after orchidectomy there was a transient 50% reduction in GnRH-R; 13.6 +/- 3.8 fmol/pituitary (castrate) vs. 25.4 +/- 2.5 (intact). A subsequent partial return of binding sites began at 12 h, reaching a peak value of 18.2 +/- 1.5 fmol/pituitary (33% increase vs. 6 h) at 24-h post orchidectomy. This was followed by a gradual decrease in GnRH-R, reaching a plateau by 72 h. The decrease in GnRH-R was associated with a rapid (6-12 h) increase in serum LH and serum FSH. The pituitary GnRH-R concentration remained 45% below intact control values for up to 3 months and was accompanied by a persistent 5-fold rise in serum LH values. Treatment of male mice with testosterone propionate (TP), 25 micrograms/day, completely prevented the GnRH-R fall and the serum and pituitary LH responses to castration, whereas 12.5 micrograms/day TP produced variable results and 5 micrograms/day TP were ineffective. In another strain of mouse (BALB/c white). GnRH-R values also fell by 66% at 7 days post orchidectomy, with no change in the receptor affinity. In mice with androgen resistance from birth due to absence of androgen receptors (Tfm mice), GnRH-R were 14.45 +/- 0.49 vs. 19.8 +/- 1.67 fmol/pituitary in normal male littermates, and serum LH was 472 +/- 78 ng/ml compared with 52.5 +/- 11.7 ng/ml in normals. These findings are qualitatively similar to those in orchidectomized normal adult mice. Thus, in contrast to reports in rats, pituitary GnRH-R content falls after orchidectomy in mice. Possible explanations for this consistent finding include: persistent receptor occupancy by increased endogenous GnRH secretion, endogenous GnRH-induced receptor loss (down-regulation), or a species difference in the pituitary GnRH-R response to removal of negative steroid feedback, unrelated to changes in endogenous GnRH secretion.  相似文献   

20.
Pituitary GnRH receptor (GnRH-R) levels and LH secretion are suppressed in the lactating rat. To determine if LH synthesis is also inhibited, we have measured LH subunit mRNA levels in the pituitary of lactating rats. We have also examined the temporal relationship among restoration of GnRH-R, LH secretion, and LH synthesis after withdrawing the sensory stimulus of suckling. Pituitary alpha-subunit and LH beta mRNA levels were sharply reduced on day 10 of lactation in both intact and ovariectomized (OVX) animals compared with those in cycling diestrous rats or OVX controls. Removal of the suckling stimulus from OVX animals led to significant increases in alpha-subunit and LH beta mRNA levels by 24 h. Upon removal of the suckling stimulus from intact rats, alpha-subunit mRNA levels were restored by 48 h, but LH beta mRNA levels did not return to diestrous levels until 72 h. Pituitary GnRH-R levels were clearly up-regulated within 1 day after pup removal. Some LH pulses were observed by 48 h, but consistent plasma LH pulses were not detected until 72 h. When pulsatile GnRH was administered during the 24 h after pup removal from intact rats, the regimen of pulsatile GnRH was successful in inducing LH secretion; however, the restoration of pulsatile LH was not accompanied by increases in alpha-subunit and LH beta mRNA levels. The present studies provide further evidence to support the hypothesis that during lactation, the suppression of pituitary gonadotroph function is mainly due to the loss of hypothalamic GnRH secretion. Our data also show that 1) the restoration of GnRH-R alone is not sufficient to activate LH subunit mRNA and LH secretion; 2) the normal restoration of pulsatile LH secretion and increases in LH subunit mRNA are temporally correlated, as increases in LH secretion appear to precede increases in LH subunit mRNA; and 3) the restoration of pituitary LH subunit mRNA levels and pulsatile LH secretion took longer in the intact rat than in the OVX rat, suggesting that ovarian steroids may play a role in the inhibitory effect of lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号