首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comorbidity of holoprosencephaly (HPE) and congenital heart disease (CHD) in individuals with genetic variants in known HPE‐related genes has been recurrently observed. Morphogenesis of the brain and heart from very early stages are regulated by several biological pathways, some of them involved in both heart and brain development as evidenced by genetic studies on model organisms. For instance, downregulation of Hedgehog or Nodal signaling pathways, both known as major triggers of HPE, has been shown to play a role in the pathogenesis of CHD, including structural defects and left–right asymmetry defects. In this study, individuals with various types of HPE were investigated clinically and by genomic sequencing. Cardiac phenotypes were assessed in 434 individuals with HPE who underwent targeted sequencing. CHDs were identified in 8% (n = 33) of individuals, including 10 (30%) cases of complex heart disease. Only four individuals (4/33) had damaging variants in the known HPE genes STAG2, SIX3, and SHH. Interestingly, no CHD was identified in the 37 individuals of our cohort with pathogenic variants in ZIC2. These findings suggest that CHD occurs more frequently in HPE‐affected individuals with or without identifiable genetic variants, and this co‐occurrence may be genetically driven and gene‐specific.  相似文献   

2.
Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi-exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse-shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007–0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype.  相似文献   

3.
The birth prevalence of laterality defects is about 1.1/10,000 comprising different phenotypes ranging from situs inversus totalis to heterotaxy, mostly associated with complex congenital heart defects (CHD) and situs abnormalities such as intestinal malrotation, biliary atresia, asplenia, or polysplenia. A proportion of laterality defects arise in the context of primary ciliary dyskinesia (PCD) accompanied by respiratory symptoms or infertility. In this study, exome sequencing (ES) was performed in 14 case-parent trios/quattros with clinical exclusion of PCD prior to analysis. Moreover, all cases and parents underwent detailed clinical phenotyping including physical examination, echocardiography by a skilled paediatric cardiologist and abdominal ultrasound examinations not to miss mildly affected individuals. Subsequent survey of the exome data comprised filtering for monoallelic de novo, rare biallelic, and X-linked recessive variants. In two families, rare variants of uncertain significance (VUS) in PKD1L1 and ZIC3 were identified. Both genes have been associated with laterality defects. In two of the remaining families, biallelic variants in LMBRD1 and DNAH17, respectively, were prioritized. In another family, an ultra-rare de novo variant in WDR47 was found. Extensive exome survey of 2,109 single exomes of individuals with situs inversus totalis, heterotaxy, or isolated CHD identified two individuals with novel monoallelic variants in WDR47, but no further individuals with biallelic variants in DNAH17 or LMBRD1. Overall, ES of 14 case-parent trios/quattros with cardiovascular laterality defects identified rare VUS in two families in known disease-associated genes PKD1L1 and ZIC3 and suggests DNAH17, LMBRD1, and WDR47 as potential genes involved in laterality defects.Subject terms: Disease genetics, Genetic counselling, Biological sciences  相似文献   

4.
The phenotypic spectrum associated with heterozygous mutations in cartilage oligomeric matrix protein gene (COMP) range from a mild form of multiple epiphyseal dysplasia (MED) to pseudoachondroplasia (PSACH). However, the phenotypic effect from biallelic COMP variants is unclear. We investigated a large consanguineous Pakistani family with a severe form of PSACH in 2 individuals. Another 14 family members presented with a mild PSACH phenotype similar to MED. Using exome sequencing and subsequent segregation analysis, we identified homozygosity for a COMP missense variant [c.1423G>A; p.(D475N)] in the 2 severely affected individuals, whereas family members with the mild PSACH phenotype were heterozygous. Our observations show for the first time that a biallelic COMP variant may be associated with pronounced and widespread skeletal malformations suggesting an additive effect of the 2 mutated alleles.  相似文献   

5.
6.
内脏异位是由于左右非对称性发育异常所致,常与胸腹腔器官的异常偏侧化有关。心脏经常受累,且心脏受累的严重程度通常决定其预后效果。内脏异位患者有特征性的心血管畸形、内脏器官的异常排列以及中线结构发育畸形。在内脏异位患者中第一个被发现有突变的基因是编码锌指转录因子的ZIC3。很多研究证实,ZIC3突变可导致X连锁内脏异位,而且在孤立性先心病中也发现了ZIC3的突变。至今,在内脏异位患者中发现有13个ZIC3突变,其中包括无义突变、错义突变、沉默突变、移码突变以及易位突变等。然而,ZIC3基因在内脏异位,特别是伴复杂先心病中的致病机理仍不是很清楚。本文就ZIC3结构、作用、突变以及其在内脏异位伴先心病中的研究现状及存在的问题做一综述。  相似文献   

7.
CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.  相似文献   

8.
9.
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left–right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left–right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.  相似文献   

10.
Li-Campeau syndrome (LICAS) is an autosomal recessive disorder characterized by developmental delay, intellectual disability, genital anomalies, congenital heart defects, and dysmorphic features. LICAS is caused by biallelic pathogenic variants in the UBR7 gene, acting as an E3 ubiquitin-protein ligase. Using exome sequencing (ES), we identified a homozygous novel pathogenic splice site variation c.1185+1G>C in UBR7 in a 32-month-old male from a nonconsanguineous Turkish family with clinical features of LICAS. Sanger sequencing revealed the heterozygous state of parents for this variant and confirmed the co-segregation study. The variant may lead to the loss of function of UBR7 and is in a highly conserved residue. Bioinformatic prediction analysis using in silico algorithms supports the pathogenic effect of the splice site variant in the UBR7.  相似文献   

11.
12.
Congenital heart defect is one of the most common structural birth defects in the human population. It is highly associated with heterotaxy, a birth defect involving randomized left–right patterning of visceral organ situs. Large scale mouse forward genetics have led to the finding of a central role for cilia in CHD pathogenesis, with some cilia and non‐cilia mutations causing CHD with heterotaxy. Interestingly, many of the mutations causing CHD with heterotaxy can give rise to three laterality outcomes comprising normal situs solitus, mirror symmetric situs inversus totalis, or randomized situs with heterotaxy. Given CHD is largely observed only with heterotaxy, this suggests a new paradigm is needed for investigating the genetics of CHD associated with heterotaxy. Furthermore, analysis of data from multiple large birth cohorts have independently confirmed a broader involvement of laterality disturbance in CHD. This was demonstrated by the common cooccurrence of rare laterality defects with CHD lesions of a wide spectrum. These findings suggest left–right patterning is tightly intertwined with the developmental processes that regulate cardiac morphogenesis and its disturbance may contribute to all types of CHD even in the absence of laterality defects.  相似文献   

13.
Infantile hereditary lower motor neuron disorders beyond 5q–spinal muscular atrophy (5q‐SMA) are usually caused by mutations other than deletions or mutations in SMN1. In addition to motor neuron degeneration, further neurologic or multisystemic pathologies in non‐5q‐SMAs are not seldom. Some of the non‐5q‐SMA phenotypes, such as pontocerebellar hypoplasia (PCH1), have been classified later as a different disease group due to distinctive primary pathologies. Likewise, a novel phenotype, childhood‐onset neurodegeneration with cerebellar atrophy (CONDCA) has been described recently in individuals with lower motor neuron disorder and cerebellar atrophy due to biallelic loss‐of‐function variants in AGTPBP1 that encodes cytosolic carboxypeptidase 1 (CCP1). Here we present two individuals with CONDCA in whom a biallelic missense AGTPBP1 variant (NM_001330701.1:c.2396G>T, p.Arg799Leu) was identified by whole exome sequencing. Affected individuals in this report correspond to the severe infantile spectrum of the disease and underline the severe pathogenic effect of this missense variant. This report is the second in the literature that delineates the pathogenic effects of biallelic AGTPBP1 variants presenting the recently described CONDCA disease.  相似文献   

14.
Oculogastrointestinal neurodevelopmental syndrome has been described in seven previously published individuals who harbor biallelic pathogenic variants in the CAPN15 gene. Biallelic missense variants have been reported to demonstrate a phenotype of eye abnormalities and developmental delay, while biallelic loss of function variants exhibit phenotypes including microcephaly and craniofacial abnormalities, cardiac and genitourinary malformations, and abnormal neurologic activity. We report six individuals from three unrelated families harboring biallelic deleterious variants in CAPN15 with phenotypes overlapping those previously described for this disorder. Of the individuals affected, four demonstrate radiographic evidence of the classical triad of Dandy–Walker malformation including hypoplastic vermis, fourth ventricle enlargement, and torcular elevation. Cerebellar anomalies have not been previously reported in association with CAPN15-related disease. Here, we present three unrelated families with findings consistent with oculogastrointestinal neurodevelopmental syndrome and cerebellar pathology including Dandy–Walker malformation. To corroborate these novel clinical findings, we present supporting data from the mouse model suggesting an important role for this protein in normal cerebellar development. Our findings add six molecularly confirmed cases to the literature and additionally establish a new association of Dandy–Walker malformation with biallelic CAPN15 variants, thereby expanding the neurologic spectrum among patients affected by CAPN15-related disease.  相似文献   

15.
《Genetics in medicine》2018,20(9):1022-1029
PurposeCHARGE syndrome is an autosomal-dominant, multiple congenital anomaly condition characterized by vision and hearing loss, congenital heart disease, and malformations of craniofacial and other structures. Pathogenic variants in CHD7, encoding adenosine triphosphate–dependent chromodomain helicase DNA binding protein 7, are present in the majority of affected individuals. However, no causal variant can be found in 5–30% (depending on the cohort) of individuals with a clinical diagnosis of CHARGE syndrome.MethodsWe performed whole-exome sequencing (WES) on 28 families from which at least one individual presented with features highly suggestive of CHARGE syndrome.ResultsPathogenic variants in CHD7 were present in 15 of 28 individuals (53.6%), whereas 4 (14.3%) individuals had pathogenic variants in other genes (RERE, KMT2D, EP300, or PUF60). A variant of uncertain clinical significance in KDM6A was identified in one (3.5%) individual. The remaining eight (28.6%) individuals were not found to have pathogenic variants by WES.ConclusionThese results demonstrate that the phenotypic features of CHARGE syndrome overlap with multiple other rare single-gene syndromes. Additionally, they implicate a shared molecular pathology that disrupts epigenetic regulation of multiple-organ development.  相似文献   

16.
17.
18.
Pulmonary arterial hypertension (PAH) is a disease characterized by pathological remodeling of the pulmonary vasculature causing elevated pulmonary artery pressures and ultimately, right ventricular failure from chronic pressure overload. Heterozygous pathogenic GDF2 (encoding bone morphogenetic protein 9 (BMP9)) variants account for some (>1%) adult PAH cases. Only three pediatric PAH cases, harboring homozygous or compound heterozygous variants, are reported to date. Ultra-rare pathogenic GDF2 variants are reported in hereditary hemorrhagic telangiectasia and overlapping disorders characterized by telangiectasias and arteriovenous malformations (AVMs). Here, we present two siblings with PAH homozygous for a GDF2 mutation that impairs BMP9 proprotein processing and reduces growth factor domain availability. We confirm an absence of measurable plasma BMP9 whereas BMP10 levels are detectable and serum-dependent endothelial BMP activity is evident. This contrasts with the absence of activity which we reported in two children with homozygous pathogenic GDF2 nonsense variants, one with PAH and one with pulmonary AVMs, both with telangiectasias, suggesting loss of BMP10 and endothelial BMP activity in the latter may precipitate telangiectasia development. An absence of phenotype in related heterozygous GDF2 variant carriers suggests incomplete penetrance in PAH and AVM-related diseases, indicating that additional somatic and/or genetic modifiers may be necessary for disease precipitation.  相似文献   

19.
Although over 50 genes are known to cause renal malformation if mutated, the underlying genetic basis, most easily identified in syndromic cases, remains unsolved in most patients. In search of novel causative genes, whole-exome sequencing in a patient with renal, i.e., crossed fused renal ectopia, and extrarenal, i.e., skeletal, eye, and ear, malformations yielded a rare heterozygous variant in the GDF6 gene encoding growth differentiation factor 6, a member of the BMP family of ligands. Previously, GDF6 variants were reported to cause pleiotropic defects including skeletal, e.g., vertebral, carpal, tarsal fusions, and ocular, e.g., microphthalmia and coloboma, phenotypes. To assess the role of GDF6 in the pathogenesis of renal malformation, we performed targeted sequencing in 193 further patients identifying rare GDF6 variants in two cases with kidney hypodysplasia and extrarenal manifestations. During development, gdf6 was expressed in the pronephric tubule of Xenopus laevis, and Gdf6 expression was observed in the ureteric tree of the murine kidney by RNA in situ hybridization. CRISPR/Cas9-derived knockout of Gdf6 attenuated migration of murine IMCD3 cells, an effect rescued by expression of wild-type but not mutant GDF6, indicating affected variant function regarding a fundamental developmental process. Knockdown of gdf6 in Xenopus laevis resulted in impaired pronephros development. Altogether, we identified rare heterozygous GDF6 variants in 1.6% of all renal anomaly patients and 5.4% of renal anomaly patients additionally manifesting skeletal, ocular, or auricular abnormalities, adding renal hypodysplasia and fusion to the phenotype spectrum of GDF6 variant carriers and suggesting an involvement of GDF6 in nephrogenesis.Subject terms: Genetics research, Mutation, Development, Medical genetics  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号