首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supplementation of dietary fiber has been proved to be an effective strategy to prevent and relieve inflammatory bowel disease (IBD) through gut microbiota modulation. However, more attention has been paid to the efficacy of soluble dietary fiber than that of insoluble dietary fiber (IDF). In the present study, we investigated whether IDF from barley leaf (BLIDF) can inhibit gut inflammation via modulating the intestinal microbiota in DSS-induced colitis mice. The mice were fed 1.52% BLIDF-supplemented diet for 28 days. Results demonstrated that feeding BLIDF markedly mitigated DSS-induced acute colitis symptoms and down-regulated IL-6, TNF-α, and IL-1β levels in the colon and serum of colitis mice. BLIDF supplementation effectively reduced the abundance of Akkermansia and increased the abundance of Parasutterella, Erysipelatoclostridium, and Alistipes. Importantly, the anti-colitis effects of BLIDF were abolished when the intestinal microbiota was depleted by antibiotics. Furthermore, the targeted microbiota-derived metabolites analysis suggested that BLIDF feeding can reverse the DSS-induced decline of short-chain fatty acids and secondary bile acids in mice feces. Finally, BLIDF supplementation elevated the expression of occludin and mucin2, and decreased the expression of claudin-1 in colons of DSS-treated mice. Overall, our observations suggest that BLIDF exerts anti-inflammatory effects via modulating the intestinal microbiota composition and increasing the production of microbiota-derived metabolites.  相似文献   

2.
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease characterized by intestinal inflammatory cell infiltration and intestinal mucosal damage. The mechanism by which diet contributes to the pathogenesis of IBD remains largely unknown. In this study, we explored the therapeutic effect of p-hydroxybenzoic acid (HA), a phenolic acid mainly derived from dietary polyphenols in the gut, on DSS-induced colitis. HA intervention effectively relieved the dextran sulfate sodium salt (DSS)-induced colitis, reduced inflammation, and enhanced mucosal barrier function, as evidenced by an increment of goblet cell numbers and MUC2. These effects were largely dependent on the gut microbiota (GM), as antibiotics treatment substantially attenuated the improvement of colitis by HA. On the other hand, transplantation of GM from colitis mice treated with HA significantly reduced the colitis induced by DSS. Our study demonstrates that HA ameliorates DSS-induced colitis by improving the mucosal barrier in a GM-dependent manner. This study provides new dietary choices for the prevention and treatment of IBD.  相似文献   

3.
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract, with increasing prevalence, and its pathogenesis remains unclear. Accumulating evidence suggested that gut microbiota and bile acids play pivotal roles in intestinal homeostasis and inflammation. Patients with IBD exhibit decreased microbial diversity and abnormal microbial composition marked by the depletion of phylum Firmicutes (including bacteria involved in bile acid metabolism) and the enrichment of phylum Proteobacteria. Dysbiosis leads to blocked bile acid transformation. Thus, the concentration of primary and conjugated bile acids is elevated at the expense of secondary bile acids in IBD. In turn, bile acids could modulate the microbial community. Gut dysbiosis and disturbed bile acids impair the gut barrier and immunity. Several therapies, such as diets, probiotics, prebiotics, engineered bacteria, fecal microbiota transplantation and ursodeoxycholic acid, may alleviate IBD by restoring gut microbiota and bile acids. Thus, the bile acid–gut microbiota axis is closely connected with IBD pathogenesis. Regulation of this axis may be a novel option for treating IBD.  相似文献   

4.
Inflammatory bowel diseases (IBD) encompass ulcerative colitis (UC), Crohn’s disease (CD) and indeterminate colitis (IC), characterising chronic inflammation in the gastrointestinal tract, associated with changes in the immune system and in the intestinal microbiota. Thus, probiotics may offer an alternative or adjuvant approach to conventional therapy. The present review aims to summarise the mechanisms of action of probiotics in IBD and their therapeutic effects. Most of the studies suggest that probiotics are effective in the treatment of UC, especially when several strains are concomitantly administered. Species of Lactobacillus and Bifidobacterium genres are the most commonly used, and some studies even indicate that it is possible to replace medical therapy with probiotic supplementation. Regarding CD, the results of clinical trials are controversial and do not support the use of probiotics in this disease. In conclusion, probiotic supplementation is a promising adjuvant treatment in UC, but not in CD.  相似文献   

5.
Circadian rhythm disruption is detrimental and results in adverse health consequences. We used a multi-omics profiling approach to investigate the effects of Cyclocarya paliurus flavonoid (CPF)-enriched diets on gut microbiota, metabolites, and hypothalamus clock genes in mice with induced circadian rhythm disruption. It was observed that CPF supplementation altered the specific composition and function of gut microbiota and metabolites induced by circadian rhythm disruption. Analysis showed that the abundance of Akkermansia increased, while the abundance of Clostridiales and Ruminiclostridium displayed a significant downward trend after the CPF intervention. Correlation analysis also revealed that these gut microbes had certain correlations with the metabolites, suggesting that CPFs help the intestinal microbiota to repair the intestinal environment and modulate the release of some beneficial metabolites. Notably, single-cell RNA-seq revealed that CPF supplementation significantly regulated the expression of genes associated with circadian rhythm, myelination, and neurodegenerative diseases. Altogether, these findings highlight that CPFs may represent a promising dietary therapeutic strategy for treating circadian rhythm disruption.  相似文献   

6.
Background and Aims: Altering dietary ferrous sulphate (FS) consumption exacerbates a murine model of colitis and alters the intestinal microbiome. We investigated the impact of oral ferric maltol (FM) and FS on mice with dextran sodium sulphate (DSS) induced colitis, and the microbiome of patients with iron deficiency. Methods: Mice had acute colitis induced, with 2% DSS for 5 days, followed by water. During this period, groups of mice were fed standard chow (200 ppm iron, SC, n = 8), or SC with 200ppm FS supplementation (n = 16, FSS), or SC with 200 ppm FM supplementation (n = 16, FMS). Clinical, pathological and microbiome assessments were compared at days 1 and 10. Fecal bacterial gDNA was extracted and the microbiome assessed by sequencing. Statistical inferences were made using MacQIIME. Principal Coordinates Analysis were used to visualize beta-diversity cluster analysis. Ten patients with IDA were treated with FS, and six with inactive inflammatory bowel disease received FM, supplements for four weeks: pre- and mid-treatment fecal samples were collected: the microbiome was assessed (see above). Results: In mice, after DSS treatment, there was a decrease in many genera in the SC and FSS groups: Lactobacillales increased in mice that received FMS. In humans, FS treatment led to an increase in five genera, but FM was not associated with any measurable change. The severity of DSS-induced colitis was greater with FSS than FMS. Conclusions: This study demonstrates differential and unique influences of ferric maltol and ferrous sulphate supplements on intestinal microbiota. These differences might contribute to the different side effects associated with these preparations.  相似文献   

7.
Inflammatory bowel diseases, which include ulcerative colitis and Crohn’s disease, are chronic relapsing and remitting inflammatory diseases of the gastrointestinal tract that are increasing in prevalence and incidence globally. They are associated with significant morbidity, reduced quality of life to individual sufferers and are an increasing burden on society through direct and indirect costs. Current treatment strategies rely on immunosuppression, which, while effective, is associated with adverse events. Epidemiological evidence suggests that diet impacts the risk of developing IBD and modulates disease activity. Using diet as a therapeutic option is attractive to patients and clinicians alike due to its availability, low cost and few side effects. Diet may influence IBD risk and disease behaviour through several mechanisms. Firstly, some components of the diet influence microbiota structure and function with downstream effects on immune activity. Secondly, dietary components act to alter the structure and permeability of the mucosal barrier, and lastly dietary elements may have direct interactions with components of the immune response. This review will summarise the mechanisms of diet–microbial–immune system interaction, outline key studies examining associations between diet and IBD and evidence demonstrating the impact of diet on disease control. Finally, this review will outline current prescribed dietary therapies for active CD.  相似文献   

8.
During pregnancy and lactation, considerable factors that affect the maternal microbiome are associated with the advancement of numerous diseases, which can potentially affect offspring health. Probiotics have shown potential for the maintenance of microbiota homeostasis of mothers in this period. The specific objective of this study was to investigate whether the application of Akkermansia muciniphila (A. muciniphila) during pregnancy and lactation impacts maternal and offspring health. Here we show that dams fed with A. muciniphila is safe, enhances the intestinal barrier and alters gut microbiota composition and diversity at the end of lactation, including the significant enrichment of A. muciniphila and Ruminococcus_1 in offspring from probiotic-fed dams. However, compared with the control group, the fecal metabolites of the A. muciniphila group only changed slightly. Additionally, A. muciniphila supplementation did not significantly increase the abundance of A. muciniphila in the fecal microbiota of offspring mice. Compared with the control group, the fecal metabolic profile of three-week-old offspring of mice fed with A. muciniphila were significantly changed, containing the D-glutamine and D-glutamate metabolism pathways. These results provided evidence that A. muciniphila supplementation in mice during pregnancy and lactation is safe and seemed to have a more beneficial effect on dams. In the future, using probiotics to regulate maternal microbiomes during pregnancy and lactation could be shown to have a more lasting and beneficial effect.  相似文献   

9.
The incidence and prevalence of inflammatory bowel disease (IBD) have been increasing globally and progressively in recent decades. Barley leaf (BL) is a nutritional supplement that is shown to have health-promoting effects on intestinal homeostasis. Our previous study demonstrated that BL could significantly attenuate Citrobacter rodentium (CR)-induced colitis, but whether it exerts a prophylactic or therapeutic effect remains elusive. In this study, we supplemented BL before or during CR infestation to investigate which way BL acts. The results showed that BL supplementation prior to infection significantly reduced the disease activity index (DAI) score, weight loss, colon shortening, colonic wall swelling, and transmissible murine colonic hyperplasia. It significantly reduced the amount of CR in the feces and also markedly inhibited the extraintestinal transmission of CR. Meanwhile, it significantly reduced the levels and expression of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFNγ), and interleukin-1β (IL1β). In addition, pretreatment with BL improved CR-induced gut microbiota dysbiosis by reducing the content of Proteobacteria, while increasing the content of Lactobacillus. In contrast, the effect of BL supplementation during infestation on the improvement of CR-induced colitis was not as good as that of pretreatment with BL. In conclusion, BL protects against CR-caused colitis in a preventive manner.  相似文献   

10.
Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is characterized as a chronic and recurrent inflammatory disease whose pathogenesis is still elusive. The gut microbiota exerts important and diverse effects on host physiology through maintaining immune balance and generating health-benefiting metabolites. Many studies have demonstrated that IBD is associated with disturbances in the composition and function of the gut microbiota. Both the abundance and diversity of gut microbiota are dramatically decreased in IBD patients. Furthermore, some particular classes of microbiota-derived metabolites, principally short-chain fatty acids, tryptophan, and its metabolites, and bile acids have also been implicated in the pathogenesis of IBD. In this review, we aim to define the disturbance of gut microbiota and the key classes of microbiota-derived metabolites in IBD pathogenesis. In addition, we also focus on scientific evidence on probiotics, not only on the molecular mechanisms underlying the beneficial effects of probiotics on IBD but also the challenges it faces in safe and appropriate application.  相似文献   

11.
Commonly used synthetic dietary emulsifiers, including carboxymethylcellulose (CMC) and polysorbate-80 (P80), promote intestinal inflammation. We compared abilities of CMC vs. P80 to potentiate colitis and impact human microbiota in an inflammatory environment using a novel colitis model of ex-germ-free (GF) IL10−/− mice colonized by pooled fecal transplant from three patients with active inflammatory bowel diseases. After three days, mice received 1% CMC or P80 in drinking water or water alone for four weeks. Inflammation was quantified by serial fecal lipocalin 2 (Lcn-2) and after four weeks by blinded colonic histologic scores and colonic inflammatory cytokine gene expression. Microbiota profiles in cecal contents were determined by shotgun metagenomic sequencing. CMC treatment significantly increased fecal Lcn-2 levels compared to P80 and water treatment by one week and throughout the experiment. Likewise, CMC treatment increased histologic inflammatory scores and colonic inflammatory cytokine gene expression compared with P80 and water controls. The two emulsifiers differentially affected specific intestinal microbiota. CMC did not impact bacterial composition but significantly decreased Caudoviricetes (bacteriophages), while P80 exposure non-significantly increased the abundance of both Actinobacteria and Proteobacteria. Commonly used dietary emulsifiers have different abilities to induce colitis in humanized mice. CMC promotes more aggressive inflammation without changing bacterial composition.  相似文献   

12.
Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, combination of this dietary supplementation with prednisolone presents synergistic effects. For this, we used the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Our results revealed that the protective effect produced by a combination of 10% green dwarf banana flour with prednisolone was more pronounced than those promoted by a single administration of prednisolone or a diet containing 10% or 20% banana flour. This beneficial effect was associated with an improvement in the colonic oxidative status because the banana flour diet prevented the glutathione depletion and inhibited myeloperoxidase activity and lipid peroxidation. In addition, the intestinal anti-inflammatory activity was associated with an inhibition of alkaline phosphatase activity, a reduction in macroscopic and microscopic scores, and an extension of the lesions. In conclusion, the dietary use of the green dwarf banana flour constitutes an important dietary supplement and complementary medicine product to prevention and treatment of human inflammatory bowel disease.  相似文献   

13.
The gut microbiota and associated metabolites have emerged as potential modulators of pathophysiological changes in obesity and related metabolic disorders. Butyrate, a product of bacterial fermentation, has been shown to have beneficial effects in obesity and rodent models of diet-induced obesity. Here, we aimed to determine the beneficial effects of butyrate (as glycerol ester of butyrate monobutyrin, MB) supplementation on metabolic phenotype, intestinal permeability and inflammation, feeding behavior, and the gut microbiota in low-fat (LF)- and high-fat (HF)-fed mice. Two cohorts (separated by 2 weeks) of male C57BL/6J mice (n = 24 in each cohort, 6/group/cohort; 6 weeks old) were separated into four weight-matched groups and fed either a LF (10 % fat/kcal) or HF (45% fat/kcal) with or without supplementation of MB (LF/MB or HF/MB) at 0.25% (w/v) in drinking water for 6 weeks. Metabolic phenotypes (body weight and adiposity), intestinal inflammation, feeding behavior, and fecal microbiome and metabolites were measured. Despite identical genetic and experimental conditions, we found marked differences between cohorts in the response (body weight gain, adiposity, and intestinal permeability) to HF-diet and MB. Notably, the composition of the gut microbiota was significantly different between cohorts, characterized by lower species richness and differential abundance of a large number of taxa, including subtaxa from five phyla, including increased abundance of the genera Bacteroides, Proteobacteria, and Parasutterella in cohort 2 compared to cohort 1. These differences may have contributed to the differential response in intestinal permeability to the HF diet in cohort 2. MB supplementation had no significant effect on metabolic phenotype, but there was a trend to protect from HF-induced impairments in intestinal barrier function in cohort 1 and in sensitivity to cholecystokinin (CCK) in both cohorts. These data support the concept that microbiota composition may have a crucial effect on metabolic responses of a host to dietary interventions and highlight the importance of taking steps to ensure reproducibility in rodent studies.  相似文献   

14.
A high fiber diet (HFD) and dietary supplementation with acetate have been reported to have beneficial effects in a variety of diseases. We investigated the effects of a HFD and acetate supplementation on the gut microbiota and hyperoxia-induced acute lung injury (HALI) in mice. Mice were fed a control diet, HFD, or acetate supplementation for three weeks, and their gut microbiome composition, lung tissues, and bronchoalveolar lavage fluid (BALF) were examined after exposure to ambient air or hyperoxia. Both the HFD and acetate supplementation modified the gut microbiota community and increased the proportion of acetate-producing bacteria in mice exposed to hyperoxia. The HFD and acetate supplementation also increased the abundance of Bacteroides acidifaciens and reduced gut dysbiosis according to the ratio of Firmicutes to Bacteroidetes. Compared with hyperoxia-exposed mice fed a control diet, both the HFD and acetate supplementation significantly increased the survival time while reducing the severity of pulmonary edema and the concentrations of protein and inflammatory mediators in BALF. Moreover, the HFD and acetate supplementation reduced the production of free radicals, attenuated NF-κB signaling activation, and decreased apoptosis in the lung tissues. Overall, this study indicates that a HFD or acetate supplementation reduces the severity of HALI through alterations in the gut microbiota to exert anti-inflammatory effects.  相似文献   

15.
Constipation is a common problem in sows and women during late pregnancy. Dietary fiber has potential in the regulation of intestinal microbiota, thereby promoting intestinal motility and reducing constipation. However, the effects of fibers with different physicochemical properties on intestinal microbe and constipation during late pregnancy have not been fully explored. In this study, a total of 80 sows were randomly allocated to control and one of three dietary fiber treatments from day 85 of gestation to delivery: LIG (lignocellulose), PRS (resistant starch), and KON (konjaku flour). Results showed that the defecation frequency and fecal consistency scores were highest in PRS. PRS and KON significantly increased the level of gut motility regulatory factors, 5-hydroxytryptamine (5-HT), motilin (MTL), and acetylcholinesterase (AChE) in serum. Moreover, PRS and KON promoted the IL-10 level and reduced the TNF-α level in serum. Furthermore, maternal PRS and KON supplementation significantly reduced the number of stillborn piglets. Microbial sequencing analysis showed that PRS and KON increased short-chain fatty acids (SCFAs)-producing genera Bacteroides and Parabacteroides and decreased the abundance of endotoxin-producing bacteria Desulfovibrio and Oscillibacter in feces. Moreover, the relative abundance of Turicibacter and the fecal butyrate concentration in PRS were the highest. Correlation analysis further revealed that the defecation frequency and serum 5-HT were positively correlated with Turicibacter and butyrate. In conclusion, PRS is the best fiber source for promoting gut motility, which was associated with increased levels of 5-HT under specific bacteria Turicibacter and butyrate stimulation, thereby relieving constipation. Our findings provide a reference for dietary fiber selection to improve intestinal motility in late pregnant mothers.  相似文献   

16.
The improvement of gut health and function with prebiotic supplements after weaning is an active area of research in pig nutrition. The present study was conducted to test the working hypothesis that medium-term dietary supplementation with soybean oligosaccharides (SBOS) can affect the gut ecosystem in terms of microbiota composition, luminal bacterial short-chain fatty acid and ammonia concentrations, and intestinal expression of genes related to intestinal immunity and barrier function. Ten Huanjiang mini-piglets, weaned at 21 days of age, were randomly assigned to 2 groups. Each group received a standard diet containing either dietary supplementation with 0.5% corn starch (control group) or 0.5% SBOS (experimental group). The results showed that dietary supplementation with SBOS increased the diversity of intestinal microflora and elevated (P < .05) the numbers of some presumably beneficial intestinal bacteria (eg, Bifidobacterium sp, Faecalibacterium prausnitzii, Fusobacterium prausnitzii, and Roseburia). Soybean oligosaccharide supplementation also increased the concentration of short-chain fatty acid in the intestinal lumen, and it reduced (P < .05) the numbers of bacteria with pathogenic potential (eg, Escherichia coli, Clostridium, and Streptococcus) and the concentration of several protein-derived catabolites (eg, isobutyrate, isovalerate, and ammonia). In addition, SBOS supplementation increased (P < .05) expression of zonula occludens 1 messenger RNA, and it decreased (P < .05) expression of tumor necrosis factor α, interleukin 1β, and interleukin 8 messenger RNA in the ileum and colon. These findings suggest that SBOS supplementation modifies the intestinal ecosystem in weaned Huanjiang mini-piglets and has potentially beneficial effects on the gut.  相似文献   

17.
Gut microbiota dysbiosis is a common feature in colorectal cancer (CRC) and inflammatory bowel diseases (IBD). Adoption of the Mediterranean diet (MD) has been proposed as a therapeutic approach for the prevention of multiple diseases, and one of its mechanisms of action is the modulation of the microbiota. We aimed to determine whether MD can be used as a preventive measure against cancer and inflammation-related diseases of the gut, based on its capacity to modulate the local microbiota. A joint meta-analysis of publicly available 16S data derived from subjects following MD or other diets and from patients with CRC, IBD, or other gut-related diseases was conducted. We observed that the microbiota associated with MD was enriched in bacteria that promote an anti-inflammatory environment but low in taxa with pro-inflammatory properties capable of altering intestinal barrier functions. We found an opposite trend in patients with intestinal diseases, including cancer. Some of these differences were maintained even when MD was compared to healthy controls without a defined diet. Our findings highlight the unique effects of MD on the gut microbiota and suggest that integrating MD principles into a person’s lifestyle may serve as a preventive method against cancer and other gut-related diseases.  相似文献   

18.
Inflammatory bowel diseases (IBD) affect the gastrointestinal tract: they include Crohn’s disease (CD) and ulcerative colitis (UC). Each has a different phenotypic spectrum, characterized by gastrointestinal and extra-intestinal manifestations. People living with IBD are very interested in diet, but little is known about the impact of diet on these patients; no guidelines are available yet. In this review, we analyze the dietary patterns of patients with IBD and the approach to the choices of foods both in adults and pediatric patients. Very often, IBD patients report an intentional avoidance of gluten to manage the disease; furthermore, a proportion of IBD patients believe that dairy products worsen their symptoms and that avoidance may help the disease. They have a low compliance with the Mediterranean Diet, which is considered to have potential benefits but is little used in practice. In conclusion, the review underscores the pivotal role of nutritional counselling in IBD patients, and the importance of future clinical studies to evaluate the beneficial effects of dietary recommendations in the management of IBD.  相似文献   

19.
Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with gut dysbiosis. This study aimed to investigate the effects of heat-killed Bifidobacterium bifidum B1628 (HB1628) in dextran sulfate sodium (DSS)-induced colitis in mice. The following three mouse groups were included (n = eight per group): NC (normal control), DSS (colitis), and HB1628 (colitis and postbiotic). The mice in the DSS group showed significant weight loss and histological damage, developed bloody diarrhea, scored high in the disease activity index (DAI), and exhibited increases in pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) and decreases in an anti-inflammatory cytokine (IL-13) in the serum. These changes were accompanied by gut microbiota modulation in colitis mice (decreases in Rikenellaceae and Eubacterium; increases in Peptostreptococcaceae, Bacteroides vulgatus, and Parasutterella excrementihominis). The HB1628 group had lower DAIs, histology scores, and serum levels of pro-inflammatory cytokines (IL-1β and TNF-α), but higher levels of an anti-inflammatory cytokine (IL-13), compared with the DSS group, suggesting a less severe inflammatory state after the HB1628 intervention. Additionally, HB1628 improved DSS-induced gut dysbiosis, which is evidenced by increases in intestinal beneficial bacteria, such as Lactobacillus, and decreases in known unfavorable taxa in IBD, e.g., Porphyromonadaceae, Subdoligranulum, Lachnospiraceae bacterium 3_1_46FAA, and Alistipes indistinctus. Functional metagenomics revealed three significantly enriched metabolic pathways in the HB1628 group (namely, the aerobic respiration I [cytochrome c] pathway and the superpathways of L-phenylalanine biosynthesis and L-tryptophan biosynthesis, respectively). In conclusion, our results showed that HB1628 effectively improved the inflammation state and tissue damage in DSS-induced colitis mice, and the symptom relief effect was accompanied by obvious gut microbiota remodulation.  相似文献   

20.
The intestinal microbiota represents the microbial community that colonizes the gastrointestinal tract and constitutes the most complex ecosystem present in nature. The main intestinal microbial phyla are Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucromicrobia, with a clear predominance of the two phyla Firmicutes and Bacteroidetes which account for about 90% of the intestinal phyla. Intestinal microbiota alteration, or dysbiosis, has been proven to be involved in the development of various syndromes, such as non-alcoholic fatty liver disease, Crohn’s disease, and ulcerative colitis. The present review underlines the most recurrent changes in the intestinal microbiota of patients with NAFLD, Crohn’s disease, and ulcerative colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号