首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents selected issues related to the reinforcement of steel element cold-formed with CFRP tapes. The first section of the paper is a review of source literature and a presentation of the basic information on cold-formed thin-walled steel elements and CFRP composite materials, stressing the advantages and disadvantages of using them to reinforce steel structures. Next, the authors present original research on reinforcing bent thin-walled sigma-type steel beams using adhesive CFRP tapes. Reference beams with a cross-section of Σ200 × 70 × 2 and a length of 3 m, reinforced with CFRP tape, were tested in the four-point bending scheme. Then, the paper discusses a developed numerical model that is consistent with the subject matter of the laboratory tests. The developed numerical model was prepared to represent the failure of the connection between the beam and the composite tape. This was followed by a number of numerical analyses in order to determine the optimum adhesive layer that would allow us to achieve the maximum reduction of the displacements and strains in bent thin-walled sigma-type beams. Three thicknesses of the SikaDur adhesive layer were analyzed in the study. Based on the analyzes, it was found that the increase in the thickness of the adhesive layer slightly reduced the strain and displacement in the beams, but caused a significant decrease in the load value, at which damage appeared in the glued joint.  相似文献   

2.
When reinforcing thin-walled steel members with composite tapes, two issues often overlooked in published scientific papers should be considered, namely the correct thickness of the adhesive layer and the optimum bond length of the CFRP tape. In this article, the authors focused on the first of these issues. For this purpose, eight beams with a thin-walled box cross-section and a length of 3 m were subjected to bending in a four-point scheme. Six beams were reinforced with Sika CarboDur S512 composite tape, and two beams without reinforcement were tested as reference members. Three thicknesses of the adhesive layer (SikaDur-30) were analyzed: 0.6 mm, 1.3 mm and 1.75 mm. In addition to examining the effect of the thickness of the adhesive layer on displacements and deformations of thin-walled steel members, the load value at which the composite tape peeled off was also analyzed. Numerical analyses were then carried out in Abaqus, the outcomes of which showed good agreement with the laboratory results. Both numerical and laboratory results have shown that the thickness of the adhesive layer had a minor effect on the reduction in deformation and displacement of the tested beams. At the same time, with the increase in the thickness of the adhesive layer, the value of the load at which the CFRP tapes detached from the beam surface significantly decreased.  相似文献   

3.
The paper presents a comparison of the effectiveness of strengthening steel thin-walled, cold-formed sigma beams with CFRP tapes and steel tapes. For this purpose, three beams without reinforcement (reference beams) of the “Blachy Pruszyński” type, with a cross-section of ∑200 × 70 × 2 and a span of 280 cm, made of S350GD steel grade, were subjected to laboratory tests in the four-point bending scheme. In the next stage the tests included nine ∑200 × 70 × 2 beams reinforced with Sika CarboDur S512 CFRP tape and six ∑200 × 70 × 2 beams reinforced with steel tape made of S235 steel grade. The length of the reinforcement tapes as well made of steel as well of CFRP was of 175 cm. The location of the tapes within the height of the beams’ cross-section was assumed in three variants, namely placing the tape on the upper or bottom flange and on the web. In the case of beams reinforced with CFRP, three beams were tested for each reinforcement location, and in the case of beams reinforced with steel tapes, two beams were tested for each reinforcement location. SikaDur®-30 glue with a thickness of 1.3 mm was used in order to connect steel or CFRP tapes to the beams. The dimensions of the tapes cross-sections in both cases were similar (CFRP tapes: 50 × 1.2 mm, steel tapes: 50 × 1.3 mm). For all types of beams, numerical models were also developed in the Abaqus software. The main aim of this paper was investigation of the influence of mechanical properties of steel or CFRP tapes on the effectiveness of strengthening ∑ beams. For this purpose a comparison of these two solutions with respect to the limitation of displacements and deformations of the beam was performed. The obtained results were considered in the context of the mechanical properties of the materials composing the reinforcement tapes. The tests showed slight differences in the results of strain and displacements obtained for reinforcement made of two different materials. It was also noted that the decisive element was the failure of the joint at the steel-glue interface. Therefore, future studies will pay particular attention to the adhesive layer.  相似文献   

4.
This paper presents an investigation of the bond mechanism between carbon fibre reinforced polymer (CFRP) laminates, concrete and steel in the near-surface mounted (NSM) CFRP-strengthened reinforced concrete (RC) beam-bond tests. The experimental program consisting of thirty modified concrete beams flexurally strengthened with NSM CFRP strips was published in. The effects of five parameters and their interactions on the ultimate load carrying capacities and the associated bond mechanisms of the beams are investigated in this paper with consideration of the following investigated parameters: beam span, beam depth, longitudinal tensile steel reinforcement ratio, the bond length of the CFRP strips and compressive concrete strength. The longitudinal steel reinforcement was cut at the beam mid-span in four beams to investigate a better assessment of the influence of the steel reinforcement ratio on the bond behaviour of CFRP to concrete bond behaviour. The numerical analysis implemented in this paper is based on a nonlinear micromechanical finite element model (FEM) that was used for investigation of the flexural behaviour of NSM CFRP-strengthened members. The 3D model based on advanced CFRP to concrete bond responses was introduced to modelling of tested specimens. The FEM procedure presents the orthotropic behaviour of the CFRP strips and the bond response between the CFRP and concrete. Comparison of the experimental and numerical results revealed an excellent agreement that confirms the suitability of the proposed FE model.  相似文献   

5.
This article presents experimental results from the bending of technical-scale models of beams reinforced in the tension zone with CFRP (Carbon Fiber Reinforced Polymers) materials, with a focus on the benefits resulting from the increased ductility in the tension zone of these beams. In experimental tests, the mechanical properties of reinforced beams were compared with unreinforced beams in terms of the maximum load, deflection, images of damage, stiffness, and distribution of deformation. The results showed that the proposed reinforcement solution was advantageous due to its strength and stiffness, and the safety of the structure. Based on this analysis, it was concluded that the reinforcement of wood with CFRP materials has a positive effect on the behavior and safety of structures. Also, a method of analytical checking of strengthened beams with small cross-sections was presented in the article.  相似文献   

6.
This paper presents experimental investigations of reinforced concrete (RC) beams flexurally strengthened with carbon fiber reinforced polymer (CFRP) strips. Seven 3300 mm × 250 mm × 150 mm beams of the same design, with the tension reinforcement ratio of 1.01%, were tested. The beams differed in the way they were strengthened: one of the beams was the reference, two beams were passively strengthened as precracked (series B-I), two beams were passively strengthened as unprecracked (series B-II) and two beams were actively strengthened as unprecracked (series B-III). Moreover, the strengthening parameters differed between the particular series. The parameters were: CFRP strip cross-sectional areas (series B-I, B-II) or prestressing forces (series B-III). The beams were statically loaded, up to the assumed force value, in the three-point bending test and deflections at midspan were registered. After unloading the beams were suspended on flexible ropes (the free-free beam system) and their eigenfrequencies were measured using operational modal analysis (OMA). The static measurements (deflections) and the dynamic measurements (eigenfrequencies) were conducted for the adopted loading steps until failure. Static stiffnesses and dynamic stiffnesses were calculated on the basis of respectively the deflections and the eigenfrequencies. The qualitative and quantitative differences between the parameters are described.  相似文献   

7.
Conventional reinforced concrete (RC) structures are commonly associated with the corrosion of steel reinforcement. The application of carbon fiber reinforced polymer (CFRP) bars as flexural reinforcement has become a new promising option. This paper presents a state-of-the art flexural strength on concrete beams reinforced with CFRP bars. Concrete compressive and CFRP bar tensile strain, reinforcement ratio, types of surface treatment on CFRP bar and concrete compressive strength were identified as aspects of behavior. Significant findings in the literature had manifested all aspects of behavior that were affecting the flexural strength, deflections and crack characteristics of CFRP RC beams. In addition, the experimental result on 98 specimens of CFRP RC beams from the literature show that ACI 440.1R-15 and CSA S806-12 standards underestimate the ultimate flexural moment capacity of CFRP RC beams. On the other hand, Kara and Ashour predictions are more accurate with the experimental values. Moreover, hotspot research topics were also highlighted for further considerations in future studies.  相似文献   

8.
To accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens to represent 40% of the overall beam depth. Moreover, finite elements (FE) analysis was validated using the experimental results to conduct a parametric study on RCCDBs strengthened with CFRP strips. The results confirmed reductions in the ultimate load by 21% and 7% for the un-strengthened and strengthened specimens, respectively, due to the large openings. Although the large openings caused reductions in capacities, the CFRP strips limited the deterioration by enhancing the specimen capacity by 17% relative to the un-strengthened one.  相似文献   

9.
In this research, experimental research and finite element modelling of glulam-concrete composite (GCC) beams were undertaken to study the flexural properties of composite beams containing timber board interlayers. The experimental results demonstrated that the failure mechanism of the GCC beam was the combination of bend and tensile failure of the glulam beam. The three-dimensional non linear finite element model was confirmed by comparing the load-deflection curve and load-interface slip curve with the experimental results. Parametric analyses were completed to explore the impacts of the glulam beam height, shear connector spacing, timber board interlayer thickness and concrete slab thickness on the flexural properties of composite beams. The numerical outcomes revealed that with an increase of glulam beam height, the bending bearing capacity and flexural stiffness of the composite beams were significantly improved. The timber boards were placed on top of the glulam members and used as the formwork for concrete slab casting. In addition, the flexural properties of composite beams were improved with the increase of the timber board thickness. With the elevation of the shear connector spacing, the ultimate bearing capacity and bending stiffness of composite beams were decreased. The bending bearing capacity and flexural rigidity of the GCC beams were ameliorated with the increase of concrete slab thickness.  相似文献   

10.
Reinforced concrete (RC) structures necessitate strengthening for various reasons. These include ageing, deterioration of materials due to environmental effects, trivial initial design and construction, deficiency of maintenance, the advancement of design loads, and functional changes. RC structures strengthening with the carbon fiber reinforced polymer (CFRP) has been used extensively during the last few decades due to their advantages over steel reinforcement. This paper introduces an experimental approach for flexural strengthening of RC beams with Externally-Side Bonded Reinforcement (E-SBR) using CFRP fabrics. The experimental program comprises eight full-scale RC beams tested under a four-point flexural test up to failure. The parameters investigated include the main tensile steel reinforcing ratio and the width of CFRP fabrics. The experimental outcomes show that an increase in the tensile reinforcement ratio and width of the CFRP laminates enhanced the first cracking and ultimate load-bearing capacities of the strengthened beams up to 141 and 174%, respectively, compared to the control beam. The strengthened RC beams exhibited superior energy absorption capacity, stiffness, and ductile response. The comparison of the experimental and predicted values shows that these two are in good agreement.  相似文献   

11.
This paper investigates the flexural behavior of preloaded reinforced concrete (RC) beams, strengthened with Carbon Fiber Reinforced Polymer (CFRP) plates using an experimental program, analytical procedure, and Finite Element Method (FEM) simulation. The RC beams were subjected to preloads of 30%, 50% and 70% of the yielding load, prior to installation of the strengthening system. The eight RC-strengthened beams with a reinforcement configuration of 3Ø12 and two CarboDur S512 plates have been evaluated using bending tests. The failure modes of all the RC-strengthened beams were governed by the widening of flexural cracks within a constant bending zone, followed by debonding of the CFRP plates. The plates were debonding simultaneously or one plate prior to the other plate. The ultimate moment capacity is not significantly reduced while increasing preload levels from 0% to 70%. The moment capacity is increased by 70% to 80% in the CFRP strengthened beams, compared with un-strengthened beams indicating the potential of capacity enhancement that can be attained by externally bonded CFRP.  相似文献   

12.
Composite materials are increasingly used to strengthen existing structures or new load-bearing elements, also made of timber. In this paper, the effect of the number of layers of Carbon Fiber Reinforced Polymer (CFRP) on the load-bearing capacity and stiffness of Glued Laminated Timber beams was determined. Experimental research was performed on 32 elements—a series of eight unreinforced beams, and three series of eight reinforced beams: with one, three and five layers of laminate each. The beams with a cross-section of 38 mm × 80 mm and a length of 750 mm were subjected to the four-point bending test according to standard procedure. For each series, destructive force, deflection, mode of failure, and equivalent stiffness were determined. In addition, for the selected samples, X-ray computed tomography was performed before and after their destruction to define the quality of the interface between wood and composite. The results of the conducted tests and analyses showed that there was no clear relationship between the number of reinforcement layers and the load-bearing capacity of the beams and their stiffness. Unreinforced beams failed due to tension, while reinforced CFRP beams failed due to shear. Despite this, a higher energy of failure of composite-reinforced elements was demonstrated in relation to the reference beams.  相似文献   

13.
Changes in the condition of existing timber structures can be caused by fatigue or biological attack, among other things. Replacing damaged timber is still very expensive, so it seems more advisable to repair or reinforce damaged elements. Therefore, in order to improve the static performance analysis of timber structures, reinforcement applications in timber elements are necessary. In this experimental study, technical-scale glulam beams measuring 82 × 162 × 3650 mm, which were reinforced with carbon strands and carbon laminates, were tested in flexure. A four-point bending test was used to determine the effectiveness of the reinforcement used in the timber beams. Internal strengthening (namely, glued carbon cords placed into cut grooves in the last and penultimate lamella) and an external surface of near-surface mounted (NSM) carbon laminates glued to the bottom surface of the beam were used to reinforce the laminated ashlar beams. As a result of this study, it was found that the bending-based mechanical properties of ash wood beams reinforced with carbon fibre-reinforced polymer composites were better than those of the reference beams. In this work, the beams were analysed in terms of the reinforcement variables used and the results were compared with those for the beams tested without reinforcement. This work proves the good behaviour of carbon fibre reinforced plastic (CFRP—Carbon fibre reinforced polymer) cords when applied to timber beams and carbon laminates. This study illustrated the different reinforcement mechanisms and showed their structural properties. Compared to the reference samples, it was found that reinforcement with carbon strings or carbon laminates increased the load-bearing capacity, flexural strength and modulus of elasticity, and reduced the amount of displacement of the timber materials, which is an excellent alternative to the use of ashlar and, above all, inferior grade materials due to the current shortage of choice grade. Experimental results showed that, with the use of carbon fibre (carbon cords SikaWrap® FX-50 C—Sika Poland Sp. z o.o., Warsaw), the load bearing capacity increased by 35.58%, or with carbon cords SikaWrap® FX-50 C and carbon laminates S&P C-Laminate type HM 50/1.4 - S&P Poland Sp. z o.o., Malbork, by 45.42%, compared to the unreinforced beams.  相似文献   

14.
Nonlinear finite element (FE) analysis of reinforced concrete (RC) structures is characterized by numerous modeling options and input parameters. To accurately model the nonlinear RC behavior involving concrete cracking in tension and crushing in compression, practitioners make different choices regarding the critical modeling issues, e.g., defining the concrete constitutive relations, assigning the bond between the concrete and the steel reinforcement, and solving problems related to convergence difficulties and mesh sensitivities. Thus, it is imperative to review the common modeling choices critically and develop a robust modeling strategy with consistency, reliability, and comparability. This paper proposes a modeling strategy and practical recommendations for the nonlinear FE analysis of RC structures based on parametric studies of critical modeling choices. The proposed modeling strategy aims at providing reliable predictions of flexural responses of RC members with a focus on concrete cracking behavior and crushing failure, which serve as the foundation for more complex modeling cases, e.g., RC beams bonded with fiber reinforced polymer (FRP) laminates. Additionally, herein, the implementation procedure for the proposed modeling strategy is comprehensively described with a focus on the critical modeling issues for RC structures. The proposed strategy is demonstrated through FE analyses of RC beams tested in four-point bending—one RC beam as reference and one beam externally bonded with a carbon-FRP (CFRP) laminate in its soffit. The simulated results agree well with experimental measurements regarding load-deformation relationship, cracking, flexural failure due to concrete crushing, and CFRP debonding initiated by intermediate cracks. The modeling strategy and recommendations presented herein are applicable to the nonlinear FE analysis of RC structures in general.  相似文献   

15.
To study the brittle/ductile behavior of concrete beams reinforced with low amounts of rebar and fibers, a new multi-scale model is presented. It is used to predict the flexural response of an ideal Hybrid Reinforced Concrete (HRC) beam in bending, and it is validated with the results of a specific experimental campaign, and some tests available in the technical literature. Both the numerical and the experimental measurements define a linear relationship between the amount of reinforcement and the Ductility Index (DI). The latter is a non-dimensional function depending on the difference between the ultimate load and the effective cracking load of a concrete beam. As a result, a new design-by-testing procedure can be established to determine the minimum reinforcement of HRC elements. It corresponds to DI = 0, and can be considered as a linear combination of the minimum area of rebar (of the same reinforced concrete beam) and the minimum fiber volume fraction (of the same fiber-reinforced concrete beam), respectively.  相似文献   

16.
Concrete members are typically designed so that flexural failure initiates with steel yielding and ends with concrete crushing in compression in order to take advantage of the yielding property of steel that allows for large deformations prior to any fracture of the material. On the other hand, if a large percentage of steel or linear elastic non-yielding reinforcement (i.e., FRP composite) is used, the member flexural failure typically initiates and ends with concrete crushing in compression. These members are known as compression-controlled members and typically exhibit brittle behavior. This study proposes a new approach in improving the flexural behavior of over-reinforced members through concrete confinement using carbon fiber reinforced polymer (CFRP) grid tubes in the compression zone. The concept was experimentally tested using rectangular beams. Beam 1 (control beam) had no grid reinforcement and beam 2 (tube beam) had two 152 mm grid tubes embedded in its compression zone. Experimental results indicate improvement in the ductility of the tube beam compared to the control beam of approximately 20–30% depending on the criteria used. Considering the low amount and mechanical properties of the CFRP grid, the improvement is significant, which shows that the proposed approach is valid and improves the ductility of compression-controlled members.  相似文献   

17.
In order to realize the self-centering, high energy consumption, and high ductility of the existing building structure through strengthening and retrofit of structure, a method of reinforced concrete (RC) beam strengthened by using Shape Memory Alloy (SMA) and Engineered Cementitious Composites (ECC) was proposed. Four kinds of specimens were designed, including one beam strengthened with enlarging section area of steel reinforced concrete, one beam strengthened with enlarging section area of SMA reinforced concrete, beam strengthened with enlarging section area of SMA reinforced ECC, and beam strengthened with enlarging section area of steel reinforced ECC; these specimens were manufactured for the monotonic cycle loading tests study on its bending behavior. The influence on the bearing capacity, energy dissipation performance, and self-recovery capacity for each test specimens with different strengthening materials were investigated, especially the bending behavior of the beams strengthened by SMA reinforced ECC. The results show that, compared with the ordinary reinforced concrete beams, strengthening existing RC beam with enlarging section area of SMA reinforced ECC can improve the self-recovery capacity, ductility, and deformability of the specimens. Finally, a revised design formula for the bending capacity of RC beams, strengthened with enlarging sections of ECC, was proposed by considering the tensile capacity provided by ECC, and the calculated values are in good agreement with the experimental value, indicating that the revised formula can be well applied to the beam strengthening with enlarging section of SMA-ECC Materials.  相似文献   

18.
In order to investigate the transverse flexural behavior of the UHPC waffle deck, a total of six T-shaped UHPC beams, with varying longitudinal reinforcement ratios, were tested and analyzed. The experiments, including material tests of UHPC and beam tests, were conducted. The material tests of UHPC revealed that strain-hardening behavior in tension was exhibited, and the ratio of uniaxial compressive strength-to-cubic compressive strength was 0.85. The beam tests showed that all the T-shaped UHPC beams, even without longitudinal rebar, exhibited ductile behavior that was similar to that of properly reinforced concrete beams. As the longitudinal reinforcement ratio increased, more flexural cracks developed and a larger load-carrying capacity was provided. Furthermore, the sectional analysis for the ultimate flexural capacity of T-shaped UHPC beams was conducted. Simplified material models, under tension and compression, for UHPC were developed. Based on the reverse calculation from the experimental result, the relation between reduction factor to the ultimate tensile strength of UHPC, and longitudinal reinforcement ratios was formulated. As a result, the predictive equations for the ultimate flexural capacity of T-shaped UHPC beams were proposed, and agreed well with the experimental results in this study and existing studies, which indicates good validity of the proposed equations.  相似文献   

19.
This paper explores the possibility of the partial replacement of the longitudinal reinforcement in reinforced concrete (RC) beams with recycled steel fibres (RSF). Testing was focused on the contribution of two volume ratios of the RSF—0.5%, 1.0%. Basic compression and flexural tensile tests were performed to evaluate the effectiveness of the fibres following current standards. Additionally, the full-scale beams with and without conventional reinforcement were subjected to four-point bending tests. The results indicate that RSF improved the load-bearing capacity of the RC beams. Cooperation of RSF with the steel bars in carrying loads was proved. Findings from the Digital Image Correlation (DIC) revealed no impact on the cracking pattern of the RC beams.  相似文献   

20.
The use of adhesively bonded carbon fiber reinforced polymer (CFRP) materials to reinforce cracked steel elements has gained widespread acceptance in order to extend the lifespan of metallic structures. This allows an important reduction of the stress intensity factor (SIF) at the crack tip and thus a significant increase of the fatigue life. This paper deals with the assessment of the SIF for repaired cracked steel plates, using semi-empirical analysis and finite element analysis. Metallic plates with only one crack originating from a center hole were investigated. Virtual crack closure technique (VCCT) was used to define and evaluate the stress intensity factor at crack tip. The obtained modeling results are compared with experimental investigations led by the authors for different reinforcement configurations including symmetrical and non-symmetrical reinforcement, normal modulus and ultra-high-modulus CFRP plates, and pre-stressed CFRP plates. Results show that finite element model (FEM) analysis can obviously simulate the fatigue performance of the CFRP bonded steel plates with different reinforcement configurations. Moreover, a parametric analysis of the influence of the pre-stressing level was also conducted. The results show that an increase of the pre-stressing level results in an increase of the fatigue life of the element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号