首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori infection results in the development of chronic gastritis, and CD4+ T cells are a major component of the gastric cellular infiltrate. To examine whether CD4+ T cells are important in initiating and maintaining H. pylori-induced gastritis, mice deficient in CD4+ T cells (B6.BM1.GK 1.5 mice [GK 1.5 mice]) were infected with H. pylori. We found that as in normal mice, H. pylori-specific antibodies, mostly of the immunoglobulin M isotype, developed in GK 1.5 mice but were unable to cure H. pylori infection. Further, while the stomachs of H. pylori-infected GK 1.5 mice were more heavily infiltrated with CD8+ T cells and B cells, mice deficient in both CD4+ and CD8+ T cells developed mild inflammation comparable to the level observed for C57BL/6 mice. These observations suggest that CD4+ T cells may play an important role in regulating or suppressing gastric CD8+ T cells which, in the absence of CD4+ T cells, may mediate more-severe disease. These studies have revealed a potentially important role for CD8+ T cells in the gastric disease resulting from H. pylori infection.  相似文献   

2.
Helicobacter pylori is a Gram-negative bacterium that causes a variety of gastrointestinal diseases, such as duodenal ulcer and gastric carcinoma. The T cell response against H. pylori is thought to contribute to the pathogenesis of these diseases. Here, we show that mouse-adapted H. pylori is able to polyclonally activate murine CD4(+) T lymphocytes, irrespective of their antigen specificity. Murine T helper cell clones as well as short-term cultured, polyclonal Th1 and Th2 cell lines and a human T cell clone, but not naive CD4(+) T cells, could be activated in this manner. The effect was independent of antigen-presenting cells and required direct contact between H. pylori and T cells. Only whole cells of H. pylori, but not lysates or sonicates were able to activate T cells. The activity was lost after long-term culture of H. pylori on agar-plates. Degradation of H. pylori proteins with specific peptidases dramatically reduced the stimulating ability, implicating that the responsible molecule is likely to be a protein. This unexpected polyclonal T cell stimulatory mechanism may contribute to the T cell-mediated pathogenicity characteristic for H. pylori-mediated diseases.  相似文献   

3.
Cytotoxic CD8(+) T cells are key mediators of viral clearance during primary infection through their production of IFN-gamma and lysis of virally infected cells. Comparatively, the cytokines IL-4 and IL-13 are typically associated with the development of Th2 immune responses against allergens and parasites, while their influence on cytotoxic CD8(+) T cell responses is controversial. We have investigated the roles of IL-4 and IL-13 in the development of CD8(+) T cell responses against influenza infection. We show that in the absence of either IL-4 or IL-13, CD8(+) T cells proliferated and a normal secondary cytotoxic response developed in vitro. In striking contrast, the absence of IL-4Ralpha resulted in impaired ex vivo proliferation and consequently no secondary CTL activity, whereas the in vivo response appeared normal. We show that the presence of CD4(+) T cell help, or the addition of exogenous IL-2 in vitro, restored the response. Taken together, this work reveals previously unrecognized in vivo redundancies between IL-4, IL-13 and IL-2 during immune responses against influenza virus.  相似文献   

4.
5.
Cytomegalovirus (CMV) infects a majority of the human population and establishes a life‐long persistence. CMV infection is usually asymptomatic but the virus carries pathogenic potential and causes severe disease in immunocompromised individuals. T‐cell‐mediated immunity plays an essential role in control of CMV infection and adoptive transfer of CMV‐specific CD8+ T cells restores viral immunity in immunosuppressed patients but a role for CD4+ T cells remains elusive. Here, we analyzed in adoptive transfer studies the features and antiviral functions of virus‐specific CD4+ T cells during primary murine CMV (MCMV) infection. MCMV‐specific CD4+ T cells expanded upon MCMV infection and displayed an effector phenotype and function. Adoptive transfer of in vivo activated MCMV‐specific CD4+ T cells to immune‐compromised mice was protective during pathogenic MCMV infection and IFN‐γ was a crucial mediator of this protective capacity. Moreover, co‐transfer of low doses of both MCMV‐specific CD4+ T cells and CD8+ T cells synergized in control of lytic viral replication in immune‐compromised mice. Our data reveal a pivotal antiviral role for virus‐specific CD4+ T cells in protection from pathogenic CMV infection and provide evidence for their antiviral therapeutic potential.  相似文献   

6.
Syngeneic graft-vs.-host disease (SGVHD) develops in rodents following the treatment of lethally irradiated, bone marrow (BM) reconstituted animals with a short course of the immunosuppressive agent cyclosporine A (CsA). Using an in vivo depletion approach, we recently demonstrated that CD4(+), but not CD8(+), T cells participated in inducing SGVHD. Studies were therefore undertaken to adoptively transfer SGVHD into lethally irradiated, syngeneic BM reconstituted secondary recipients. Whole T cell populations as well as purified CD4(+)T cells isolated from SGVHD, but not normal or transplant control, animals mediated the transfer of SGVHD into secondary recipients. These cells have an apparent specificity for enteric bacterial antigens. The pathologic process that developed was identical to that observed in the animals with de novo SGVHD after syngeneic BMT and CsA therapy. It was shown that a radiation-sensitive mechanism prevented the transfer of SGVHD into normal, nonirradiated secondary recipients. The ability to reproducibly transfer SGVHD into secondary recipients will enhance our ability to study regulatory mechanisms that are altered during CsA therapy and permit the development of murine CsA-induced SGVHD.  相似文献   

7.
Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of gastric cancer and peptic ulcer disease. H. pylori secretes a toxin, VacA, that targets human gastric epithelial cells and T lymphocytes and enhances the ability of H. pylori to colonize the stomach in a mouse model. To examine how VacA contributes to H. pylori colonization of the mouse stomach, we investigated whether murine T lymphocytes were susceptible to VacA activity. VacA inhibited interleukin-2 (IL-2) production by a murine T-cell line (LBRM-33), similar to its effects on a human T-cell line (Jurkat), but did not inhibit IL-2 production by primary murine splenocytes or CD4+ T cells. VacA inhibited activation-induced proliferation of primary human CD4+ T cells but did not inhibit the proliferation of primary murine CD4+ T cells. Flow cytometry studies indicated that the levels of VacA binding to primary murine CD4+ T cells were significantly lower than levels of VacA binding to human CD4+ T cells. This suggests that the resistance of primary murine CD4+ T cells to VacA is attributable, at least in part, to impaired VacA binding to these cells.  相似文献   

8.
CD4+CD25+调节性T细胞和TLRs在幽门螺杆菌 免疫逃逸中的作用   总被引:1,自引:0,他引:1  
宿主感染幽门螺杆菌(H.pylori)后,会产生炎症反应和免疫反应,但宿主不能完全清除H.pylori,原因之一为H.pylori可逃逸宿主免疫形成持续慢性感染。H.pylori免疫逃逸机制尚不明确,目前此机制研究热点为CD4+CD25+调节性T细胞和TLRs在H.pylori免疫逃逸中的作用。  相似文献   

9.
The pathogenesis associated with Helicobacter pylori infection is the result of both bacterial factors and the host response. We have previously shown that H. pylori binds to CD74 on gastric epithelial cells. In this study, we sought to identify the bacterial protein responsible for this interaction. H. pylori urease from a pool of bacterial surface proteins was found to coprecipitate with CD74. To determine how urease binds to CD74, we used recombinant urease A and B subunits. Recombinant urease B was found to bind directly to CD74 in immunoprecipitation and flow cytometry studies. By utilizing both recombinant urease subunits and urease B knockout bacteria, the urease B-CD74 interaction was shown to induce NF-κB activation and interleukin-8 (IL-8) production. This response was decreased by blocking CD74 with monoclonal antibodies. Further confirmation of the interaction of urease B with CD74 was obtained using a fibroblast cell line transfected with CD74 that also responded with NF-κB activation and IL-8 production. The binding of the H. pylori urease B subunit to CD74 expressed on gastric epithelial cells presents a novel insight into a previously unrecognized H. pylori interaction that may contribute to the proinflammatory immune response seen during infection.  相似文献   

10.
Helicobacter pylori colonizes the gastric and duodenal mucosa. The infection normally persists for life and causes peptic ulcers and gastric cancer in a subset of infected individuals. We hypothesized that the inability to clear the infection may be a consequence of H. pylori-specific regulatory T cells that actively suppress T-cell responses. Therefore, we characterized the T-cell responses to H. pylori in H. pylori-infected individuals without any subjective symptoms and in uninfected control subjects and investigated the role of regulatory CD4+ CD25(high) T cells during infection. The stimulation of CD4+ peripheral blood T cells with monocyte-derived dendritic cells pulsed with a membrane preparation of H. pylori resulted in proliferation and gamma interferon production in both infected and uninfected individuals. Sorted memory cells from infected individuals responded less than cells from uninfected subjects, and the unresponsiveness could be abolished by depletion of CD4+ CD25(high) regulatory T cells or the addition of interleukin 2. Furthermore, CD4+ CD25(high) T cells suppressed H. pylori-induced responses in cocultures with CD25(low/-) cells. Tetanus toxoid induced comparable responses in memory cells from infected and uninfected individuals in both the presence and the absence of regulatory T cells, suggesting that the suppression was H. pylori specific. In conclusion, we have shown that H. pylori-infected individuals have impaired memory CD4+ T-cell responses to H. pylori that are linked to the presence of H. pylori-specific regulatory T cells that actively suppress the responses.  相似文献   

11.
12.
CD4+CD25+ regulatory T cells play an important role in peripheral tolerance. Upon T cell receptor (TCR)-mediated activation, the cells fail to proliferate but are induced to have a suppressor function. The intracellular signaling events that lead to their responses have not been elucidated. In this study, we have examined the proximal TCR signaling events in freshly isolated human CD4+CD25+ regulatory T cells after TCR ligation. In contrast to CD4+CD25- T cells, TCR ligation of CD4+CD25+ regulatory T cells by anti-CD3 cross-linking resulted in a lower calcium influx and extracellular signal-regulated kinase 1/2 phosphorylation. Examination of the CD3zeta chain phosphorylation status indicated that CD4+CD25+ regulatory T cells have poor phosphorylation of the protein and consequently, reduced recruitment of zeta-associated protein-70 to the TCR immunoreceptor tyrosine motif. The adaptor protein, Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa, which relays signals to downstream signaling components, also showed reduced phosphorylation, which correlated with reduced VAV guanine nucleotide exchange factors association. Consistent with other findings, the defect is accompanied with impaired actin cap formation, implicating a failure of actin remodeling of the cells. Together, our results demonstrate that CD4+CD25+ regulatory T cells have altered TCR proximal signaling pathways, which could be critical for inducing the distinct behavior of these cells.  相似文献   

13.
14.
Following allergen exposure, sensitized Brown-Norway rats develop airway hyperresponsiveness (AHR) and eosinophilic inflammation together with an increase in activated T cells (CD25+) in the airways. We tested the hypothesis that CD4+ T cells are involved directly in the acquisition of AHR. Spleen T cells from animals that were injected intraperitoneally on three consecutive days with ovalbumin/Al(OH)3, showed a dose-dependent proliferative response in vitro to ovalbumin, but not to bovine serum albumin, as measured by [3H]thymidine uptake. For total T-cell transfer, spleen cells obtained from donor rats 4 days after sensitization were depleted of adherent cells by a nylon wool column separation. CD4+ and CD8+ T cells were purified by immunomagnetic beads cell separation. Recipient naive rats were injected intravenously with 50 x 10(6) total T cells, 20 x 10(6) and 5 x 10(6) CD4+ cells, and 5 x 10(6) CD8+ cells, and were exposed to ovalbumin aerosol 24 hr afterwards. After a further 24 hr, airway responsiveness to acetylcholine (ACh) was measured and provocative concentration (PC) values PC100, PC200 and PC300) (the ACh concentration needed to achieve 100, 200 and 300% increase in lung resistance above baseline) were calculated. Airway responsiveness was significantly increased in recipients of sensitized total T cells compared with recipients of cells from saline-injected donor rats (P < 0.05). There were significantly increased eosinophil major basic protein (MBP)+ cell counts/mm2 in airway submucosal tissue in the hyperreactive rats and a significant correlation was found between the number of MBP+ cells and PC100 (r = 0.75; P < 0.03) in recipients of sensitized total T cells. Purified CD4+ T cells from sensitized donors induced AHR in naive recipients (P < 0.05), while sensitized CD8+ and naive CD4+ cells failed to do so. Our data indicate that T cells may induce AHR through an eosinophilic airway inflammation and that CD4+ T cells may have a direct effect in this process in Brown-Norway rats.  相似文献   

15.
Maintenance of homeostasis in the immune system involves competition for resources between T lymphocytes, which avoids the development of immune pathology seen in lymphopenic mice. CD25+ CD4+ T cells are important for homeostasis, but there is as yet no consensus on their mechanisms of action. Although CD25+ CD4+ T cells cause substantial down-regulation of IL-2 mRNA in responder T cells in an in vitro co-culture system, the presence of IL-protein can be demonstrated by intracellular staining. As a consequence of competition for IL-2, CD25+ CD4+ T cells further up-regulate the IL-2R alpha chain (CD25), a process that is strictly dependent on IL-2, whereas responder T cells fail to up-regulate CD25. Similarly, adoptive transfer into lymphopenic mice showed that CD25+ CD4+ T cells interfere with CD25 up-regulation on co-transferred naive T cells, while increasing their own CD25 levels. IL-2 sequestration by CD25+ CD4+ T cells is not a passive phenomenon but instead initiates--in conjunction with signals through the TCR--their differentiation to IL-10 production. Although IL-10 is not required for in vitro suppression, it is vital for the in vivo function of regulatory T cells. Our data provide a link explaining the apparent difference in regulatory mechanisms in vitro and in vivo.  相似文献   

16.
Interleukin-18 (IL-18), a unique cytokine that stimulates both T helper 1 (Th1) and Th2 responses, is associated with acute graft-versus-host disease (aGVHD), the major limiting toxicity following allogeneic stem cell transplantation. Here, we investigated the mechanism underlying the upregulation of IL-18 receptor (IL-18R) expression on T cells in murine aGVHD models. The induction of aGVHD elevated host serum IL-12 levels and increased expression of IL-18Ralpha chain (IL-18Ralpha) on engrafted T cells, in particular on CD8+ T cells. However, IL-18Ralpha expression did not increase on the CD4+ T cells of an IL-12-deficient host, indicating the IL-12-dependent upregulation of IL-18Ralpha expression on CD4+ T cells during aGVHD. Purified donor CD8+ T cells transferred in the host increased IL-18Ralpha expression. In vitro experiments showed that IL-18Ralpha expression upregulated on CD8+ T cells but not on CD4+ T cells on stimulation through the T cell receptor (TCR). These results suggest that IL-18Ralpha expression is differentially upregulated between CD4+ and CD8+ T cells during aGVHD, depending on endogenous IL-12 and TCR engagement, respectively.  相似文献   

17.
18.
Helicobacter pylori infection causes chronic gastritis that may progress to peptic ulcers or gastric adenocarcinoma and thereby cause major world-wide health problems. Previous studies have shown that CD4+ T cells are important in the immune response to H. pylori in humans, but the role of CD8+ T cells is less clear. In order to study the CD8+ T cell response to H. pylori in greater detail, we have evaluated efficient conditions for activation of CD8+ T cells in vitro. We show that H. pylori-reactive CD8+ T cells can be activated most efficiently by B cells or dendritic cells pulsed with H. pylori antigens. We further show that the majority of CD8+ T cells in H. pylori-infected gastric mucosa are memory cells, and that memory CD8+ T cells sorted from peripheral blood of H. pylori-infected individuals respond 15-fold more to H. pylori urease compared to memory cells from uninfected subjects. We conclude that CD8+ T cells do participate in the immune response to H. pylori, and this may have implications for the development of more severe disease outcomes in H. pylori-infected subjects.  相似文献   

19.
Signaling through the T cell receptor must be accompanied by costimulatory signals for the differentiation of naive T cells to cytokine-producing effector T helper cells. The costimulatory signal through CD28 is required for T cell activation resulting in increased interleukin (IL)-2 production in vitro, but its role in the production of IL-4 and in the in vivo response is still unclear. We have examined the effects of blocking CTLA-4 (the CD28 homologue) ligand interactions on the in vivo development of IL-4-producing T helper effector cells during a primary mucosal immune response to the nematode parasiteHeligmosomoides polygyrus and during a primary systemic immune response to immunogenic anti-IgD antibodies. Our results demonstrate that CD28 and/or CTLA-4 signaling is required for T cell priming leading to IL-4 cytokine production, B cell activation, and IgE secretion during both immune responses, suggesting that other signaling molecules do not substitute for these molecules in either of these two different immune responses. Furthermore, the CD28 ligands, B7-1 and B7-2, can substitute for each other in providing the required T cell costimulatory ligand interactions during the primary immune response toH. polygyrus. In contrast, memory T cells during the challenge immune response do not require CD28/CTLA-4 ligand interactions for TL-4 production and T helper effector function. *** DIRECT SUPPORT *** A02GS028 00003  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号