首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two non-covalently linked copies of the retrovirus genome are specifically recruited to the site of virus particle assembly and packaged into released particles. Retroviral RNA packaging requires RNA export of the unspliced genomic RNA from the nucleus, translocation of the genome to virus assembly sites, and specific interaction with Gag, the main viral structural protein. While some aspects of the RNA packaging process are understood, many others remain poorly understood. In this review, we provide an update on recent advancements in understanding the mechanism of RNA packaging for retroviruses that cause disease in humans, i.e., HIV-1, HIV-2, and HTLV-1, as well as advances in the understanding of the details of genomic RNA nuclear export, genome translocation to virus assembly sites, and genomic RNA dimerization.  相似文献   

3.
Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2–HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity. Further, Staufen-2 gets co-packaged into virions, possibly by interacting with host factors Staufen-1 or antiviral protein APOBEC3G, which resulted in different outcomes on the infectivity of Staufen-2-encapsidated virions. These observations suggest that encapsidated host factors influence viral population dynamics and infectivity. With the explicit identification of the incorporation of Staufen proteins into HIV-1 and other retroviruses, such as Simian Immunodeficiency Virus (SIV), we propose that packaging of RNA binding proteins, such as Staufen, in budding virions of retroviruses is probably a general phenomenon that can drive or impact the viral population dynamics, infectivity, and evolution.  相似文献   

4.
Full-length HIV-1 RNA plays a central role in viral replication by serving as the mRNA for essential viral proteins and as the genome packaged into infectious virions. Proper RNA trafficking is required for the functions of RNA and its encoded proteins; however, the mechanism by which HIV-1 RNA is transported within the cytoplasm remains undefined. Full-length HIV-1 RNA transport is further complicated when group-specific antigen (Gag) protein is expressed, because a significant portion of HIV-1 RNA may be transported as Gag–RNA complexes, whose properties could differ greatly from Gag-free RNA. In this report, we visualized HIV-1 RNA and monitored its movement in the cytoplasm by using single-molecule tracking. We observed that most of the HIV-1 RNA molecules move in a nondirectional, random-walk manner, which does not require an intact cytoskeletal structure, and that the mean-squared distance traveled by the RNA increases linearly with time, indicative of diffusive movement. We also observed that a single HIV-1 RNA molecule can move at various speeds when traveling through the cytoplasm, indicating that its movement is strongly affected by the immediate environment. To examine the effect of Gag protein on HIV-1 RNA transport, we analyzed the cytoplasmic HIV-1 RNA movement in the presence of sufficient Gag for virion assembly and found that HIV-1 RNA is still transported by diffusion with mobility similar to the mobility of RNAs unable to express functional Gag. These studies define a major mechanism of HIV-1 gene expression and resolve the long-standing question of how the RNA genome is transported to the assembly site.Full-length HIV-1 RNA has two critical functions in the viral replication cycle (Fig. S1): It serves as the viral genome in virions and as the template for the translation of group-specific antigen (Gag) and Gag-Pol polyproteins, which constitute the viral structural proteins and enzymes required for viral replication. HIV-1 RNA must travel to specific subcellular locations to serve its functions. Defects in RNA trafficking or mislocalization in the cytoplasm can affect not only the function of the viral RNA, making it unable to be packaged efficiently (1), but also the function of the proteins translated from the RNA, such as generating Gag with targeting and assembly defects (24). Although these studies highlight the importance of HIV-1 RNA trafficking in viral replication, the mechanism used to transport HIV-1 RNA in the cytoplasm remains undefined.The transport of cellular mRNA in the cytoplasm can be complex. Some mRNAs are transported in the cytoplasm predominantly by diffusion, whereas other mRNAs are actively transported along the cytoskeleton by motor proteins to specific locations in the cytoplasm (510). Currently, it is unclear whether HIV-1 RNA uses diffusion and/or motor transport to reach targeted locations. The cytoplasmic transport of HIV-1 RNA can be further complicated by the presence of viral protein components. During the early phase of HIV-1 expression, full-length RNA is transported in the cytoplasm without the influence of the viral structural protein or enzymes because Gag and Gag-Pol are encoded in the message. Attempts to visualize and follow HIV-1 RNA signals in the cytoplasm without Gag had not been successful (11). However, a study using total internal reflection fluorescence (TIRF) microscopy to observe the volumes near the glass–cell interface had shown that HIV-1 RNA not encoding Gag can be detected on plasma membrane (12). After translation of the unspliced RNA, Gag is present in the cytoplasm and can potentially interact with full-length RNA to affect its transport. Gag binds to full-length HIV-1 RNA to allow the specific packaging of the RNA genome into assembling particles. Although Gag–RNA complexes were detected in the cytoplasm in some studies (13), when and where the Gag–RNA interaction first occurs remain controversial (14, 15). Recent studies suggest that the Gag–RNA complex is transported in the cytoplasm via endosomal pathways for the assembly of nascent viruses (11, 16). Although some Gag–RNA complexes were observed to move in a directional manner, inhibition of the endosomal pathway does not reduce infectious virus production (11, 16, 17), which is not consistent with this suggestion. Compounded with the inability to visualize and follow cytoplasmic HIV-1 RNA signals in the absence of Gag (11), many basic questions regarding HIV-1 RNA trafficking remain unanswered.We previously described a system that can efficiently label and detect HIV-1 RNA in viral particles with single-RNA sensitivity (18). Briefly, HIV-1 genomes were engineered to contain binding sites for BglG, an Escherichia coli antitermination protein (19); because the binding sites are located in pol, only full-length viral RNAs contain these sequences. These full-length HIV-1 RNAs are functional; they can express encoded Gag protein and can be efficiently packaged into particles (18). When such HIV-1 RNAs are coexpressed with a modified BglG fused to a fluorescent protein, through binding of the fusion protein to viral RNA, fluorescent signals are efficiently detected in the viral particles. Furthermore, the detected fluorescent signals are specific, because such signals are not detected in viral particles containing HIV-1 RNA molecules lacking the BglG-binding sites (18).In this report, we sought to determine the major mechanism that transports HIV-1 RNA in the cytoplasm. By tagging HIV-1 RNA with a modified BglG protein fused to YFP (Bgl-YFP), we performed single-molecule tracking of HIV-1 RNA and found that most of the HIV-1 RNA moves dynamically in the cytoplasm in a nondirectional manner that is characteristic of diffusive movement. Furthermore, an intact cytoskeletal structure is not required for RNA movement. Although determining where Gag and RNA first interact is not our experimental goal, the presence of Gag may affect viral RNA transport. To address this issue, we studied HIV-1 RNA transport in cells that expressed sufficient levels of Gag for virus assembly and found that most RNAs are transported by diffusion. Finally, we tested the hypothesis that endocytosed viral particles contribute to the previously observed directional cotrafficking of Gag-RNA signals. Our results demonstrate that the directional transport of colocalized Gag-RNA signals has behavior similar to the behavior of the endocytosed particles or assembling complexes, indicating these signals are inbound endocytosed particles rather than outbound complexes for virus assembly. These results answer fundamental questions of HIV-1 biology and shed light on essential steps in viral replication.  相似文献   

5.
6.
7.
Retroviruses package a dimeric genome comprising two copies of the viral RNA. Each RNA contains all of the genetic information for viral replication. Packaging a dimeric genome allows the recovery of genetic information from damaged RNA genomes during DNA synthesis and promotes frequent recombination to increase diversity in the viral population. Therefore, the strategy of packaging dimeric RNA affects viral replication and viral evolution. Although its biological importance is appreciated, very little is known about the genome dimerization process. HIV-1 RNA genomes dimerize before packaging into virions, and RNA interacts with the viral structural protein Gag in the cytoplasm. Thus, it is often hypothesized that RNAs dimerize in the cytoplasm and the RNA–Gag complex is transported to the plasma membrane for virus assembly. In this report, we tagged HIV-1 RNAs with fluorescent proteins, via interactions of RNA-binding proteins and motifs in the RNA genomes, and studied their behavior at the plasma membrane by using total internal reflection fluorescence microscopy. We showed that HIV-1 RNAs dimerize not in the cytoplasm but on the plasma membrane. Dynamic interactions occur among HIV-1 RNAs, and stabilization of the RNA dimer requires Gag protein. Dimerization often occurs at an early stage of the virus assembly process. Furthermore, the dimerization process is probably mediated by the interactions of two RNA–Gag complexes, rather than two RNAs. These findings advance the current understanding of HIV-1 assembly and reveal important insights into viral replication mechanisms.All viruses must encapsidate their genomes into virions to ensure that their genetic information is transferred to the new target cells. In most, if not all, retroviruses, the virion RNA genomes are dimeric, although each RNA encodes all of the genetic information required for replication. Most HIV-1 particles contain two copies of genomes (1), indicating that RNA encapsidation is a highly regulated process. This regulation is achieved by recognizing a dimeric RNA, and not by packaging a certain mass of viral genome (2).Our previous studies showed that HIV-1 RNA dimerization is a critical step in viral RNA genome packaging and virus assembly and that the two copies of copackaged RNA genomes are dimerized before encapsidation (1, 3, 4). The dimerization initiation signal (DIS), a 6-nt palindromic sequence located at the 5′ UTR of the HIV-1 RNA genome (5), most likely initiates the interaction between two HIV-1 RNA genomes (3, 4). When two HIV-1 RNAs contain similar sequences including the same DIS, they are copackaged efficiently at a rate similar to that predicted from random distribution (1, 2). In contrast, when two HIV-1 RNAs contain discordant palindromic sequences that cannot form perfect base pairing, they are not copackaged efficiently into the same viral particle (1, 2). The ability of RNA genomes from different HIV-1 variants to dimerize has important biological consequences. For example, inefficient copackaging is known to be a major barrier for intersubtype HIV-1 recombination (4). Although DIS plays a key role in RNA dimerization, virion RNAs isolated from mutants with DIS deletions remained dimeric, suggesting that other cis-acting element(s) are also involved in the dimerization (6).Despite the importance of RNA dimerization for HIV-1 replication, many aspects of this process are unknown, including the location at which dimerization occurs. Previously, we showed that RNA dimerization leading to HIV-1 genome packaging occurs after viral RNA is exported from the nucleus (7). The viral protein Gag is known to have chaperone activity (8). Additionally, biochemical experiments showed that HIV-1 Gag can interact with viral RNAs in the cytoplasm (9, 10). Thus, it is often hypothesized that two copies of HIV-1 RNAs dimerize in the cytoplasm and that this dimeric RNA is complexed with Gag and travels to the plasma membrane (7, 1115), the major assembly site for virus assembly. The assembly of HIV-1 RNA and Gag was demonstrated in an elegant study using total internal reflection fluorescence (TIRF) microscopy (14), which illuminates a shallow volume near the glass/cell interface and is ideal for studying events near the plasma membrane (16). However, it was difficult to address the monomeric/dimeric state of the viral RNA in this previous study because the RNA was labeled with a single type of fluorescent protein.In the present study, we sought to delineate the location at which HIV-1 RNA dimerization occurs, which leads to genome encapsidation, and whether Gag is required for RNA dimerization. We used a previously described method to label HIV-1 RNA with fluorescent proteins through interactions of sequence-specific RNA-binding proteins. We engineered HIV-1 genomes to contain RNA stem-loops that are recognized by the Escherichia coli BglG protein or the bacteriophage MS2 coat protein; because these sequences are located in the pol gene, they are present only in full-length unspliced HIV-1 RNAs. When introduced into human cells, these constructs express full-length RNAs that can serve as templates for the translation of Gag proteins and as genomes in the viral particles. Most (>90%) of the particles contain RNA genomes, indicating that the full-length viral RNAs derived from these constructs are efficiently packaged. Furthermore, RNAs derived from different constructs can dimerize and copackage at a rate close to random distribution (1), consistent with the genetic analyses from recombination studies (4, 17, 18). By using this method, we were able to detect HIV-1 RNA with single-RNA-molecule sensitivity (1) and tracked HIV-1 RNA movement in the cytoplasm by using live-cell imaging (19). In this report, we tagged two HIV-1 RNAs and Gag, each with a different fluorescent protein, and studied the RNA:RNA and RNA:Gag interactions on the plasma membrane. We found that HIV-1 RNA dimerizes on the plasma membrane and that Gag protein is required for stabilization of the dimer.  相似文献   

8.
9.
Two copies of unspliced human immunodeficiency virus (HIV)-1 genomic RNA (gRNA) are preferentially selected for packaging by the group-specific antigen (Gag) polyprotein into progeny virions as a dimer during the late stages of the viral lifecycle. Elucidating the RNA features responsible for selective recognition of the full-length gRNA in the presence of an abundance of other cellular RNAs and spliced viral RNAs remains an area of intense research. The recent nuclear magnetic resonance (NMR) structure by Keane et al. [1] expands upon previous efforts to determine the conformation of the HIV-1 RNA packaging signal. The data support a secondary structure wherein sequences that constitute the major splice donor site are sequestered through base pairing, and a tertiary structure that adopts a tandem 3-way junction motif that exposes the dimerization initiation site and unpaired guanosines for specific recognition by Gag. While it remains to be established whether this structure is conserved in the context of larger RNA constructs or in the dimer, this study serves as the basis for characterizing large RNA structures using novel NMR techniques, and as a major advance toward understanding how the HIV-1 gRNA is selectively packaged.  相似文献   

10.
The incorporation of viral genomes into particles has never previously been imaged in live infected cells. Thus, for many viruses it is unknown how the recruitment and packaging of genomes into virions is temporally and spatially related to particle assembly. Here, we devised approaches to simultaneously image HIV-1 genomes, as well as the major HIV-1 structural protein, Gag, to reveal their dynamics and functional interactions during the assembly of individual viral particles. In the absence of Gag, HIV-1 RNA was highly dynamic, moving in and out of the proximity of the plasma membrane. Conversely, in the presence of Gag, RNA molecules docked at the membrane where their lateral movement slowed and then ceased as Gag assembled around them and they became irreversibly anchored. Viral genomes were not retained at the membrane when their packaging signals were mutated, nor when expressed with a Gag mutant that was not myristoylated. In the presence of a Gag mutant that retained membrane- and RNA-binding activities but could not assemble into particles, the viral RNA docked at the membrane but continued to drift laterally and then often dissociated from the membrane. These results, which provide visualization of the recruitment and packaging of genomes into individual virus particles, demonstrate that a small number of Gag molecules recruit viral genomes to the plasma membrane where they nucleate the assembly of complete virions.  相似文献   

11.
12.
Viral assembly and budding are the final steps and key determinants of the virus life cycle and are regulated by virus–host interaction. Several viruses are known to use their late assembly (L) domains to hijack host machinery and cellular adaptors to be used for the requirement of virus replication. The L domains are highly conserved short sequences whose mutation or deletion may lead to the accumulation of immature virions at the plasma membrane. The L domains were firstly identified within retroviral Gag polyprotein and later detected in structural proteins of many other enveloped RNA viruses. Here, we used HIV-1 as an example to describe how the HIV-1 virus hijacks ESCRT membrane fission machinery to facilitate virion assembly and release. We also introduce galectin-3, a chimera type of the galectin family that is up-regulated by HIV-1 during infection and further used to promote HIV-1 assembly and budding via the stabilization of Alix–Gag interaction. It is worth further dissecting the details and finetuning the regulatory mechanism, as well as identifying novel candidates involved in this final step of replication cycle.  相似文献   

13.
MicroRNAs (miRNAs) are small, 18–22 nt long, noncoding RNAs that act as potent negative gene regulators in a variety of physiological and pathological processes. To repress gene expression, miRNAs are packaged into RNA-induced silencing complexes (RISCs) that target mRNAs for degradation and/or translational repression in a sequence-specific manner. Recently, miRNAs have been shown to also interact with proteins outside RISCs, impacting cellular processes through mechanisms not involving gene silencing. Here, we define a previously unappreciated activity of miRNAs in inhibiting RNA–protein interactions that in the context of HIV-1 biology blocks HIV virus budding and reduces virus infectivity. This occurs by miRNA binding to the nucleocapsid domain of the Gag protein, the main structural component of HIV-1 virions. The resulting miRNA–Gag complexes interfere with viral–RNA-mediated Gag assembly and viral budding at the plasma membrane, with imperfectly assembled Gag complexes endocytosed and delivered to lysosomes. The blockade of virus production by miRNA is reversed by adding the miRNA’s target mRNA and stimulated by depleting Argonaute-2, suggesting that when miRNAs are not mediating gene silencing, they can block HIV-1 production through disruption of Gag assembly on membranes. Overall, our findings have significant implications for understanding how cells modulate HIV-1 infection by miRNA expression and raise the possibility that miRNAs can function to disrupt RNA-mediated protein assembly processes in other cellular contexts.To trigger viral budding, Gag proteins must extensively multimerize at the plasma membrane (PM), forming a tightly packed lattice that remodels into a virus particle containing a few thousand Gag molecules (1). Whereas recruitment of the viral genome by Gag is driven by specific and highly efficient interactions between Gag and the genome’s Psi-element (2, 3), increasing evidence suggests Gag multimerization can also be mediated by nonspecific Gag–RNA interactions. For example, long-stranded RNAs not possessing a Psi-element can drive Gag assembly, serving as a scaffold for concentrating Gag molecules (47). In in vitro systems, Gag can multimerize by binding nonspecifically to RNA through its nucleocapsid (NC) domain, with the degree of multimerization proportional to the length of the input RNA (4). Finally, in living cells, Gag binding to either HIV-1 viral RNA or cellular mRNA promotes viral particle assembly (5, 6). The proposed role of nonspecific Gag–RNA interactions in facilitating Gag multimerization and viral budding prompted us to investigate whether miRNAs could prevent viral budding by competing with viral RNA for Gag binding via an unconventional mechanism not involving gene silencing like others have shown (811).  相似文献   

14.
Assembly and maturation of the human immunodeficiency virus type 1 (HIV-1) are governed by the Gag polyprotein. Here we study the conformation and dynamics of a large HIV-1 Gag fragment comprising the matrix, capsid, spacer peptide 1 and nucleocapsid domains (referred to as ΔGag) by heteronuclear multidimensional NMR spectroscopy. In solution, ΔGag exists in a dynamic equilibrium between monomeric and dimeric states. In the presence of nucleic acids and at low ionic strength ΔGag assembles into immature virus-like particles. The structured domains of ΔGag (matrix, the N- and C-terminal domains of capsid, and the N- and C-terminal zinc knuckles of nucleocapsid) retain their fold and reorient semi-independently of one another; the linkers connecting the structural domains, including spacer peptide 1 that connects capsid to nucleocapsid, are intrinsically disordered. Structural changes in ΔGag upon proteolytic processing by HIV-1 protease, monitored by NMR in real-time, demonstrate that the conformational transition of the N-terminal 13 residues of capsid from an intrinsically disordered coil to a β-hairpin upon cleavage at the matrix|capsid junction occurs five times faster than cleavage at the capsid|spacer peptide 1 junction. Finally, nucleic acids interact with both nucleocapsid and matrix domains, and proteolytic processing at the spacer peptide 1|nucleocapsid junction by HIV-1 protease is accelerated in the presence of single-stranded DNA.Gag, the primary structural polyprotein of human immunodeficiency virus type 1 (HIV-1), mediates all essential events during the assembly and maturation of HIV-1 (15). Gag is composed of six organizational units, matrix (MA)–capsid (CA)–spacer peptide 1 (SP1)–nucleocapsid (NC)–spacer peptide 2 (SP2)–p6, with an HIV-1 protease cleavage site at each junction. During HIV-1 assembly, cotranslationally myristoylated Gag traffics from the cytoplasm to the plasma membrane of the host cell and multimerizes to generate spherical immature virions that subsequently bud from the host cell. During the budding process, controlled proteolysis of Gag by HIV-1 protease generates the individual Gag constituents, thereby triggering a cascade of events that eventually leads to the formation of mature, infectious virions containing conical capsids. A better understanding of these late stages of the HIV-1 life cycle has potential therapeutic implications because any alterations in these interconnected events results in the production of defective, noninfectious virions.Here, we present a heteronuclear NMR study of a recombinant, nonmyristoylated HIV-1 Gag fragment comprising MA–CA–SP1–NC (hereafter referred to as ΔGag) to characterize the interrelationship between the domains and the conformational changes occurring during processing by HIV-1 protease.  相似文献   

15.
All retroviral genomic RNAs contain a cis-acting packaging signal by which dimeric genomes are selectively packaged into nascent virions. However, it is not understood how Gag (the viral structural protein) interacts with these signals to package the genome with high selectivity. We probed the structure of murine leukemia virus RNA inside virus particles using SHAPE, a high-throughput RNA structure analysis technology. These experiments showed that NC (the nucleic acid binding domain derived from Gag) binds within the virus to the sequence UCUG-UR-UCUG. Recombinant Gag and NC proteins bound to this same RNA sequence in dimeric RNA in vitro; in all cases, interactions were strongest with the first U and final G in each UCUG element. The RNA structural context is critical: High-affinity binding requires base-paired regions flanking this motif, and two UCUG-UR-UCUG motifs are specifically exposed in the viral RNA dimer. Mutating the guanosine residues in these two motifs--only four nucleotides per genomic RNA--reduced packaging 100-fold, comparable to the level of nonspecific packaging. These results thus explain the selective packaging of dimeric RNA. This paradigm has implications for RNA recognition in general, illustrating how local context and RNA structure can create information-rich recognition signals from simple single-stranded sequence elements in large RNAs.  相似文献   

16.
The presence of the envelope glycoprotein Env in HIV-1 virions is essential for infectivity. To date, the molecular mechanism by which Env is packaged into virions has been largely unknown. Here, we show that TIP47 (tail-interacting protein of 47 kDa), which has been shown to interact with Env, also binds the MA (matrix) domain of HIV-1 Gag protein and that these three proteins form a ternary complex. Mutations in Gag that abrogate interaction with TIP47 inhibit Env incorporation and virion infectivity as well as colocalization between Gag and Env. We also show that TIP47 silencing impairs Env incorporation and infectivity and abolishes coimmunoprecipitation of Gag with Env. In contrast, overexpression of TIP47 increases Env packaging. Last, we demonstrate that TIP47 can interact simultaneously with Env and Gag. Taken together, our results show that TIP47 is a cellular cofactor that plays an essential role in Env incorporation, allowing the encounter and the physical association between HIV-1 Gag and Env proteins during the viral assembly process.  相似文献   

17.
Retroviral Gag polyproteins coopt host factors to traffic from cytosolic ribosomes to the plasma membrane, where virions are released. Before membrane transport, the multidomain Gag protein of Rous sarcoma virus (RSV) undergoes importin-mediated nuclear import and CRM1-dependent nuclear export, an intrinsic step in the assembly pathway. Transient nuclear trafficking of Gag is required for efficient viral RNA (vRNA) encapsidation, suggesting that Gag:vRNA binding might occur in the nucleus. Here, we show that Gag is imported into the nucleus through direct interactions of the Gag NC domain with importin-α (imp-α) and the MA domain with importin-11 (imp-11). The vRNA packaging signal, known as ψ, inhibited imp-α binding to Gag, indicating that the NC domain does not bind to imp-α and vRNA simultaneously. Unexpectedly, vRNA binding also prevented the association of imp-11 with both the MA domain alone and with Gag, suggesting that the MA domain may bind to the vRNA genome. In contrast, direct binding of Gag to the nuclear export factor CRM1, via the CRM1-RanGTP heterodimer, was stimulated by ψRNA. These findings suggest a model whereby the genomic vRNA serves as a switch to regulate the ordered association of host import/export factors that mediate Gag nucleocytoplasmic trafficking for virion assembly. The Gag:vRNA interaction appears to serve multiple critical roles in assembly: specific selection of the vRNA genome for packaging, stimulating the formation of Gag dimers, and triggering export of viral ribonucleoprotein complexes from the nucleus.  相似文献   

18.
19.
During HIV-1 transmission through T cell virological synapses, the recruitment of the envelope (Env) glycoprotein to the site of cell–cell contact is important for adhesion and for packaging onto nascent virus particles which assemble at the site. Live imaging studies in CD4 T cells have captured the rapid recruitment of the viral structural protein Gag to VSs. We explored the role of endocytic trafficking of Env initiated by a membrane proximal tyrosine motif during HIV transfer into target cells and examined the factors that allow Gag and Env to be transferred together across the synapse. To facilitate tracking of Env in live cells, we adapted an Env tagging method and introduced a biotin acceptor peptide (BAP) into the V4 loop of Env gp120, enabling sensitive fluorescent tracking of V4-biotinylated Env. The BAP-tagged and biotinylated HIVs were replication-competent in cell-free and cell-to-cell infection assays. Live cell fluorescent imaging experiments showed rapid internalized cell surface Env on infected cells. Cell–cell transfer experiments conducted with the Env endocytosis mutant (Y712A) showed increased transfer of Env. Paradoxically, this increase in Env transfer was associated with significantly reduced Gag transfer into target cells, when compared to viral transfer associated with WT Env. This Y712A Env mutant also exhibited an altered Gag/biotin Env fluorescence ratio during transfer that correlated with decreased productive cell-to-cell infection. These results may suggest that the internalization of Env into recycling pools plays an important role in the coordinated transfer of Gag and Env across the VS, which optimizes productive infection in target cells.  相似文献   

20.
The structure of HIV-1 Ψ-RNA has been elucidated by a concerted approach combining structural probes with mass spectrometric detection (MS3D), which is not affected by the size and crystallization properties of target biomolecules. Distance constraints from bifunctional cross-linkers provided the information required for assembling an all-atom model from the high-resolution coordinates of separate domains by triangulating their reciprocal placement in 3D space. The resulting structure revealed a compact cloverleaf morphology stabilized by a long-range tertiary interaction between the GNRA tetraloop of stemloop 4 (SL4) and the upper stem of stemloop 1 (SL1). The preservation of discrete stemloop structures ruled out the possibility that major rearrangements might produce a putative supersite with enhanced affinity for the nucleocapsid (NC) domain of the viral Gag polyprotein, which would drive genome recognition and packaging. The steric situation of single-stranded regions exposed on the cloverleaf structure offered a valid explanation for the stoichiometry exhibited by full-length Ψ-RNA in the presence of NC. The participation of SL4 in a putative GNRA loop-receptor interaction provided further indications of the plasticity of this region of genomic RNA, which can also anneal with upstream sequences to stabilize alternative conformations of the 5′ untranslated region (5′-UTR). Considering the ability to sustain specific NC binding, the multifaceted activities supported by the SL4 sequence suggest a mechanism by which Gag could actively participate in regulating the vital functions mediated by 5′-UTR. Substantiated by the 3D structure of Ψ-RNA, the central role played by SL4 in specific RNA-RNA and protein-RNA interactions advances this domain as a primary target for possible therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号