首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To track epitope-specific CD4(+) T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA(323-339) epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA(II), replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4(+) T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4(+) T cells were recruited to the infected lung both in the presence and absence of the OVA(323-339) epitope. These data show that, when primed, CD4(+) T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection.  相似文献   

2.
Studies of the quantitative and qualitative aspects of anti-microbial, anti-tumoral or autoreactive immune responses have been greatly facilitated by the possibility to stain antigen-specific CD8(+) T cells using fluorescently labeled multimeric major histocompatibility complex (MHC) class I/peptide complexes. So far, this technology has been developed for human and mouse, but not yet in the rat. Here, we describe the generation of the first rat MHC multimer. We produced a rat RT1(l) Pro5 MHC Pentamer combined with the immunodominant peptide for Borna disease virus (BDV), in order to study the characteristics of the antiviral CD8(+) T cell response. BDV is an RNA virus that can cause persistent infections of the central nervous system (CNS), often associated with prominent brain inflammation. In adult Lewis rats, of the RT1(l) MHC haplotype, BDV infection leads to severe immune-mediated neurological symptoms. The pathogenic role of the immune response is due primarily to antiviral CD8(+) T cells, many of them being specific for an immunodominant epitope located in the BDV nucleoprotein (N(230-238)). Ex vivo flow cytometry analyses revealed that 3 to 12% of CD8(+) T cells found in the brains of BDV-infected rats stained positively with the BDV-Pentamer. Interestingly, the frequency of Pentamer-positive cells increased up to 3.3 fold after a short resting period in culture. Virus-specific CD8(+) T cells were mainly detected in the brain and were virtually undetectable in peripheral lymphoid organs. This novel rat Pro5 MHC Pentamer represents an attractive tool for the detection, isolation and characterization of antigen-specific CD8(+) T cell responses in the rat.  相似文献   

3.
Although CD4(+) T cells are essential for protective immunity against Mycobacterium tuberculosis infection, recent reports indicate that CD8(+) T cells may also play a critical role in the control of this infection. However, the epitope specificity and the mechanisms of activation of mycobacteria-reactive CD8(+) T cells are poorly characterized. In order to study the CD8(+) T cell responses to the model mycobacterial antigen, MPT64, we used recombinant vaccinia virus expressing MPT64 (VVWR-64) and a panel of MPT64-derived peptides to establish that the peptide MPT64(190-198) contains an H-2D(b)-restricted CD8(+) T cell epitope. A cytotoxic T lymphocyte response to this peptide could be demonstrated in M. bovis bacillus Calmette Guerin (BCG)-infected mice following repeated in vitro stimulation. When bone marrow-derived dendritic cells (DC) were infected with BCG, the expression of MHC class I molecules by DC was up-regulated in parallel with MHC class II and B7-2, whereas CD1d expression level was not modified. Moreover, BCG-infected DC activated MPT64(190-198)-specific CD8(+) T cells to secrete IFN-gamma, although with a lower efficacy than VVWR-64-infected DC. The production of IFN-gamma by MPT64(190-198)-specific CD8(+) T cells was inhibited by antibodies to MHC class I, but not to CD1d. These data suggest that mycobacteria-specific CD8(+) T cells are primed during infection. Therefore, anti-mycobacterial vaccine strategies targeting the activation of specific CD8(+) T cells by DC may have improved protective efficacy.  相似文献   

4.
Following ocular infection of normal mice, herpes simplex virus type 1 (HSV-1) establishes a latent infection in the trigeminal ganglia (TG) with the complete absence of detectable infectious virus. In this study, the role of CD4(+)and CD8(+)T cell dependent immune responses is examined in relation to clearing infectious virus from the TG following HSV-1 ocular challenge. Nude mice, which lack T cells, and MHC(o/o)mice, which lack both MHC class I and MHC class II, were challenged ocularly with wild-type HSV-1. Over 70% of the TG from mice surviving the infection contained infectious virus, indicative of a chronic infection in these TG, rather than a latent infection. No infectious virus was detected in TGs from infected C57BL/6 parental mice. Ocular challenge of CD4(o/o)A(beta(o/o, CD8(o/o)or beta(2)m(o/o)mice resulted in latent rather than chronic infection. Similarly, when C57BL/6 mice were depleted for CD4(+)or CD8(+)T cells from 4 days before ocular challenge to 26 days after ocular challenge, no free virus was detected in TGs of challenged mice. In contrast, when mice were depleted of both their CD4(+)and CD8(+)T cells, over 90% of TGs were positive for free virus, suggesting that the lack of virus clearance was due to the combined lack of both CD4(+)T cells and CD8(+)T cells (i.e. in the presence of either CD4(+)T cells or CD8(+)T cells alone all of the infectious virus was cleared and latency was established).))Copyright 1999 Academic Press.  相似文献   

5.
The protective efficacy of the influenza matrix protein epitope 58-66 (called M1), recognized in the context of human HLA-A2 molecules, was evaluated in a HLA-A2/K(b) transgenic mouse model of lethal influenza infection. Repeated subcutaneous immunizations with M1 increased the percentage of survival. This effect was mediated by T cells since protection was abolished following in vivo depletion of all T lymphocytes, CD8(+), or CD4(+) T cells. The survival correlated with the detection of memory CD8(+) splenocytes able to proliferate in vitro upon stimulation with M1 and to bind M1-loaded HLA-A2 dimers, as well as with M1-specific T cells in the lungs, which were directly cytotoxic to influenza-infected cells following influenza challenge. These results demonstrated for the first time that HLA-A2-restricted cytotoxic T cells specific for the major immunodominant influenza matrix epitope are protective against the infection. They encourage further in vivo evaluation of T cell epitopes recognized in the context of human MHC molecules.  相似文献   

6.
The capability of cellular immune components to rapidly recall upon challenge in most situations decides the efficacy of a vaccine. Here, we show that immunization of mice with SSIEFARL peptide (immunodominant epitope in glycoprotein B of herpes simplex virus type 1, aa498-505) combined with TLR9 ligand in the absence of helper CD4(+) T cell activation generates a functionally impaired CD8(+) T cell memory response. Codelivery of IL-12, IL-15, or anti-CD40 together with MHC class-I-restricted peptide combined with TLR9 ligand at inception of immunization resulted in generation of memory CD8(+) T cells that were several fold less compromised than immunization with peptide alone. Furthermore, administration of either plasmid DNA encoding IL-15 or anti-CD40 mAb but not rIL-12 during the memory phase restored the reactivity of memory CD8(+) T cells. Moreover, the rescued CD8(+) T cells preserved their cytotoxic capability and were able to clear a recombinant vaccinia virus encoding glycoprotein B of HSV. Our results indicate that good memory CD8(+) T cell response to peptide immunization can be achieved by using costimulatory procedures at the time of priming or recall immunization.  相似文献   

7.
Pewe L  Perlman S 《Virology》1999,255(1):106-116
Mutations in an immunodominant CD8 CTL epitope (S-510-518) are selected in mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus. These mutations abrogate recognition by T cells harvested from the infected CNS in direct ex vivo cytotoxicity assays. Previous reports have suggested that, in general, an oligoclonal, monospecific T cell response contributes to the selection of CTL escape mutants. Herein, we show that, in MHV-JHM-infected mice, the CD8 T cell response after intraperitoneal infection is polyclonal and diverse. This diverse response was shown to include both polyclonal and oligoclonal components. The polyclonal data were shown to fit a logarithmic distribution. With regard to specificity, we used a panel of peptide analogues of epitope S-510-518 and spleen-derived CD8 T cell lines to determine why only a subset of possible mutations was selected in persistently infected mice. At a given position in the epitope, the mutations identified in in vivo isolates were among those that resulted in the greatest loss of recognition. However, not all such mutations were selected, suggesting that additional factors must contribute to selection in vivo. By extrapolation of these results to the persistently infected CNS, they suggest that the selection of CTL escape mutants requires the presence of a monospecific T cell response but also show that this response need not be oligoclonal.  相似文献   

8.
Ocular herpes simplex virus (HSV) infection results in an immune-mediated inflammation of the corneal stroma known as herpetic stromal keratitis (HSK). Recurrent HSK is a common cause of virus-induced corneal blindness in humans. The role of CD4(+) and CD8(+) T cell subsets in the disease pathogenesis is ill defined and varies with the virus strain and host genetic background. To examine the contribution of T cell subsets to corneal disease, we studied the development of recurrent HSK in CD4 or CD8 gene knockout (KO) mice ocularly infected with HSV-1 McKrae strain. Following UV-B induced viral reactivation, corneal opacity in latently infected BALB/c (HSV sensitive) CD4 and CD8 KO mice was reduced compared to infected BALB/c mice with normal genotype. In contrast, opacity in C57BL/6 (HSV resistant) CD4 and CD8 KO latent mice did not differ from genetically normal latent mice. Virus-induced corneal opacity was not demonstrable in C57BL/6 CD4/CD8 double KO mice. Increased viral shedding, measured by reactivation rate, days shedding or viral titers, occurred in CD4 KO mice of both strains. Our findings indicate that both CD4(+) and CD8(+) cells play a role in the immunopathogenesis of recurrent HSK, and their role is dependent upon the host genetic profile.  相似文献   

9.
CD8(+) T lymphocytes often play a primary role in adaptive immunity to cytosolic microbial pathogens. Surprisingly, CD8(+) T cells are not required for protective immunity to the enteric pathogen Shigella flexneri, despite the ability of Shigella to actively secrete proteins into the host cytoplasm, a location from which antigenic peptides are processed for presentation to CD8(+) T cells. To determine why CD8(+) T cells fail to play a role in adaptive immunity to S. flexneri, we investigated whether antigen-specific CD8(+) T cells are primed during infection but are unable to confer protection or, alternatively, whether T cells fail to be primed. To test whether Shigella is capable of stimulating an antigen-specific CD8(+) T-cell response, we created an S. flexneri strain that constitutively secretes a viral CD8(+) T-cell epitope via the Shigella type III secretion system and characterized the CD8(+) T-cell response to this strain both in mice and in cultured cells. Surprisingly, no T cells specific for the viral epitope were stimulated in mice infected with this strain, and cells infected with the recombinant strain were not targeted by epitope-specific T cells. Additionally, we found that the usually robust T-cell response to antigens artificially introduced into the cytoplasm of cultured cells was significantly reduced when the antigen-presenting cell was infected with Shigella. Collectively, these results suggest that antigen-specific CD8(+) T cells are not primed during S. flexneri infection and, as a result, afford little protection to the host during primary or subsequent infection.  相似文献   

10.
The establishment of viral persistence generally requires evasion of the host CD8(+) T cell response. Here we describe a form of evasion wherein the CD8(+) T cells are fully capable of recognizing their cognate antigen but their effector functions are suppressed by regulatory T cells. Virus-specific CD8(+) T cells adoptively transferred into mice persistently infected with Friend virus proliferated and appeared activated, but failed to produce IFNgamma or reduce virus loads. Cotransfer experiments revealed that a subpopulation of CD4(+) T cells from persistently infected mice suppressed IFNgamma production by the CD8(+) T cells. Treatment of persistently infected mice with anti-GITR antibody to ameliorate suppression by regulatory T cells significantly improved IFNgamma production by transferred CD8(+) T cells and allowed a significant reduction in viral loads. The results indicate that CD4(+) regulatory T cells contribute to viral persistence and demonstrate an immunotherapy for treating chronic retroviral infections.  相似文献   

11.
In this study, we used a mouse model to examine the role of the adaptive immune response in alveolar bone loss induced by oral infection with the human gram-negative anaerobic bacterium Porphyromonas gingivalis. Severe combined immunodeficient mice, which lack B and T lymphocytes, exhibited considerably less bone loss than did immunocompetent mice after oral infection, suggesting that lymphocytes contribute to this process. Bone loss after oral infection was decreased in mice deficient in major histocompatibility complex (MHC) class II-responsive CD4(+) T cells, but no change in bone loss was observed in mice deficient in MHC class I-responsive CD8(+) T cells or NK1(+) T cells. Mice lacking the cytokine gamma interferon or interleukin-6 also demonstrated decreased bone loss. These results suggest that the adaptive immune response, and in particular CD4(+) T cells and the proinflammatory cytokines that they secrete, are important effectors of bone loss consequent to P. gingivalis oral infection. The studies also reinforce the utility of the mouse oral infection model in dissecting the pathobiology of periodontal disease.  相似文献   

12.
Using a pulmonary model of infection, we demonstrated previously that A/Sn and B10.A mice are, respectively, resistant and susceptible to Paracoccidioides brasiliensis infection. Employing the same experimental model, we examined herein the role of CD8(+) T cells in the course of paracoccidioidomycosis. Treatment with anti-CD8 monoclonal antibodies caused a selective depletion of pulmonary and splenic CD8(+) T cells in both mouse strains. The number of pulmonary CD4(+) T cells and immunoglobulin-positive cells was independent of the number of CD8(+) T cells. In susceptible mice, the loss of CD8(+) T cells by in vivo treatment with anti-CD8 monoclonal antibodies impaired the clearance of yeasts from the lungs and increased the fungal dissemination to the liver and spleen. The same treatment in resistant mice increased fungal dissemination to extrapulmonary tissues but did not alter the pulmonary fungal load. Furthermore, CD8(+) T-cell depletion did not modify delayed-type hypersensitivity reactions of A/Sn mice but increased these reactions in B10.A mice. The production of P. brasiliensis-specific antibodies by resistant and susceptible mice depleted of CD8(+) T cells was similar to that of mice given control antibody. Histopathologically, depletion of CD8(+) T cells did not disorganize the focal granulomatous lesions developed by both mouse strains. These results indicate that CD8(+) T cells are necessary for optimal clearance of the fungus from tissues of mice infected with P. brasiliensis and demonstrate more prominent protective activity by those cells in the immune responses mounted by susceptible animals.  相似文献   

13.
In this study, we have evaluated the production of pro- and anti-inflammatory cytokines and the formation of central and effector memory T cells in mice lacking mature B cells (mu MT KO). The results show that Trypanosoma cruzi infection in C57Bl/6m mu MT KO mice is intensified in relation to control mice and this exacerbation is related to low levels of inflammatory cytokines produced during the acute infection and the lower numbers of central and effector memory CD4(+) and CD8(+) T cells generated during the acute phase of the infection. In addition, a marked reduction in the CD8(+) T-cell subpopulation was observed in mu MT KO infected mice. In agreement to this, the degree of tissue parasitism was increased in mu MT mice and the tissue inflammatory response was much less intense in the acute phase of the infection, consistent with a deficit in the generation of effector T cells. Flow cytometry analysis of the skeletal muscle inflammatory infiltrate showed a predominance of CD8(+) CD45Rb low in B-cell-sufficient C57Bl/6 mice, whereas the preponderant cell type in mu MT KO skeletal muscle inflammatory infiltrate was CD4(+) T cells. In addition, CD8(+) T cells found in skeletal muscle from mu MT KO infected mice were less activated than in control B-cell sufficient infected mice. These results suggest that B cells may participate in the generation of effector/memory T cells. In addition and more importantly, B cells were crucial in the maintenance of central and effector memory CD8(+) T cell, as well as the determination of the T cell cytokine functional pattern, and they may therefore account for critical aspects of the resistance to intracellular pathogens, such as T. cruzi.  相似文献   

14.
The lethal toxin produced by Bacillus anthracis is a bipartite toxin in which the first protein, protective antigen (PA), transports the second protein, lethal factor, across the host cell membrane. We have previously shown that CD8(+) T-cell epitopes fused to a nontoxic derivative of lethal factor (LFn) are delivered into the host cell cytosol in a PA-dependent manner. Delivery of these antigens targets them to the intracellular major histocompatibility complex (MHC) class I processing and presentation pathway and leads to the stimulation of antigen-specific CD8(+) T cells in vivo. In this report, we describe the generation and characterization of LFn fusion proteins that include not only a CD8(+) T-cell epitope but also a CD4(+) T-cell epitope. We first show that these fusion proteins induce antigen-specific CD4(+) T-cell responses following incubation with dendritic cells in vitro or injection into mice. Stimulation of CD4(+) T cells by LFn fusion proteins does not require PA but is enhanced by PA in vitro. We also show that a single LFn fusion protein and PA can deliver antigen to both the MHC class II and the MHC class I pathways, resulting in the simultaneous induction of antigen-specific CD4(+) T cells and antigen-specific CD8(+) T cells in the same mouse. These results suggest that this toxin delivery system is capable of stimulating protective immune responses where effective immunization requires stimulation of both classes of T cells.  相似文献   

15.
The BALB/c mouse model for human respiratory syncytial virus infection has contributed significantly to our understanding of the relative role for CD4+ and CD8+ T cells to immune protection and pathogenic immune responses. To enable comparison of RSV-specific T cell responses in different mouse strains and allow dissection of immune mechanisms by using transgenic and knockout mice that are mostly available on a C57BL/6 background, we characterized the specificity, level and functional capabilities of CD8+ T cells during primary and secondary responses in lung parenchyma, airways and spleens of C57BL/6 mice. During the primary response, epitopes were recognized originating from the matrix, fusion, nucleo- and attachment proteins, whereas the secondary response focused predominantly on the matrix epitope. C57BL/6 mice are less permissive for hRSV infection than BALB/c mice, yet we found CD8+ T cell responses in the lungs and bronchoalveolar lavage, comparable to the responses described for BALB/c mice.  相似文献   

16.
Keratocytes express MHC class I molecules constitutively, and keratocytes stimulated with IFN-gamma express MHC class II molecules. Unstimulated keratocytes constitutively express B7-1 and ICAM-1, as well as low levels of CD40 and 4-1BBL. These findings indicate that keratocytes may deliver both antigen-specific and costimulatory signals to CD4(+) and CD8(+) T cells. To demonstrate that keratocytes expressing B7-1 provide a costimulatory signal to T cells, CD4(+) or CD8(+) mouse T cells were incubated with anti-CD3 mAb and irradiated keratocytes. Enhanced proliferation of both CD4(+) and CD8(+) T cells occurred, and could be inhibited by anti-B7-1 mAb, indicating T cell costimulatory activity by B7-1 on the keratocytes. To demonstrate that keratocytes can deliver an antigen-specific signal, CD4(+) and CD8(+) T cells from herpes-infected mice were incubated with HSV-1-infected, irradiated keratocytes. The resulting T cell proliferation and production of Th1 cytokines (IL-2, IFN-gamma) indicated T cell activation by antigens presented by the infected keratocytes. These results show that keratocytes in the corneal stroma of the mouse can function as antigen-presenting cells and, thus, may play a role in immune-mediated stromal inflammation such as herpetic stromal keratitis.  相似文献   

17.
Myoung J  Hou W  Kang B  Lyman MA  Kang JA  Kim BS 《Virology》2007,360(1):159-171
Theiler's virus infection induces an immune-mediated demyelinating disease, providing a relevant animal model of human multiple sclerosis. VP2(121-130)-specific CD8+ T cells in resistant H-2b mice account for the majority of CNS-infiltrating CD8+ T cells. To further study the role of the CD8(+) T cells, we generated a panel of mutant viruses substituted with L, G, or T at the anchor residue (M130) of the VP2(121-130) epitope. M130L virus (M130L-V) with a substitution of M with L displayed similar properties as wild-type virus (WT-V). However, M130G-V and M130T-V could not establish a persistent infection in the CNS. The level of both virus-specific CD8+ and CD4+ T cell responses is significantly reduced in mice infected with these variant viruses. While all mutant and wild-type viruses replicate comparably in BHK cells, replication of M130G-V and M130T-V in macrophages was significantly lower compared to those infected with WT-V and M130L-V. Interestingly, these mutant viruses deficient in replication in primary mouse cells showed drastically reduced binding ability to the cells. These results suggest that the anchor residue of the predominant CD8+ T cell epitope of TMEV in resistant mice is critical for the virus to infect target cells and this deficiency may result in poor viral persistence leading to correspondingly low T cell responses in the periphery and CNS. Thus, selection of the cellular binding region of the virus as the predominant epitope for CD8+ T cells in resistant mice may provide a distinct advantage in controlling viral persistence by preventing escape mutations.  相似文献   

18.
CD4+ T-cell help (CD4 help) plays a pivotal role in CD8+ T-cell responses against viral infections. However, the role in primary CD8+ T-cell responses remains controversial. We evaluated the effects of infection route and viral dose on primary CD8+ T-cell responses to vaccinia virus (VACV) in MHC class II−/− mice. CD4 help deficiency diminished the generation of VACV-specific CD8+ T cells after intraperitoneal (i.p.) but not after intranasal (i.n.) infection. A large viral dose could not restore normal expansion of VACV-specific CD8+ T cells in i.p. infected MHC II−/− mice. In contrast, dependence on CD4 help was observed in i.n. infected MHC II−/− mice when a small viral dose was used. These data suggested that primary CD8+ T-cell responses are less dependent on CD4 help in i.n. infection compared to i.p. infection. Activated CD8+ T cells produced more IFN-γ, TNF-α and granzyme B in i.n. infected mice than those in i.p. infected mice, regardless of CD4 help. IL-2 signaling via CD25 was not necessary to drive expansion of VACV-specific CD8+ T cells in i.n. infection, but it was crucial in i.p. infection. VACV-specific CD8+ T cells underwent increased apoptosis in the absence of CD4 help, but proliferated normally and had cytotoxic potential, regardless of infection route. Our results indicate that route of infection and viral dose are two determinants for CD4 help dependence, and intranasal infection induces more potent effector CD8+ T cells than i.p. infection.  相似文献   

19.
We recently constructed IL-15 transgenic (Tg) mice using cDNA encoding a secretable isoform of the IL-15 precursor protein under the control of an MHC class I promoter. The IL-15 Tg mice exhibited resistance against a primary infection with Listeria monocytogenes. The numbers of memory CD8(+) T cells were markedly increased in the IL-15 Tg mice following Listeria infection accompanied by sustained IL-15 production. The increased CD44(+)CD8(+) T cells in the infected IL-15 Tg mice were not specialized to recognize Listeria-specific antigen but produced a large amount of IFN-gamma in response to bystander stimulation exogenous IL-15 in combination with IL-12. Furthermore, Listeria-specific Th1 response by CD4(+) T cells was significantly augmented in the IL-15 Tg mice compared with control mice following Listeria infection. In vivo depletion of the CD8(+) T cells by anti-CD8 monoclonal antibody and adoptive transfer of the T cells from naive IL-15 Tg mice indicated that the CD8(+) T cells functioned not only to eliminate bacteria at the early stage of infection but also to promote Th1 response to L. monocytogenes. Overexpression of IL-15 shed light on a novel role of memory CD8(+) T cells in early protection and promotion of Th1 response against a primary infection with L. monocytogenes.  相似文献   

20.
We established a viral persistence model that involves the adoptive transfer of spleen cells from immunocompetent mice (H-2(d)) into Hantaan virus (HTNV)-infected severe combined immunodeficient (SCID, H-2(d)) mice. The infection is maintained despite the presence of neutralizing antibodies, without apparent signs of disease, and there is a correlation between HTNV persistence and the lack of HTNV-specific CD8(+) T cells. In addition, disseminated HTNV infection before the initiation of immune responses appears to be important for virus persistence. The suppression of HTNV-specific CD8(+) T cells in the present model appears to occur at the periphery. The present study also demonstrates that CD8(+) T cells contribute to the clearance of HTNV. Thus, it seems that HTNV-specific CD8(+) T cells play a key role in HTNV persistence in mice. This model of viral persistence is useful for studies of immune responses and immunocytotherapy against viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号