首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the effects of 18 months of treatment with teriparatide in patients previously treated with long-term antiresorptive therapy using bone turnover markers and bone densitometry. Previous raloxifene treatment allowed for teriparatide-induced early bone marker and BMD increases comparable with previously published results for treatment-n?ive patients. Conversely, previous alendronate treatment reduced the bone marker and BMD response. INTRODUCTION: Teriparatide [rhPTH(1-34)] has been shown to increase BMD and reduce the risk of fracture in postmenopausal women with osteoporosis. Our objective was to investigate the skeletal effects of 18 months of treatment with teriparatide in women whose osteoporosis was previously treated with either alendronate or raloxifene. MATERIALS AND METHODS: Daily subcutaneous injections of 20 microg teriparatide were administered for 18 months to 59 postmenopausal women, 60-87 years of age, with BMD T-scores 相似文献   

2.
Osteogenesis imperfecta (OI) is a hereditary disease characterized by low bone mass, increased bone fragility, short stature, and skeletal deformities. This study focuses on OI type I, the mildest form of the disease. Bisphosphonates represent the prevailing standard of care in patients with OI. Teriparatide (TPD) is a PTH analog with bone-anabolic actions which has been approved for osteoporosis treatment. Thirteen postmenopausal women with type I OI who had been on treatment with neridronate for at least 2 years and who incurred new vertebral fracture during treatment were treated with TPD for 18 months. Bone mineral density (BMD) increased significantly over 18 months up to 3.5 % at the lumbar spine (p = 0.001), while no significant changes were noted in hip BMD. Serum markers of bone formation and of bone resorption increased significantly during the treatment. The Wnt inhibitors serum dickkopf-1 (DKK1) and sclerostin were also measured. A nonsignificant increase was seen in serum sclerostin levels, while serum DKK1 rose gradually and significantly during TPD treatment. In patients affected by type I OI, TPD treatment is associated with a remarkable response in markers of bone formation. This suggests a normal osteoblastic response to TPD. However, the observed increases in BMD were somewhat lower than those in postmenopausal or senile osteoporosis treated with TPD for the same lag time. Our results open the possibility to develop TPD for the treatment of adult type I OI, but particularly for the lack of a control group, a properly designed controlled study is warranted.  相似文献   

3.
Gallagher JC  Rosen CJ  Chen P  Misurski DA  Marcus R 《BONE》2006,39(6):1268-1275
PURPOSE: It is desirable for clinicians to know what bone mineral density (BMD) response they can expect in women treated with osteoporosis therapies. The focus of this analysis was to determine what percentage of women attained a lumbar spine BMD response to teriparatide that equaled or exceeded the least significant change (LSC) value of 3%. METHODS: Data from three clinical trials involving postmenopausal women with osteoporosis were examined. The Fracture Prevention Trial was a double-blinded, placebo-controlled clinical trial examining the safety and efficacy of teriparatide 20 and 40 microg/day. The other two trials were double-blinded, head-to-head comparisons of alendronate 10 mg/day and teriparatide 20 or 40 microg/day, respectively. Only treatment-compliant women who had lumbar spine BMD measurements at all specified time points in these trials were included. For reference, we also examined the percentage of women with lumbar spine BMD responses to alendronate. Hip BMD responses that equaled or exceeded 3% were also examined. RESULTS: According to the LSC criteria, 91% of the teriparatide 20 microg/day group and 94% of the teriparatide 40 microg/day group were lumbar spine BMD responders at 18 months in the Fracture Prevention Trial. In the teriparatide 20 microg/alendronate head-to-head trial, 94% of women receiving teriparatide had a lumbar spine BMD response that equaled or exceeded the 3% criterion at 18 months compared to 75% of those receiving alendronate 10 mg/day (p < 0.01). In the teriparatide 40 microg/day group of the other head-to-head trial, 92% of women achieved the 3% criterion for the lumbar spine at 12 months compared to 69% of those receiving alendronate 10 mg/day (p < 0.01). The median 3-month change in amino-terminal extension peptide of procollagen type 1 [PINP] in women who had a lumbar spine BMD response to teriparatide at 18 months was larger than in women who did not have a lumbar spine BMD response. However, the median 3-month PINP change in lumbar spine BMD nonresponders still exceeded the LSC value of 10 microg/L. Although the percentage of teriparatide-treated women with a hip BMD response that met the 3% criterion was significantly greater than for placebo, there was no significant difference between the percentage of teriparatide 20 microg/day and alendronate 10 mg/day responders in the comparison trial. The baseline characteristics of teriparatide lumbar spine responders and nonresponders were similar. CONCLUSION: This analysis demonstrates that the vast majority of treatment-compliant postmenopausal women with osteoporosis and minimal prior bisphosphonate exposure have a lumbar spine BMD response to teriparatide that meets or exceeds the LSC. The characteristics of teriparatide responders and nonresponders were not significantly different; thus, we were unable to discern any characteristics that could be used to identify potential nonresponders.  相似文献   

4.

Summary

We report the changes in biochemical markers of bone formation during the first 6?months of teriparatide therapy in postmenopausal women with osteoporosis according to previous antiresorptive treatment. Prior therapy does not adversely affect the response to teriparatide treatment. Similar bone markers levels are reached after 6?months of treatment.

Introduction

The response of biochemical markers of bone turnover with teriparatide therapy in subjects who have previously received osteoporosis drugs is not fully elucidated. We examined biochemical markers of bone formation in women with osteoporosis treated with teriparatide and determined: (1) whether the response is associated with prior osteoporosis therapy, (2) which marker shows the best performance for detecting a response to therapy, and (3) the correlations between early changes in bone markers and subsequent bone mineral density (BMD) changes after 24?months of teriparatide.

Methods

We conducted a prospective, open-label, 24-month study at 95 centers in 10 countries in 758 postmenopausal women with established osteoporosis (n?=?181 treatment-na?ve) who had at least one post-baseline bone marker determination. Teriparatide (20 ??g/day) was administered for up to 24?months. We measured procollagen type I N-terminal propeptide (PINP), bone-specific alkaline phosphatase (b-ALP), and total alkaline phosphatase (t-ALP) at baseline, 1 and 6?months, and change in BMD at the lumbar spine, total hip and femoral neck from baseline to 24?months.

Results

Significant increases in formation markers occurred after 1?month of teriparatide regardless of prior osteoporosis therapy. The absolute increase at 1?month was lower in previously treated versus treatment-na?ve patients, but after 6?months all groups reached similar levels. PINP showed the best signal-to-noise ratio. Baseline PINP correlated positively and significantly with BMD response at 24?months.

Conclusions

This study suggests that the long-term responsiveness of bone formation markers to teriparatide is not affected in subjects previously treated with antiresorptive drugs.  相似文献   

5.
This study compared the clinical efficacy, safety, and tolerability of daily subcutaneous injections of teriparatide and salmon calcitonin in the treatment of postmenopausal women with established osteoporosis in Taiwan. This 6-month, multicenter, randomized, controlled study enrolled 63 women with established osteoporosis. They were randomized to receive either teriparatide 20 μg or calcitonin 100 IU daily in an open-label fashion. Lumber spine, femoral neck, total hip bone mineral density (BMD), and biochemical markers of bone turnover were measured, and adverse events and tolerability were recorded. The results at 6 months showed that patients using teriparatide had larger mean increases in spinal BMD than those who used calcitonin (4.5% vs. 0.1%), but the BMD changes in these two groups at the femoral neck and the total hip were not significant. There were also larger mean increases in bone markers in the teriparatide group than in the calcitonin group (bone specific alkaline phosphatase 142% vs. 37%; osteocalcin 154% vs. 23%). We conclude that teriparatide has more positive effects on bone formation than salmon calcitonin, as shown by the larger increments of lumbar spine BMD and bone formation markers, and caused only mild adverse events and no significant change in liver, kidney or hematological parameters. Compared with the published global results, teriparatide seems to be equally effective and safe to use in this Asian population.  相似文献   

6.
In this previously reported multicenter study, teriparatide 20 μg/day was administered to elderly Japanese subjects (93 % female; median age 70 years) with osteoporosis and at high risk of fracture during a 12-month, randomized, double-blind, placebo-controlled period, which was followed by a 12 month treatment period in which all subjects received open-label teriparatide. Subjects were randomized 2:1 to teriparatide versus placebo (teriparatide n = 137, placebo-teriparatide n = 70). This was an exploratory analysis to determine whether the baseline status of serum bone turnover markers (BTMs) and vitamin D levels affect the efficacy of teriparatide at 20 μg/day. The BTMs included were type I procollagen N-terminal pro-peptide (P1NP) and type I collagen cross-linked C-telopeptide (CTX). Changes in BMD were analyzed by subgroups: (1) tertile subgroups of BTM; (2) BTM determined by the upper limit of normal; and (3) level of vitamin D. Teriparatide increased lumbar spine BMD in all subgroups by 10 % or more through 24 months. Subgroups with higher baseline BTM levels had greater mean percent changes of lumbar spine BMD through 24 months. The baseline status of vitamin D sufficiency did not impact the mean percent change of lumbar spine BMD through 24 months. Results of this study suggest that clinically significant increases in BMD can be achieved in patients receiving teriparatide regardless of baseline BTM or vitamin D levels. Additionally, when vitamin D is coadministered, vitamin D insufficiency would not be expected to affect the overall efficacy of teriparatide.  相似文献   

7.
This study aimed to evaluate the effects of teriparatide [hPTH (1–34)] on quantitative ultrasound (QUS) parameters and bone mineral density (BMD) at the axial and appendicular (hand) skeleton in women with established osteoporosis who had been previously treated with antiresorptive drugs. Sixty postmenopausal women (age 71.1±6.8 years) were randomly assigned to either receive once-daily 20-μg subcutaneous teriparatide (n=30) or continue the antiresorptive treatment (n=30). At baseline and at 2-month intervals we measured QUS parameters at the calcaneus using the Achilles Plus (GE, Lunar), measuring speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness index; QUS parameters at the phalanxes using the Bone Profiler (IGEA), measuring amplitude-dependent speed of sound (AD-SoS), bone transmission time (BTT), and fast wave amplitude (FWA); and BMD values at the right hand using dual x-ray absorptiometry. BMD at the lumbar spine, femur, and whole body were measured on a 6-monthly basis. After 1 year of teriparatide treatment, the changes in BMD were 7.1% at the lumbar spine, 2.6% at the femoral neck, −0.8% at the total hip, and −0.6% for the whole body. Teriparatide induced a significant and persistent decrease in BMD at the hand (−3.6% at month 6 and −2.7% at month 12). In the teriparatide group at month 12, AD-SoS was slightly increased (0.7%; not significant), whereas BTT significantly decreased (−16.4%, p<0.001) and FWA significantly increased (17.5%, p<0.001). The FWA/BTT ratio increased by 26.6% and 32.9% at months 6 and 12, respectively, in the teriparatide group and remained unchanged in the antiresorptive group. In women with established osteoporosis who had previously been treated with various antiresorptive drugs, 1 year of teriparatide treatment determined the expected increase in BMD at the axial skeleton and a significant and prolonged decrease in BMD at the hand. Moreover, teriparatide determined important changes in BTT and FWA, two parameters obtained from the analysis of ultrasonographic trace at the phalanxes, which could be considered in monitoring for the early effect of teriparatide on bone.  相似文献   

8.
Teriparatide is an anabolic therapy for osteoporosis approved in the United States since 2002 and European Union since 2003; however, approval in Japan lagged significantly. This report describes analyses based on International Conference on Harmonisation (ICH) E-5 guidelines that support bridging between Japanese studies and the large Fracture Prevention Trial (FPT). We analyzed data from single teriparatide doses in healthy Japanese and Caucasian postmenopausal women (J-PK) and from studies of 6 months [Phase 2, dose ranging (J-Ph2)] and 12 months [Phase 3, efficacy and safety (J-Ph3)] of randomized, placebo-controlled, once-daily treatment in Japanese subjects with osteoporosis. In J-PK, apparent teriparatide area-under-the-curve (AUC) and peak concentration (C (max)) were up to 40% higher in Japanese versus Caucasian women; however, body weight-adjusted values were comparable between populations; these findings were supported by population pharmacokinetic analyses. Between the FPT and Japanese studies, baseline demographic characteristics were similar but bone mineral density (BMD) at lumbar spine (L1-L4) and body weight were lower for Japanese subjects. With teriparatide 20 μg/day, significant increases in BMD were observed compared to placebo at 12 months in both the FPT and J-Ph3 study, and percent change and actual change in BMD were comparable between studies. Dose response at 6 months was also comparable across populations. No novel safety signals were identified in Japanese subjects. These analyses show that teriparatide clinical data met ICH E-5 criteria for bridging. Findings from foreign trials such as the FPT can thus be extrapolated to Japanese subjects treated with teriparatide 20 μg/day.  相似文献   

9.

Summary

Treatment effects over 2 years of teriparatide vs. ibandronate in postmenopausal women with osteoporosis were compared using lumbar spine bone mineral density (BMD) and trabecular bone score (TBS). Teriparatide induced larger increases in BMD and TBS compared to ibandronate, suggesting a more pronounced effect on bone microarchitecture of the bone anabolic drug.

Introduction

The trabecular bone score (TBS) is an index of bone microarchitecture, independent of bone mineral density (BMD), calculated from anteroposterior spine dual X-ray absorptiometry (DXA) scans. The potential role of TBS for monitoring treatment response with bone-active substances is not established. The aim of this study was to compare the effects of recombinant human 1–34 parathyroid hormone (teriparatide) and the bisphosphonate ibandronate (IBN), on lumbar spine (LS) BMD and TBS in postmenopausal women with osteoporosis.

Methods

Two patient groups with matched age, body mass index (BMI), and baseline LS BMD, treated with either daily subcutaneous teriparatide (N?=?65) or quarterly intravenous IBN (N?=?122) during 2 years and with available LS BMD measurements at baseline and 2 years after treatment initiation were compared.

Results

Baseline characteristics (overall mean ± SD) were similar between groups in terms of age 67.9?±?7.4 years, body mass index 23.8?±?3.8 kg/m2, BMD L1–L4 0.741?±?0.100 g/cm2, and TBS 1.208?±?0.100. Over 24 months, teriparatide induced a significantly larger increase in LS BMD and TBS than IBN (+7.6 %?±?6.3 vs. +2.9 %?±?3.3 and +4.3 %?±?6.6 vs. +0.3 %?±?4.1, respectively; P?<?0.0001 for both). LS BMD and TBS were only weakly correlated at baseline (r 2?=?0.04) with no correlation between the changes in BMD and TBS over 24 months.

Conclusions

In postmenopausal women with osteoporosis, a 2-year treatment with teriparatide led to a significantly larger increase in LS BMD and TBS than IBN, suggesting that teriparatide had more pronounced effects on bone microarchitecture than IBN.  相似文献   

10.
The relationship between early changes in biochemical markers of bone turnover and the subsequent BMD response to daily teriparatide therapy in women with postmenopausal osteoporosis was studied. Changes in five biochemical markers, obtained from a subset of women enrolled in the Fracture Prevention Trial, were examined. Early increases in the PICP and the PINP were the best predictors of BMD response to teriparatide in this analysis. INTRODUCTION: Early reductions in biochemical markers of bone turnover with antiresorptive therapy negatively correlate with subsequent increases in BMD. We undertook this analysis to determine if early changes in biochemical markers with teriparatide therapy predict subsequent increases in BMD. MATERIALS AND METHODS: In the Fracture Prevention Trial, 1637 postmenopausal women with osteoporosis were randomized to receive daily, self-administered, subcutaneous injections of placebo, teriparatide 20 microg/day, or teriparatide 40 microg/day. Serum concentrations of two bone formation markers (bone-specific alkaline phosphatase [bone ALP] and the carboxy-terminal extension peptide of procollagen type 1 [PICP]) and urinary concentrations of two bone resorption markers (free deoxypyridinoline [DPD] and N-terminal telopeptide [NTX]) were assessed in a trial population subset (n = 520) at baseline and at 1, 3, 6, and 12 months. We also assessed serum concentrations of another bone formation marker, the amino-terminal extension peptide of procollagen type 1 (PINP), in a subset of 771 women at baseline and 3 months. Lumbar spine (LS) BMD was measured by DXA at baseline and 18 months. Femoral neck BMD was measured at baseline and 12 months. RESULTS AND CONCLUSION: Baseline bone turnover status correlated positively and significantly with BMD response. The highest correlations occurred for the LS BMD response to teriparatide 20 microg/day. Among all studied biochemical markers, increases in PICP at 1 month and PINP at 3 months correlated best with increases in LS BMD at 18 months (0.65 and 0.61, respectively; p < 0.05). The relationships between these two biochemical markers and the LS BMD response were stronger than the corresponding relationships for the femoral neck BMD response. Using receiver operator curve analysis, we determined that the increases in PICP at 1 month and PINP at 3 months were the most sensitive and accurate predictors of the LS BMD response.  相似文献   

11.
Once-daily injections of teriparatide initially increase biochemical markers of bone formation and resorption, but markers peak after 6-12 months and then decline despite continued treatment. We sought to determine whether increasing teriparatide doses in a stepwise fashion could prolong skeletal responsiveness. We randomized 52 postmenopausal women with low spine and/or hip bone mineral density (BMD) to either a constant or an escalating subcutaneous teriparatide dose (30 μg daily for 18months or 20 μg daily for 6 months, then 30 μg daily for 6 months, and then 40 μg daily for 6 months). Serum procollagen I N-terminal propeptide, osteocalcin, and C-terminal telopeptide of type I collagen were assessed frequently. BMD of the spine, hip, radius, and total body was measured every 6 months. Acute changes in urinary cyclic AMP in response to teriparatide were examined in a subset of women in the constant dose group. All bone markers differed significantly between the two treatment groups. During the final six months, bone markers declined in the constant dose group but remained stable or increased in the escalating dose group (all markers, p<0.017). Nonetheless, mean area under the curve did not differ between treatments for any bone marker, and BMD increases were equivalent in both treatment groups. Acute renal response to teriparatide, as assessed by urinary cyclic AMP, did not change over 18 months of teriparatide administration. In conclusion, stepwise increases in teriparatide prevented the decline in bone turnover markers that is observed with chronic administration without altering BMD increases. The time-dependent waning of the response to teriparatide appears to be bone-specific.  相似文献   

12.
We compared combination treatment with teriparatide plus raloxifene with teriparatide alone in women with postmenopausal osteoporosis in a 6-month double-blind, placebo-controlled trial that measured biochemical markers of bone turnover and BMD. Markers of bone formation and spine BMD increased similarly with teriparatide alone and combination therapy. However, combination therapy induced a significantly smaller increase in bone resorption versus teriparatide alone and significantly increased total hip BMD versus baseline. INTRODUCTION: The effects of combining two approved treatments for osteoporosis with different modes of action were examined by comparing teriparatide [rhPTH(1-34)] monotherapy with combination teriparatide and raloxifene therapy. MATERIALS AND METHODS: A 6-month randomized, double-blind trial comparing teriparatide plus raloxifene (n = 69) versus teriparatide plus placebo (n = 68) was conducted in postmenopausal women with osteoporosis. RESULTS: Bone formation (N-terminal propeptide of type 1 collagen [PINP]) increased similarly in both treatment groups. However, the increase in bone resorption (serum C-terminal telopeptide of type I collagen [CTx]) in the combination group was significantly smaller than in the teriparatide-alone group (p = 0.015). Lumbar spine BMD significantly increased 5.19 +/- 0.67% from baseline in the teriparatide-alone group. In the combination group, lumbar spine (6.19 +/- 0.65%), femoral neck (2.23 +/- 0.64%), and total hip (2.31 +/- 0.56%) BMD significantly increased from baseline to study endpoint, and the increase in total hip BMD was significantly greater than in the teriparatide-alone group (p = 0.04). In the teriparatide-alone group, mean serum calcium levels increased from baseline to endpoint (0.30 +/- 0.06 mg/dl, p < 0.001), whereas mean serum phosphate remained unchanged. In the combination group, mean serum calcium was unchanged, and mean serum phosphate decreased (-0.20 +/- 0.06 mg/dl, p < 0.001) from baseline to endpoint. Changes in serum calcium (p < 0.001) and phosphate (p < 0.004) were significantly different between treatment groups. The safety profile of combination therapy was similar to teriparatide alone. CONCLUSIONS: Combination therapy increased bone formation to a similar degree as teriparatide alone. However, the increase in bone resorption was significantly less and total hip BMD significantly increased for combination therapy compared with teriparatide alone. Combination treatment with raloxifene may thus enhance the bone forming effects of teriparatide. Further studies over longer treatment duration that include fracture endpoints are necessary to fully ascertain the clinical significance of combination raloxifene plus teriparatide therapy in postmenopausal osteoporosis.  相似文献   

13.
Romosozumab is a monoclonal antibody that inhibits sclerostin and has been shown to reduce the risk of fractures within 12 months. In a phase II, randomized, placebo‐controlled clinical trial of treatment‐naïve postmenopausal women with low bone mass, romosozumab increased bone mineral density (BMD) at the hip and spine by the dual effect of increasing bone formation and decreasing bone resorption. In a substudy of that trial, which included placebo and teriparatide arms, here we investigated whether those observed increases in BMD also resulted in improvements in estimated strength, as assessed by finite element analysis. Participants received blinded romosozumab s.c. (210 mg monthly) or placebo, or open‐label teriparatide (20 μg daily) for 12 months. CT scans, obtained at the lumbar spine (n = 82) and proximal femur (n = 46) at baseline and month 12, were analyzed with finite element software (VirtuOst, O.N. Diagnostics) to estimate strength for a simulated compression overload for the spine (L1 vertebral body) and a sideways fall for the proximal femur, all blinded to treatment assignment. We found that, at month 12, vertebral strength increased more for romosozumab compared with both teriparatide (27.3% versus 18.5%; p = 0.005) and placebo (27.3% versus –3.9%; p < 0.0001); changes in femoral strength for romosozumab showed similar but smaller changes, increasing more with romosozumab versus teriparatide (3.6% versus –0.7%; p = 0.027), and trending higher versus placebo (3.6% versus ?0.1%; p = 0.059). Compartmental analysis revealed that the bone‐strengthening effects for romosozumab were associated with positive contributions from both the cortical and trabecular bone compartments at both the lumbar spine and hip. Taken together, these findings suggest that romosozumab may offer patients with osteoporosis a new bone‐forming therapeutic option that increases both vertebral and femoral strength within 12 months. © 2017 American Society for Bone and Mineral Research.  相似文献   

14.
Osteoporosis has become an important health problem in postmenopausal Chinese women. Bisphosphonates currently are the preferred therapy for treating osteoporosis. However, the use of daily regimen of alendronate in women at risk for osteoporosis has been relatively low in China because of its dosing inconvenience. To determine the efficacy and tolerability of once-weekly alendronate 70 mg in Chinese, a multicenter, randomized, double blind, placebo controlled study was performed in China. Five hundred and sixty postmenopausal women (≤85 years old) with osteoporosis were randomly assigned to receive either alendronate 70 mg or placebo once-weekly for 12 months. All women received calcium 500 mg daily and vitamin D 200 IU daily. A significant increase in lumbar spine BMD was already evident at 6 months of alendronate treatment (< 0.001). The alendronate group showed significant increase (< 0.001) in BMD at 12 months at both the spine and hip when compared with the placebo group (lumbar spine 4.87% vs. 0.4%, femoral neck 2.47% vs. 0.31%, trochanter 3.24% vs. 0.78%, total hip 2.56% vs. 0.28%, respectively). The percentage of women with ≥0% and ≥3% BMD increase in lumbar spine was significantly greater in women with alendronate than placebo (< 0.001). Significant reduction in urine N-telopeptide (NTx) and serum bone-specific alkaline phosphatase were evident at 6 and 12 months, respectively, with alendronate treatment. No significant differences in the incidence of adverse experiences and upper gastrointestinal adverse experiences were seen. We conclude that once-weekly alendronate 70 mg is an effective and well-tolerated agent for the treatment of postmenopausal osteoporosis in Chinese women.  相似文献   

15.
Tsujimoto M  Chen P  Miyauchi A  Sowa H  Krege JH 《BONE》2011,48(4):798-803
Biochemical markers of bone turnover may be useful aids for managing patients with osteoporosis. A 12-month, phase 3, multicenter trial of Japanese patients at high risk of fracture was conducted to assess the effects of teriparatide 20 μg/day on BMD, serum markers of bone turnover, and safety. Two-hundred and seven subjects (93% female; median age 70 years) were randomized in double-blind fashion 2:1 to teriparatide versus placebo. Bone turnover markers including procollagen type I N-terminal propeptide (PINP), bone-specific alkaline phosphatase (bone ALP) and type I collagen cross-linked C-telopeptide (CTX) were collected at baseline, 1, 3, 6, and 12 months. Lumbar spine, femoral neck, and total hip BMD were measured at baseline, 3, 6, and 12 months. Increases in PINP at 1 month correlated best with increases in lumbar spine BMD at 12 months (r=0.76; P<0.01). The proportions of patients with an increase from baseline in PINP >10 μg/L at 1, 3, and 6 months were 3%, 0%, and 2% in the placebo, and 93%, 87%, and 83% in the teriparatide group. The proportions of patients with an increase in PINP >10 μg/L at either 1 or 3 months were 3% in the placebo and 95% in the teriparatide group (P<0.001). The proportions of patients with a significant increase in lumbar spine BMD (increase from baseline ≥3%) at 12 months were 20% in the placebo and 94% in the teriparatide group. The proportions of patients with an increase in PINP >10 μg/L at 1 or 3 months and an increase in lumbar spine BMD ≥3% at 12 months was 0% of placebo group patients and 92% of teriparatide group patients (P<0.001). These data confirm a strong relationship between early change in PINP and later change in lumbar spine BMD during teriparatide therapy. Also, these results suggest that monitoring with PINP and lumbar spine BMD successfully identifies positive responses in most patients taking teriparatide and negative responses in most patients not taking teriparatide. PINP monitoring may be a useful aid in the management of patients with osteoporosis during teriparatide treatment.  相似文献   

16.
Subjects affected by thalassemia major (TM) often have reduced bone mass and increased fracture risk. Strontium ranelate (SrR) is an effective treatment for postmenopausal and male osteoporosis. To date, no data exist on the use of SrR in the treatment of TM-related osteoporosis. Our aim was to evaluate the effects of SrR on bone mineral density (BMD), bone turnover markers and inhibitors of Wnt signaling (sclerostin and DKK-1). Twenty-four TM osteoporotic women were randomized to receive daily SrR 2 g or placebo in addition to calcium carbonate (1,000 mg) and vitamin D (800 IU). BMD at the lumbar spine and femoral neck, bone turnover markers (C-terminal telopeptide of procollagen type I [CTX], bone-specific alkaline phosphatase [BSAP]) and insulin-like growth factor-1 (IGF-1), sclerostin and DKK-1 were assessed at baseline and after 24 months. Back pain was measured by visual analog scale (VAS) every 6 months. After 24 months, TM women treated with SrR had increased their spine BMD values in comparison to baseline (p < 0.05). Moreover, they also exhibited a reduction of CTX and sclerostin levels (but not DKK-1) and exhibited an increase of BSAP and IGF-1 (p < 0.05); however, no significant changes were observed in the placebo group. In the SrR group, a reduction of back pain was observed after 18 months in comparison to baseline (p < 0.05) and after 24 months in comparison to placebo (p < 0.05). Our study reports for the first time the effects of SrR in the treatment of TM-related osteoporosis. SrR treatment improved BMD and normalized bone turnover markers, as well as lowering sclerostin serum levels.  相似文献   

17.
Cells of the osteoblast lineage play an important role in regulating the hematopoietic stem cell (HSC) niche and early B‐cell development in animal models, perhaps via parathyroid hormone (PTH)‐dependent mechanisms. There are few human clinical studies investigating this phenomenon. We studied the impact of long‐term daily teriparatide (PTH 1‐34) treatment on cells of the hematopoietic lineage in postmenopausal women. Twenty‐three postmenopausal women at high risk of fracture received teriparatide 20 mcg sc daily for 24 months as part of a prospective longitudinal trial. Whole blood measurements were obtained at baseline, 3, 6, 12, and 18 months. Flow cytometry was performed to identify hematopoietic subpopulations, including HSCs (CD34+/CD45(moderate); ISHAGE protocol) and early transitional B cells (CD19+, CD27‐, IgD+, CD24[hi], CD38[hi]). Serial measurements of spine and hip bone mineral density (BMD) as well as serum P1NP, osteocalcin, and CTX were also performed. The average age of study subjects was 64 ± 5 years. We found that teriparatide treatment led to an early increase in circulating HSC number of 40% ± 14% (p = 0.004) by month 3, which persisted to month 18 before returning to near baseline by 24 months. There were no significant changes in transitional B cells or total B cells over the course of the study period. In addition, there were no differences in complete blood count profiles as quantified by standard automated flow cytometry. Interestingly, the peak increase in HSC number was inversely associated with increases in bone markers and spine BMD. Daily teriparatide treatment for osteoporosis increases circulating HSCs by 3 to 6 months in postmenopausal women. This may represent a proliferation of marrow HSCs or increased peripheral HSC mobilization. This clinical study establishes the importance of PTH in the regulation of the HSC niche within humans. © 2014 American Society for Bone and Mineral Research.  相似文献   

18.
Once-weekly alendronate 70 mg and once-weekly risedronate 35 mg are indicated for the treatment of postmenopausal osteoporosis. These two agents were compared in a 12-month head-to-head trial. Greater gains in BMD and greater reductions in markers of bone turnover were seen with alendronate compared with risedronate with similar tolerability. INTRODUCTION: The nitrogen-containing bisphosphonates, alendronate and risedronate, are available in once-weekly (OW) formulations for the treatment of postmenopausal osteoporosis. A 12-month, head-to-head study was performed to compare these agents in the treatment of postmenopausal women with low BMD. MATERIALS AND METHODS: A total of 1053 patients from 78 U.S. sites were randomized to OW alendronate 70 mg (N = 520) or risedronate 35 mg (N = 533), taken in the morning after fasting. Endpoints included BMD changes over 6 and 12 months at the hip trochanter, total hip, femoral neck, and lumbar spine (LS); percent of patients with predefined levels of change in trochanter and LS BMD at 12 months; and change in biochemical markers of bone turnover at 3, 6, and 12 months. Tolerability was evaluated by adverse experience (AE) reporting. RESULTS: Significantly greater increases in hip trochanter BMD were seen with alendronate (3.4%) than risedronate (2.1%) at 12 months (treatment difference, 1.4%; p < 0.001) as well as 6 months (treatment difference, 1.3%; p < 0.001). Significantly greater gains in BMD were seen with alendronate at all BMD sites measured (12-month difference: total hip, 1.0%; femoral neck, 0.7%; LS, 1.2%). Significant differences were seen as early as 6 months at all sites. A greater percentage of patients had > or =0% (p < 0.001) and > or =3% (p < 0.01) gain in trochanter and spine BMD at 12 months with alendronate than risedronate. Significantly greater (p < 0.001) reductions in all biochemical markers of bone turnover occurred with alendronate compared with risedronate by 3 months. No significant differences were seen between treatment groups in the incidence of upper gastrointestinal AEs or AEs causing discontinuation. CONCLUSIONS: In this 12-month, head-to-head trial of alendronate and risedronate, given in accordance with the approved OW regimens for treatment of osteoporosis in postmenopausal women, alendronate produced greater gains in BMD and greater reductions in markers of bone turnover than risedronate. The greater antiresorptive effect of alendronate was seen as early as 3 months, and the tolerability profiles were similar.  相似文献   

19.
目的比较甲状旁腺激素(parathyroid hormone,PTH)(1-34)和阿仑膦酸钠(alendronate,ALN)治疗骨质疏松症合并类风湿关节炎(rheumatoid arthritis,RA)女性患者的疗效。方法选取98例于2017年2月至2017年11月在我院就诊诊断为骨质疏松症合并RA的绝经后女性患者。按照治疗方案将患者分为PTH组和ALN组,两组患者分别接受特立帕肽或阿仑膦酸钠治疗,观察治疗6个月后两组患者骨密度和骨代谢指标的改变。结果在两组治疗6个月后,腰椎的骨密度较治疗前均有显著增加(P0.05)。与ALN组相比,PTH组治疗6个月腰椎骨密度的平均变化百分比显然更高;而股骨颈骨密度仅在PTH组显著增加。结论甲状旁腺激素(1-34)在短期治疗骨质疏松症合并类风湿女性患者时,效果较阿仑膦酸钠更佳。  相似文献   

20.
Glucocorticoid-induced osteoporosis is the most common secondary cause of osteoporosis. In this 24-month study, we report changes in bone turnover and bone mass after 12 months of daily injections of human parathyroid hormone 1-34 [hPTH(1-34)] and 12 months off treatment in postmenopausal women (mean age, 63 years) with osteoporosis treated with glucocorticoid and hormone replacement therapy. Response to the treatment was assessed with bone mineral density (BMD) measurements of the lumbar spine by quantitative computed tomography (QCT); BMD measurements of the lumbar spine, hip, and forearm by dual-energy X-ray absorptiometry (DXA); and biochemical markers of bone turnover. The mean (+/-SEM) change in BMD of the lumbar spine by QCT and DXA in the PTH group at 24 months was 45.9+/-6.4% and 12.6+/-2.2% (p < 0.001). The change in total hip and femoral neck BMD was not significant at 12 months but increased to 4.7+/-0.9% (p < 0.01) and 5.2+/-1.3% at 24 months, respectively, as compared with a relatively small change of 1.3+/-0.9% and 2.6+/-1.7% in the estrogen-only group. The mean percent differences in BMD of the lumbar spine by QCT and DXA between the groups at 24 months were 43.1% and 11.9%, respectively (p < 0.001). The mean percent differences over the estrogen-only group in hip BMD were 3.4% for total hip (p < 0.01) and 2.6% for femoral neck at 24 months. Biochemical markers of bone turnover increased to more than 150% during the first 6 months of therapy, remained elevated throughout the 12-month treatment period, and returned to baseline values within 6 months of discontinuing the PTH treatment. These results suggest that PTH dramatically increases bone mass in the lumbar spine and hip in postmenopausal women with glucocorticoid-induced osteoporosis who are taking hormone replacement therapy. However, the maximum effect of this anabolic agent on bone mass at the hip after 12 months of treatment requires at least 6-12 months after the PTH treatment is discontinued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号