首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tributyltin (TBT) is a biocide that contaminates human foodstuffs, especially shellfish. TBT is an endocrine disrupter, producing imposex in several marine gastropods. Previous studies showed that oral dosing of rat dams with TBT chloride leads to abnormal fetal and postnatal development. In this study, the tissue distribution and speciation of organotins in tissues were examined in dams, fetuses, and neonates following dosing of rat dams commencing on gestational day (GD) 8 by oral gavage with TBT in olive oil at 0, 0.25, 2.5, or 10 mg/kg body weight (BW)/d. Dams' body weights were significantly reduced by the 10-mg/kg BW/d TBT treatment. At GD20, there were no significant effects of any TBT treatment on pup weights, litter size, sex ratio, or tissue weights. However, at postnatal day (PND) 6 and 12, neonatal pup weights were reduced by the 10-mg/kg BW/d TBT treatment but tissue weights were unaffected, except for the liver weight of female pups, which was reduced by the 10-mg/kg BW/d TBT treatment. Tissues harvested on GD20 and PND6 and PND12 were extracted for determination of organotins by gas chromatography-atomic emission detection (GC-AED). In most tissues, TBT and its metabolite dibutyltin (DBT) were evident but monobutyltin (MBT) was rarely measured above the detection limit. The livers and brains of fetuses contained TBT and DBT at levels that were approximately 50% of the equivalent tissues in the dams. Furthermore, these tissues appeared to preferentially absorb/retain organotins, since the concentrations were greater than were found for the total loading in whole pups. The placenta also contained relatively large quantities of TBT and DBT. Postnatally, the TBT levels in pups decreased markedly, a probable consequence of the extremely low levels of organotins in rat milk. However, DBT levels in pups livers and brains were maintained, probably due to metabolism of TBT to DBT. Similarly, while dams' spleens contained significant quantities of organotins, the pups' spleens contained smaller quantities, and these decreased rapidly between PND6 and PND12. These results show that organotins cross the placenta and accumulate in fetal tissues but that during lactation, the pups would receive minimal organotins through the milk and during this period, the levels of TBT in pups' tissues decreases rapidly. Consequently, fetuses would be at greater risk of the adverse effects of TBT, but due to the lack of transfer through milk, the risk would be reduced during the lactational period.  相似文献   

2.
The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 18. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. In the highest dosage groups (10 mg/kg for rat and 20 mg/kg for mouse), the neonates became pale, inactive, and moribund within 30-60 min, and all died soon afterward. In the 5 mg/kg (rat) and 15 mg/kg (mouse) dosage groups, the neonates also became moribund but survived for a longer period of time (8-12 h). Over 95% of these animals died within 24 h. Approximately 50% of offspring died at 3 mg/kg for rat and 10 mg/kg for mouse. Cross-fostering the PFOS-exposed rat neonates (5 mg/kg) to control nursing dams failed to improve survival. Serum concentrations of PFOS in newborn rats mirrored the maternal administered dosage and were similar to those in the maternal circulation at GD 21; PFOS levels in the surviving neonates declined in the ensuing days. Small but significant and persistent growth lags were detected in surviving rat and mouse pups exposed to PFOS prenatally, and slight delays in eye opening were noted. Significant increases in liver weight were observed in the PFOS-exposed mouse pups. Serum thyroxine levels were suppressed in the PFOS-treated rat pups, although triiodothyronine and thyroid-stimulating hormone [TSH] levels were not altered. Choline acetyltransferase activity (an enzyme that is sensitive to thyroid status) in the prefrontal cortex of rat pups exposed to PFOS prenatally was slightly reduced, but activity in the hippocampus was not affected. Development of learning, determined by T-maze delayed alternation in weanling rats, was not affected by PFOS exposure. These results indicate that in utero exposure to PFOS severely compromised postnatal survival of neonatal rats and mice, and caused delays in growth and development that were accompanied by hypothyroxinemia in the surviving rat pups.  相似文献   

3.
9-(4'-Aminophenyl)-9H-pyrido [3,4-b] indole (aminophenylnorharman, APNH) is a novel mutagenic heterocyclic amine, produced by the reaction of norharman with aniline in the presence of S9 mix. In the present study, the maternal and developmental toxicity of APNH were investigated in ICR mice administered oral doses of 0, 0.625, 1.25, 2.5 or 5 mg/kg/day on gestational days (GD) 6 through 15 or 0, 5, 10, or 20 mg/kg on GD 12. Maternal and foetal parameters were evaluated on day 18 of gestation. Foetuses of dams treated on GD 6-15 were examined for external and skeletal malformations and variations, and foetuses of dams treated on GD 12 were inspected for cleft palate. Maternal death occurred when APNH was administered at 5 mg/kg/day on GD 6-15. No significant decrease in body weight gain during the administration period was observed at doses of 2.5 mg/kg/day or less when applied on GD 6-15. Adverse changes in general condition of dams were observed in the groups treated at doses of 2.5 mg/kg/day and above on GD 6-15, whereas no adverse effects on dams were noted even when APNH was applied at a fairly high dose on GD 12. Intracytoplasmic vacuolation in hepatocytes, necrosis of proximal tubular epithelial cells and desquamation of necrotic epithelial cells in the tubular lumen were observed in dams treated with APNH at 2.5 or 5 mg/kg/day on GD 6-15. Increased preimplantation loss was observed at 5 mg/kg/day and post-implantation loss was observed at 2.5 mg/kg/day and above when applied on GD 6-15, or at 20 mg/kg when applied on GD 12. Foetal body weight was decreased by APNH in a dose-dependent manner. The frequency of external malformations (cleft palate) was significantly increased in the group treated with APNH at 2.5 mg/kg/ day on GD 6-15 compared to the controls. However, there were no foetuses with cleft palate even when APNH was given at 20 mg/kg on GD 12. No significant increases in skeletally malformed foetuses were found in any APNH-treated group. The frequency of lumbar ribs was increased dose dependently. This study demonstrated the developmental toxicity of a mutagenic compound, APNH, in mice at maternally toxic doses, and that cleft palate observed in term foetuses resulted from the adverse effect of APNH on the maternal environment during organogenesis. More detailed studies are warranted to assess the possible risks to pregnant women from exposure to APNH.  相似文献   

4.
The maternal and developmental toxicities of perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. PFOS is an environmentally persistent compound used as a surfactant and occurs as a degradation product of both perfluorooctane sulfonyl fluoride and substituted perfluorooctane sulfonamido components found in many commercial and consumer applications. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestational day (GD) 2 to GD 20; CD-1 mice were similarly treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 17. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). Maternal weight gain, food and water consumption, and serum chemistry were monitored. Rats were euthanized on GD 21 and mice on GD 18. PFOS levels in maternal serum and in maternal and fetal livers were determined. Maternal weight gains in both species were suppressed by PFOS in a dose-dependent manner, likely attributed to reduced food and water intake. Serum PFOS levels increased with dosage, and liver levels were approximately fourfold higher than serum. Serum thyroxine (T4) and triiodothyronine (T3) in the PFOS-treated rat dams were significantly reduced as early as one week after chemical exposure, although no feedback response of thyroid-stimulating hormone (TSH) was observed. A similar pattern of reduction in T4 was also seen in the pregnant mice. Maternal serum triglycerides were significantly reduced, particularly in the high-dose groups, although cholesterol levels were not affected. In the mouse dams, PFOS produced a marked enlargement of the liver at 10 mg/kg and higher dosages. In the rat fetuses, PFOS was detected in the liver but at levels nearly half of those in the maternal counterparts, regardless of administered doses. In both rodent species, PFOS did not alter the numbers of implantations or live fetuses at term, although small deficits in fetal weight were noted in the rat. A host of birth defects, including cleft palate, anasarca, ventricular septal defect, and enlargement of the right atrium, were seen in both rats and mice, primarily in the 10 and 20 mg/kg dosage groups, respectively. Our results demonstrate both maternal and developmental toxicity of PFOS in the rat and mouse.  相似文献   

5.
Tributyltin is ubiquitous in the environment and an endocrine disruptor for many wildlife species. However, minimal information is available regarding the effect of this chemical on bone formation. When tributyltin chloride (TBT) (1mg/kg body weight) was administered subcutaneously to pregnant mice at 10, 12, and 14 days post coitus (dpc), fetuses at 17.5 days post coitus revealed the inhibition of calcification of supraoccipital bone. In contrast, 1mg/kg body weight monobutyltin trichloride (MBT) did not affect the fetal skeleton. Therefore, we examined the effects of TBT and its metabolites (dibutyltin dichloride, DBT, and MBT) on bone metabolism using rat calvarial osteoblast-like cells (ROB cells). The viability of ROB cells was not affected by the exposure of the cells to 10(-10) to 10(-7)M TBT. However, TBT reduced the activity of alkaline phosphatase (ALPase) and the rate of deposition of calcium of ROB cells. In addition, the expression levels of mRNA for ALPase and osteocalcin, which are markers of osteoblastic differentiation, were depressed by the treatment with TBT. TBT inhibited ALPase activity and the deposition of calcium to a greater extent than did DBT. MBT had no effect on the osteoblast differentiation of ROB cells. Tributyltin is known to inhibit the activity of aromatase. However, the aromatase inhibitor aminoglutethimide did not reproduce the inhibitory effects of TBT on osteoblast differentiation. Our findings indicate that TBT might have critical effects on the formation of bone both in vivo and in vitro although its action mechanism is not clarified.  相似文献   

6.
Organotin compounds used in polyvinyl chloride (PVC) pipe production are of concern to the U.S. Environmental Protection Agency (EPA) because they leach from supply pipes into drinking water and are reported multisystem toxicants. Immune function was assessed in male Sprague-Dawley rats exposed to the mixture of organotins used in PVC pipe production. Although several of these organotins are reported immunotoxicants, their immunotoxicity as a mixture when given by drinking water has not been evaluated. Adult male rats were given drinking water for 28 d containing a mixture of dibutyltin dichloride (DBTC), dimethyltin dichloride (DMTC), monobutyltin trichloride (MBT), and monomethyltin trichloride (MMT) in a 2:2:1:1 ratio, respectively, at 3 different concentrations (5:5:2.5:2.5, 10:10:5:5, or 20:20:10:10 mg organotin/L), MMT alone (20 or 40 mg MMT/L), or plain water as a control. Delayed-type hypersensitivity, antibody synthesis, and natural killer cell cytotoxicity were evaluated in separate endpoint groups (n = 8/dose; 24/endpoint) immediately after exposure ended. The evaluated immune functions were not affected by the mixture or by MMT alone. Our data suggest that immunotoxicity is unlikely to result from the concentration of organotins present in drinking water delivered via PVC pipes, as the concentrations used were several orders of magnitude higher than those expected to leach from PVC pipes.  相似文献   

7.
The objective of the current study was to characterize the effects of DE-71 (a commercial polybrominated diphenyl ether mixture containing mostly tetra- and penta-bromodiphenyl ethers) on thyroid hormones and hepatic enzyme activity in offspring, following perinatal maternal exposure. Primiparous Long-Evans rats were orally administered DE-71 (0, 1, 10, and 30 mg/kg/day) in corn oil from gestation day (GD) 6 to postnatal day (PND) 21. Serum and liver samples obtained from dams (GD 20 and PND 22), fetuses (GD 20), and offspring (PNDs 4, 14, 36, and 90) were analyzed for circulating total serum thyroxine (T(4)) and triiodothyronine (T(3)), or hepatic microsomal ethoxy- and pentoxy-resorufin-O-deethylase (EROD and PROD), and uridine diphosphoglucuronosyl transferase (UDPGT) activity. There were no significant effects of treatment on maternal body weight gain, litter size, or sex ratio, nor were there any effects on any measures of offspring viability or growth. Serum T(4) was reduced in a dose-dependent manner in fetuses on GD 20 (at least 15%) and offspring on PND 4 and PND 14 (50 and 64% maximal in the 10 and 30 mg/kg/day groups, respectively), but recovered to control levels by PND 36. Reduction in serum T(4) was also noted in GD 20 dams (48% at highest dose), as well as PND 22 dams (44% at highest dose). There was no significant effect of DE 71 on T(3) concentrations at any time in the dams or the offspring. Increased liver to body weight ratios in offspring were consistent with induction of EROD (maximal 95-fold), PROD (maximal 26-fold) or UDPGT (maximal 4.7-fold). Induction of PROD was similar in both dams and offspring; however, EROD and UDPGT induction were much greater in offspring compared to dams (EROD = 3.8-fold; UDPGT = 0.5-fold). These data support the conclusion that DE-71 is an endocrine disrupter in rats during development.  相似文献   

8.
This study investigated the potential adverse effects of 1,3-dichloro-2-propanol (1,3-DCP) on pregnant dams and the embryo-fetal development after maternal exposure on gestational days (GD) 6 through 19 in Sprague–Dawley rats. The test chemical was administered to pregnant rats by gavage at dose levels of 0, 10, 30, and 90 mg/kg per day (n = 10 for each group). All dams underwent Caesarean sections on GD 20, and their fetuses were examined for morphological abnormalities. Maternal toxicity was noted at 90 mg/kg/day. Manifestations of toxicity included clinical signs of illness, lower body weight gain, decreased food intake, and increases in the weight of the adrenal glands and the liver. Developmental toxic effects including decreases in fetal body weight and increases in visceral and skeletal variations also occurred at the highest dose. At 30 mg/kg, only a minimal maternal toxicity, including a decrease in maternal food intake and an increase in the liver weight, was observed. No adverse maternal or developmental effects were observed at 10 mg/kg/day. These results revealed that a 14-day repeated oral dose of 1,3-DCP was minimally embryotoxic but not teratogenic at a maternal toxic dose (90 mg/kg/day), and was not embryotoxic at a minimally maternal toxic dose (30 mg/kg/day) in rats. Because the developmental toxicity of 1,3-DCP was observed only in the presence of maternal toxicity, it is concluded that the developmental findings observed in the present study are secondary effects to maternal toxicity. Under these experimental conditions, the no-observed-adverse-effect level of 1,3-DCP is considered to be 10 mg/kg/day for dams and 30 mg/kg/day for embryo-fetal development.  相似文献   

9.
Sodium azide (NaN(3)) is being proposed for use as an active ingredient to control a broad spectrum of soil borne pathogens including insects, weeds, nematodes, fungi, and bacteria. The purpose of this study was to determine the maternal and developmental toxicity of NaN(3) in rats. Sperm-positive Sprague-Dawley rats were treated with NaN(3) via oral gavage once daily from Gestation Day (GD) 6 through 19 at respective dose levels of 0, 1, 5, and 17.5mg/kg/day. From GD 10-12, the high-dose was reduced to 10mg/kg/day due to maternal mortality. Cesarean section was performed on GD 20 and implantation and resorptions sites, live and dead fetuses were counted. Fetuses were weighed, sexed externally and processed for gross external, visceral and skeletal examinations. A high rate of maternal mortality; reduced gestation body weight, gestation body weight changes and food consumption; decreased corrected body weight and corrected weight gain were observed at 17.5/10mg/kg/day. Fetal weight was also reduced at 17.5/10mg/kg/day. There were no maternal deaths, clinical signs or body weight effects that were considered related to NaN(3) at 1 and 5mg/kg/day. No increase in the incidence of malformations and variations were observed at any of the doses evaluated. Based on the results of this study, the No Observed Adverse Effect Level (NOAEL) and the Lowest Observed Adverse Effect Level (LOAEL) for maternal and developmental toxicity of NaN(3) in rats were considered to be 5 and 17.5/10mg/kg/day, respectively.  相似文献   

10.
The results of a series of screening tests to determine the potential teratogenicity and neurotoxicity of developmental exposure to TBTO in rats are presented in this paper. For prenatal exposure, pregnant Long Evans rats were intubated with 0-16 mg/kg/day bis(tri-n-butyltin)oxide TBTO from Days 6 to 20 of gestation (GD 6-20). For postnatal exposure, rat pups were intubated with 0-60 mg/kg TBTO on Postnatal Day 5 (PND 5). Following prenatal exposure, dams were allowed to litter and pups were evaluated using a postnatal teratology screen. Postnatal evaluation for both exposures included motor activity (PND 13-64), the acoustic startle response (PND 22-78), growth, and brain weight. The maximally tolerated dose (MTD) in pregnant rats was 5 mg/kg/day, which is one-third the MTD in nonpregnant rats. There were decreased numbers of live births, and decreased growth and viability at dosages greater than or equal to 10 mg/kg/day. Cleft palate was found in 3% of the 12 mg/kg/day group. There was mortality following postnatal exposure to 60 mg/kg and all prenatal dosages greater than or equal to 10 mg/kg/day. Preweaning body weight was significantly decreased for all postnatal dosages, and all prenatal dosages greater than 2.5 mg/kg/day. Body weight reductions persisted to the postweaning period only in the high dose groups (10 mg/kg/day and 60 mg/kg). Behavioral evaluation demonstrated transient alterations in motor activity development (prenatal exposure only) and the acoustic startle response (postnatal exposure only). Persistent behavioral effects were observed only at dosages that produced overt maternal toxicity and/or postnatal mortality. The demonstration of the teratogenic and neurotoxic potential of TBTO in rats is confounded by associated maternal toxicity and/or pup mortality.  相似文献   

11.
This work tests the mode-of-action (MOA) hypothesis that maternal and developmental triclosan (TCS) exposure decreases circulating thyroxine (T4) concentrations via up-regulation of hepatic catabolism and elimination of T4. Time-pregnant Long-Evans rats received TCS po (0-300mg/kg/day) from gestational day (GD) 6 through postnatal day (PND) 21. Serum and liver were collected from dams (GD20, PND22) and offspring (GD20, PND4, PND14, PND21). Serum T4, triiodothyronine (T3), and thyroid-stimulating hormone (TSH) concentrations were measured by radioimmunoassay. Ethoxy-O-deethylase (EROD), pentoxyresorufin-O-depentylase (PROD) and uridine diphosphate glucuronyltransferase (UGT) enzyme activities were measured in liver microsomes. Custom Taqman(?) qPCR arrays were employed to measure hepatic mRNA expression of select cytochrome P450s, UGTs, sulfotransferases, transporters, and thyroid hormone-responsive genes. TCS was quantified by LC/MS/MS in serum and liver. Serum T4 decreased approximately 30% in GD20 dams and fetuses, PND4 pups and PND22 dams (300mg/kg/day). Hepatic PROD activity increased 2-3 fold in PND4 pups and PND22 dams, and UGT activity was 1.5 fold higher in PND22 dams only (300mg/kg/day). Minor up-regulation of Cyp2b and Cyp3a expression in dams was consistent with hypothesized activation of the constitutive androstane and/or pregnane X receptor. T4 reductions of 30% for dams and GD20 and PND4 offspring with concomitant increases in PROD (PND4 neonates and PND22 dams) and UGT activity (PND22 dams) suggest that up-regulated hepatic catabolism may contribute to TCS-induced hypothyroxinemia during development. Serum and liver TCS concentrations demonstrated greater fetal than postnatal internal exposure, consistent with the lack of T4 changes in PND14 and PND21 offspring. These data support the MOA hypothesis that TCS exposure leads to hypothyroxinemia via increased hepatic catabolism; however, the minor effects on thyroid hormone metabolism may reflect the low efficacy of TCS as thyroid hormone disruptor or highlight the possibility that other MOAs may also contribute to the observed maternal and early neonatal hypothyroxinemia.  相似文献   

12.
Effects of perfluorooctanoic acid exposure during pregnancy in the mouse.   总被引:8,自引:0,他引:8  
Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed-pregnant CD-1 mice were given 1, 3, 5, 10, 20, or 40 mg/kg PFOA by oral gavage daily from gestational day (GD) 1 to 17; controls received an equivalent volume (10 ml/kg) of water. PFOA treatment produced dose-dependent full-litter resorptions; all dams in the 40-mg/kg group resorbed their litters. Weight gain in dams that carried pregnancy to term was significantly lower in the 20-mg/kg group. At GD 18, some dams were sacrificed for maternal and fetal examinations (group A), and the rest were treated once more with PFOA and allowed to give birth (group B). Postnatal survival, growth, and development of the offspring were monitored. PFOA induced enlarged liver in group A dams at all dosages, but did not alter the number of implantations. The percent of live fetuses was lower only in the 20-mg/kg group (74 vs. 94% in controls), and fetal weight was also significantly lower in this group. However, no significant increase in malformations was noted in any treatment group. The incidence of live birth in group B mice was significantly lowered by PFOA: ca. 70% for the 10- and 20-mg/kg groups compared to 96% for controls. Postnatal survival was severely compromised at 10 or 20 mg/kg, and moderately so at 5 mg/kg. Dose-dependent growth deficits were detected in all PFOA-treated litters except the 1-mg/kg group. Significant delays in eye-opening (up to 2-3 days) were noted at 5 mg/kg and higher dosages. Accelerated sexual maturation was observed in male offspring, but not in females. These data indicate maternal and developmental toxicity of PFOA in the mouse, leading to early pregnancy loss, compromised postnatal survival, delays in general growth and development, and sex-specific alterations in pubertal maturation.  相似文献   

13.
Perfluorooctanoic acid (PFOA), with diverse and widespread commercial and industrial applications, has been detected in human and wildlife sera. Previous mouse studies linked prenatal PFOA exposure to decreased neonatal body weights (BWs) and survival in a dose-dependent manner. To determine whether effects were linked to gestational time of exposure or to subsequent lactational changes, timed-pregnant CD-1 mice were orally dosed with 5 mg PFOA/kg on gestation days (GD) 1-17, 8-17, 12-17, or vehicle on GD 1-17. PFOA exposure had no effect on maternal weight gain or number of live pups born. Mean pup BWs on postnatal day (PND) 1 in all PFOA-exposed groups were significantly reduced and decrements persisted until weaning. Mammary glands from lactating dams and female pups on PND 10 and 20 were scored based on differentiation or developmental stages. A significant reduction in mammary differentiation among dams exposed GD 1-17 or 8-17 was evident on PND 10. On PND 20, delays in normal epithelial involution and alterations in milk protein gene expression were observed. All exposed female pups displayed stunted mammary epithelial branching and growth at PND 10 and 20. While control litters at PND 10 and 20 had average scores of 3.1 and 3.3, respectively, all treated litters had scores of 1.7 or less, with no progression of duct epithelial growth evident over time. BW was an insignificant covariate for these effects. These findings suggest that in addition to gestational exposure, abnormal lactational development of dams may play a role in early growth retardation of developmentally exposed offspring.  相似文献   

14.
Prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces alterations in the reproductive system of the developing pups. The objective of this study was to determine the disposition of TCDD in maternal and fetal Long-Evans (LE) rats following subchronic exposure, since the adverse reproductive and developmental effects have been extensively characterized in this strain of rat. LE rats were dosed by gavage with 1, 10, or 30 ng [(3)H]TCDD/kg in corn oil, 5 days/week for 13 weeks. At the end of 13 weeks, females were mated and dosing continued every day throughout gestation. Dams were sacrificed on gestation day (GD) 9, GD16, GD21, and post-natal day 4 and analyzed for [(3)H]TCDD-derived activity in maternal and fetal tissues. Maternal body burdens were equivalent at different time points, indicating that the dams were at steady state. Maternal body burdens were approximately 19, 120, and 300 ng TCDD/kg following doses of 1, 10, and 30 ng TCDD/kg, respectively. Individual embryo concentrations on GD9 were 1.6, 7, and 16 pg TCDD/g after maternal exposure of 1, 10, and 30 ng/kg/d, respectively. On GD 16, fetal liver, urogenital tract, head, and body concentrations were similar and averaged 1.4, 7.8, and 16.4 pg TCDD/g after administration of 1, 10, or 30 ng TCDD/kg/d, respectively, indicating no preferential sequestration within the different fetal tissues. These concentrations of TCDD within fetal tissues after subchronic exposure are comparable to those seen after a single dose of 50, 200, or 1000 ng TCDD/kg administered on GD15, a critical period of gestation.  相似文献   

15.
In the present study, the effects of morphine exposure in utero on social behavior in juvenile male rats was investigated. Pinning, a measure for play behavior, and social grooming of the offspring were measured at postnatal day 21. The subjects were offspring of Wistar rat dams given sc. injections of 1 or 10 mg/kg body weight morphine HCl daily from gestational days 8 (GD8)-GD 21 and control dams injected daily with saline. Pinning and social grooming of the morphine-treated offspring were significantly elevated compared to saline controls. The doses of morphine used neither affected the gestation of pregnant mother rats nor sensorimotor development of the juvenile rats. Prenatal exposure to morphine of 10 mg/kg daily increased both pinning and social grooming, prenatal exposure to a lower dose of 1 mg/kg increased pinning behavior but not social grooming in the offspring. To study the importance of the gestational period, offspring of dams given 10 mg/kg body weight morphine HCl from GD8-GD15 and saline from GD16-parturition or morphine from GD16-parturition and saline from GD8-GD15 was tested. Pinning was only increased when morphine exposure occurred during the third week of gestation, social grooming was increased when morphine exposure had been in the second week of gestation. Subcutaneous administration of 1 mg/kg naltrexone 1 h before the test significantly decreased play behavior in control rats, but not in animals prenatally exposed to morphine. From these experiments we conclude that the long term effect of in utero exposure to morphine on play behavior is established by affecting the endogenous opioid system.  相似文献   

16.
The effect of single maternal subcutaneous (s.c.) injection of 0.12 mg/kg diphenyl ditelluride, (PhTe)2, diluted in canola oil at days 6, 10 or 17 of gestation were evaluated in Wistar rats. The reduction of body weight gain was statistically significant at GD9, for the dams that received (PhTe)2, at GD6; at GD13, for the dams that received (PhTe)2, at GD10, and at GD20, for the dams that received (PhTe)2, at GD17, when compared to respective control groups. External and internal fetal soft tissues examination was performed on day 20 of gestation. Single maternal injection at day 10 of gestation resulted in appearance of malformation in fore- and hind-limbs, absent or short tail, subcutaneous blood clots, exophthalmia, hydrocephalus and absence of the cranial bone and cutaneous tissue in fetuses on day 20 of gestation. Besides, (PhTe)2 reduced fetal body and cerebral weight, kidney length, measurements of body dimension and provoked 73% of fetal mortality. Subcutaneous administration of (PhTe)2 on day 17 of gestation was associated with 94% mortality, hydrocephalus and edema. Histological evaluations of fetal brain demonstrated displaced brain tissue with absence of the cranial bone and cutaneous tissue when diphenyl ditelluride was administered in GD10. Histological evaluation of fetal head exposed at GD17 revealed a decrease of the brain volume with consequent dilation of the lateral ventricles and the adjacent tissues were thinner than that of control group tissues. No fetal changes were observed after administration of (PhTe)2 at day 6 of gestation. Thus, (PhTe)2 can be teratogenic to rat fetuses and toxic for dams. The late fetal stages of rat prenatal development appeared uniquely sensitive to organic tellurium exposure.  相似文献   

17.
The potential for penequine hydrochloride to induce maternal and embryo-fetal developmental toxicity was evaluated in Wistar rats. The drug was administered intramuscularly (i.m.) at dose levels of 0, 10, 30 or 50mg/kg/day to groups of pregnant rats from day 6 to 15 of gestation. All dams were observed for maternal body weights, food consumption and any abnormal change, and subjected to caesarean-section on gestation day (GD) 20; all fetuses obtained from caesarean-section were assessed by external inspection, visceral and skeletal examinations. In the 50mg/kg/day group, maternal toxicity included an increase in the incidence of abnormal clinical signs, and decrease in the body weight and body weight gain. Developmental toxicity included an increase in the postimplantation loss, a decrease in the litter size, and a reduction in the gravid uterus weight. In addition, a statistically non-significant increase in the incidence of fetal external, visceral, and skeletal alterations including malformations and variations were seen in high-dose group. There were no treatment-related findings in maternal clinical and intrauterine observations, and fetal morphological examinations in mid-, low-dose and control groups. Thus, under the conditions of this study, the no-observed-adverse-effect-level (NOAEL) and lowest-observed-adverse-effect-level (LOAEL) of penequine hydrochloride for both maternal and embryo-fetal toxicity in the Wistar rats were considered to be 30mg/kg/day and 50mg/kg/day, which are approximately 900 and 1500 above the therapeutic dosage, respectively.  相似文献   

18.
Tributyltin (TBT) is an environmental contaminant commonly used in anti-fouling agents for boats, as well as a by-product from several industrial processes. It has been shown to accumulate in organisms living in areas with heavy maritime traffic thereby entering the food chain. Here, we determined the consequences of in utero exposure to TBT on the developing fetal gonads in the Sprague-Dawley rat. Timed pregnant rats were gavaged either with vehicle or TBT (0.25, 2.5, 10 or 20 mg/kg) from days 0 to 19 or 8 to 19 of gestation. On gestational day 20, dams were sacrificed; fetal testes and ovaries were processed for light (LM) or electron microscopic (EM) evaluation and RNA was prepared for gene expression profiling. At the highest doses of TBT the number of Sertoli cells and gonocytes was reduced, there were large intracellular spaces between Sertoli cells and gonocytes and there was an increased abundance of lipid droplets in the Sertoli cells; EM studies revealed abnormally dilated endoplasmic reticulum in Sertoli cells and gonocytes. In the intertubular region between adjacent interstitial cells, immunostaining for the gap junctional protein connexin 43 was strong in controls, whereas it was reduced or completely absent in treated rats. In the ovaries, TBT (20 mg/kg, days 0-19; 10 mg/kg, days 8-19) reduced the number of germ cells by 44% and 46%, respectively. On examining gene expression profiles in the testis, 40 genes out of 1176 tested were upregulated more than two-fold over control. While no genes were upregulated in the TBT exposed fetal ovary, eight genes were downregulated. In conclusion, in utero exposure to TBT resulted in gender-specific alterations in gonadal development and gene expression profiles suggesting that there may be different adaptive changes to toxicity in developing male and female rats.  相似文献   

19.
Perfluorooctanoic acid (PFOA) is a persistent pollutant and is detectable in human serum (5 ng/ml in the general population of the Unites States). PFOA is used in the production of fluoropolymers which have applications in the manufacture of a variety of industrial and commercial products (e.g., textiles, house wares, electronics). PFOA is developmentally toxic and in mice affects growth, development, and viability of offspring. This study segregates the contributions of gestational and lactational exposures and considers the impact of restricting exposure to specific gestational periods. Pregnant CD-1 mice were dosed on gestation days (GD) 1-17 with 0, 3, or 5 mg PFOA/kg body weight, and pups were fostered at birth to give seven treatment groups: unexposed controls, pups exposed in utero (3U and 5U), lactationally (3L and 5L), or in utero + lactationally (3U + L and 5U + L). In the restricted exposure (RE) study, pregnant mice received 5 mg PFOA/kg from GD7-17, 10-17, 13-17, or 15-17 or 20 mg on GD15-17. In all PFOA-treated groups, dam weight gain, number of implantations, and live litter size were not adversely affected and relative liver weight increased. Treatment with 5 mg/kg on GD1-17 increased the incidence of whole litter loss and pups in surviving litters had reduced birth weights, but effects on pup survival from birth to weaning were only affected in 5U + L litters. In utero exposure (5U), in the absence of lactational exposure, was sufficient to produce postnatal body weight deficits and developmental delay in the pups. In the RE study, birth weight and survival were reduced by 20 mg/kg on GD15-17. Birth weight was also reduced by 5 mg/kg on GD7-17 and 10-17. Although all PFOA-exposed pups had deficits in postnatal weight gain, only those exposed on GD7-17 and 10-17 also showed developmental delay in eye opening and hair growth. In conclusion, the postnatal developmental effects of PFOA are due to gestational exposure. Exposure earlier in gestation produced stronger responses, but further study is needed to determine if this is a function of higher total dose or if there is a developmentally sensitive period.  相似文献   

20.
Daily indium chloride doses of control (0), 50, 100, 200, or 400 mg/kg were administered orally to Sprague-Dawley rats by gavage, on d 6-15 of gestation, and daily metal doses of control (0), 50, 100, or 200 mg/kg were administered to New Zealand rabbits on d 6-20 of gestation. Further groups of pregnant rats were treated with control (0) or 400 mg/kg indium chloride orally on one of d 8, 9, 10, 11, 12, 13, 14, or 15 of gestation. The dams and fetuses were examined on d 21 (rats) and 30 (rabbits) of gestation, using standard teratological methods. Indium concentration was determined in the maternal and fetal blood, as well as in the amniotic fluid, by atomic absorption spectrometry. Indium was found to cross the placenta and appeared in fetal blood in proportion to the metal concentration of the maternal blood. In the amniotic fluid, indium concentrations remained below the detection limit. In rats, indium chloride produced dose-dependent maternal toxic effects, with a dose of 400 mg/kg inducing embryotoxicity (embryolethality) and teratogenicity. Doses of 200 and 100 mg/kg were embryotoxic (retarding) and teratogenic, causing skeletal and visceral anomalies in addition to external anomalies (rudimentary or missing tail, syndactylia, clubfoot, exencephalia) in rats. In rabbits, 200 mg/kg indium chloride was lethal for the dams and the embryos (some of the animals died, and the number of abortions and full resorptions increased). This dose was found to be teratogenic (caused gross renal anomalies) and increased the frequency of fetuses with skeletal retardation. In rats, the effects of indium chloride causing fetal retardation was found to be independent of exposure time. The teratogenic effects were the highest on d 11 and 12 of gestation, when indium chloride caused gross external malformations. Data suggest that the teratogenic effects of indium chloride can be attributed primarily to a direct cytotoxic action of indium resulting from placental transfer, but the effect is not a selective one, as it appears only in the presence of maternal toxic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号