首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of zidovudine using ethyl cellulose as the retardant material with high entrapment efficiency and extended release. Microspheres were prepared by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion method. A mixed solvent system (MSS) consisting of acetonitrile and dichloromethane in a 1:1 ratio and light liquid paraffin were chosen as primary and secondary oil phases, respectively. Span 80 was used as the surfactant for stabilizing the secondary oil phase. The prepared microspheres were white, free flowing and spherical in shape and characterized by drug loading, infrared spectroscopy (IR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in vitro release studies were performed using PH 7.4 phosphate buffer. The drug loaded microspheres showed 41-55% of entrapment and release was extended up to 18-20 h. The infrared spectra and DSC and DTA thermograms showed stable character of zidovudine in the drug loaded microspheres and revealed the absence of drug-polymer interactions. SEM studies showed that the microspheres are spherical and porous in nature. Data obtained from in vitro release were fitted to various kinetic models and high correlation was obtained in the Higuchi model. The drug release was found to be diffusion controlled.  相似文献   

2.
The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of zidovudine using ethyl cellulose as the retardant material with high entrapment efficiency and extended release. Microspheres were prepared by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion method. A mixed solvent system (MSS) consisting of acetonitrile and dichloromethane in a 1:1 ratio and light liquid paraffin were chosen as primary and secondary oil phases, respectively. Span 80 was used as the surfactant for stabilizing the secondary oil phase. The prepared microspheres were white, free flowing and spherical in shape and characterized by drug loading, infrared spectroscopy (IR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in vitro release studies were performed using PH 7.4 phosphate buffer. The drug loaded microspheres showed 41–55% of entrapment and release was extended up to 18–20?h. The infrared spectra and DSC and DTA thermograms showed stable character of zidovudine in the drug loaded microspheres and revealed the absence of drug-polymer interactions. SEM studies showed that the microspheres are spherical and porous in nature. Data obtained from in vitro release were fitted to various kinetic models and high correlation was obtained in the Higuchi model. The drug release was found to be diffusion controlled.  相似文献   

3.
Kar M  Choudhury PK 《Die Pharmazie》2007,62(2):122-125
The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of metformin hydrochloride using ethyl cellulose as the retardant material with high entrapment efficiency and extended release. Microspheres were prepared by the double emulsion solvent diffusion method. A mixed solvent system consisting of acetonitrile and dichloromethane in 1:1 ratio and light liquid paraffin were chosen as the primary and secondary oil phases, respectively. Span 80 was used as the surfactant for stabilizing the secondary oil phase. The prepared microspheres were characterized by drug loading, optical microscopy and scanning electron microscopy (SEM). The in vitro release studies were performed in a series of buffer solutions with variable pH. The drug loaded microspheres showed 55-85% of entrapment and the release was extended for up to 12 h. SEM studies revealed that the microspheres were spherical and porous in nature. Data obtained from in vitro release studies were fitted to various kinetic models and high correlation was obtained with the Higuchi model. The drug release was found to be diffusion controlled. Oral administration of the microspheres to the albino mice provided decreased plasma glucose for more than 10 h.  相似文献   

4.
Present research investigates the formulation of stavudine loaded biodegradable microspheres from different grades of Poly (D, L Lactide-co-glycolide) as a depot system for parenteral delivery. Prolonged release of stavudine facilitates reduction in symptoms of HIV infection and delay AIDS progression by reducing viral load to undetectable levels. Microspheres were prepared from PLGA 85:15 and PLGA 50:50 (RESOMER(?) 505H) by solvent evaporation technique with different drug/polymer ratios (1:4, 1:10, 1:20, 1:50, 1:100) and a polymer solution/vehicle ratio of 1:2. The effects of various formulation variables like polymer type and concentration, surfactant concentration and drug to polymer ratio on the characteristics of microspheres were evaluated. All thirteen formulations of microspheres were evaluated for yield, entrapment efficiency, particle size and In vitro release studies. Microspheres were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), residual solvent analysis and confocal laser scanning microscopy (CLSM). Microspheres showed excellent surface topography with uniform distribution and structural integrity of the drug. Resulting microspheres showed the maximum entrapment efficiency of 68.0 ± 1.62% and mean particle diameter below 100μ. Drug release kinetics data were obtained from various kinetic models and best explained by "Higuchi Kinetic" i.e. drug release was largely governed by diffusion through water-filled pores in the matrix. Korsmeyer-Peppas equation depicted that drug release mechanism is anomalous transport, i.e. diffusion as well as polymer relaxation. Drug release from microspheres exhibited the characteristic release pattern of a monolithic matrix system with a maximum of 80-90% drug release in 6-8 weeks demonstrating the feasibility of prolonged delivery of stavudine using biodegradable microspheres for parenteral depot system.  相似文献   

5.
Zidovudine-Chitosan microspheres were prepared by a suspension cross-linking method. The chitosan was dissolved in 2% acetic acid solution and this solution was dispersed in the light liquid paraffin. Span-80 was used as an emulsifier and glutaraldehyde as cross-linking agent. The prepared microspheres were slight yellow, free flowing and characterized by drug loading, infrared spectroscopy (IR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in-vitro release studies are performed in pH 7.4 buffer solution. Microspheres produced are spherical and have smooth surfaces, with sizes ranging between 60-210 μm, as evidenced by SEM and particle size analysis. The drug loaded microspheres showed up to 60% of entrapment and release was extended up to 18-24 h. Among all the systems studied, the 35% Glutaraldehyde crosslinked, microspheres with 1 : 6 drug/chitosan ratio showed 75% release at 12 h. The infrared spectra and DSC thermograms showed stable character of zidovudine in the drug loaded microspheres and revealed the absence of drug-polymer interactions. Data obtained from in vitro release were fitted to various kinetic models and high correlation was obtained in the Higuchi model. The drug release was found to be diffusion controlled.  相似文献   

6.
The aim of this study was to formulate and evaluate microspheres of stavudine by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion method using ethyl cellulose and ethyl cellulose in combination with polyvinyl pyrrolidone. A mixed solvent system consisting of acetonitrile and dichloromethane in an 1: 1 ratio and light liquid paraffin was chosen as primary and secondary oil phase, respectively. Span 80 was used as surfactant for stabilizing the secondary oil phase. The influence of formulation factors like stirring speed, surfactant concentration on particle size and polymer:drug ratio and combination of polymers on drug release characteristics of the microspheres was investigated. The prepared microspheres characterized by micrometric properties, drug loading, Fourier transform infrared spectroscopy, X-ray powder difractometry and scanning electron microscopy. The prepared microspheres were white, free flowing and spherical in shape, stable in nature, with 41-65% of drug entrapment efficiency. The best-fit release kinetics was achieved with Higuchi plot followed by first order and zero order. The release of stavudine was influenced by the drug to polymer ratio, particle size and polymer combination.  相似文献   

7.
Xu H  Zhong H  Liu M  Xu C  Gao Y 《Die Pharmazie》2011,66(9):654-661
Lappaconitine instead of its hydrobromide salts has been encapsulated in poly (lactide-co-glycolide) acid (PLGA) microspheres by the simple o/w emulsion solvent evaporation technique. The effects of several variables including emulsifier (polyvinyl alcohol, PVA) concentration, stirring speed, PLGA concentration and drug/polymer mass ratios on quality of microspheres have been investigated. The particle size and size distribution can be controlled by PVA concentration, stirring speed and PLGA concentration. The entrapment efficiency and the burst release of lappaconitine from drug-loaded microspheres were dominantly affected by the drug/polymer mass ratio and PVA concentration. The best parameters of formulation were 1.5% PVA, the PLGA concentration of 50 g/L, and the stirring speed of 800 rpm and drug/polymer of 1:5. The optimized formulation has a mean particle size of 19.3 +/- 0.93 microm, mean entrapment efficiency of 70.77 +/- 3.23% and mean drug loading of 11.45 +/- 0.47%. Based on the optimized parameters of formulation, the effects of oil/aqueous solubility partition ratio of drug on entrapment efficiency of drug-loaded microspheres prepared by o/w emulsion solvent evaporation were further studied. A good linear relation existed between the partition ratio and entrapment efficiency. The optimized microspheres were characterized by SEM, FT-IR, DSC and XRD. SEM shows spherical and smooth surface and uniform size distribution. The results of DSC, FT-IR study reveal no interaction between drug and polymer. The results of the XRD study indicate lappaconitine trapped in microsphere exists in form of an amorphous or disordered crystalline status in polymer matrix. The in vitro release models were evaluated with two different groups of drug-loaded microspheres including microspheres washed with distilled water and 0.01N HCL, respectively. The drug release profile of lappaconitine-loaded microspheres washed with distilled water agreed with zero order equation and that of the latter better agreed with first order equation.  相似文献   

8.
The objective of the present study was to optimize and evaluate in vitro gastroretentive performance of rifampicin microparticles. Formulations were optimized using design of experiments by employing a 4-factor, 3-level Box-Behnken statistical design. Independent variables studied were the ratio of polymers (Eudragit RSPO: ethyl cellulose), inert drug dispersing agent (talc), surfactant (sodium dodecyl sulfate) and stirring speed. The dependent variables were particle size and entrapment efficiency. Response surface plots were drawn, statistical validity of the polynomials was validated and the optimized formulation was characterized by Fourier Transform-InfraRed spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Entrapment efficiency and particle size were determined. The designed microparticles have average particle size from 14.10 μm to 45.63 μm and entrapment efficiency from 38.14% to 94.81%. Optimized microparticles showed particle size and drug entrapment, 51.53 μm and 83.43%, respectively with sustained drug release behavior up to 12?h. In the present study, rifampicin microspheres were successfully prepared by a quasi-emulsion solvent diffusion technique for prolonged drug release. FT-IR and DSC studies did not reveal any significant drug interactions. The drug release was found to be controlled for more than 12?h by following zero order release pattern.  相似文献   

9.
A modified oil-in-oil (o/o) emulsion solvent evaporation technique was adopted to prepare 5-fluorouracil (5-Fu)-loaded poly (L-lactide) (PLLA) or its carbonate copolymer microspheres. The disperse phase was a drug:polymer solution using a solvent mixture of N,N-dimethylformamide (DMF) and acetonitrile and the continuous phase was liquid paraffin containing 1-10% (w/v) Span 80(R). The effects of preparative parameters, such as the composition of the inner oil phase, drug:polymer ratio, polymer concentration and agitation rate, on 5-Fu entrapment efficiency and microsphere characteristics were investigated. By introducing 25% (v/v) DMF into the inner oil phase, microspheres with high drug entrapment efficiency and an ameliorated burst effect were achieved. Using this modified method, microspheres with various particle sizes could be produced with a high 5-Fu entrapment efficiency (about 80%). In vitro drug release tests showed a burst release of 5-Fu from PLLA microspheres, followed by a sustained release over 50 days. In the case of poly (L-lactide-co-1,3-trimethylene carbonate) (PLTMC) and poly (L-lactide-co-2,2-dimethyl-1,3-trimethylene carbonate) (PLDTMC), the drug release could be continued for over 60 days.  相似文献   

10.
A modified w/o/w emulsion solvent evaporation technique was adopted to prepare human Chorionic Gonadotropin (hCG)-loaded polylactide (PLA) or poly(lactide-co-glycolide) (PLGA) microspheres. The effects of preparative parameters, such as stirring rate, polymer MW and concentration, and the composition of both the inner aqueous phase and oil phase etc., on hCG entrapment efficiency and microsphere characteristics were investigated. It was found that by adding 20% glycerol into the inner aqueous phase and 40% acetone into the oil phase, smooth microspheres 1mum in diameter could be produced with high hCG entrapment efficiency (>90%). In vitro release test showed a burst release of hCG from PLGA (75:25) microspheres, followed by sustained release of 55% hCG over 2 months. The initial hCG burst from PLGA microspheres increased with the glycerol concentration in the inner aqueous phase, but decreased to a low value (ca. 20%) with the addition of acetone into the oil phase, which could beattributed to the associated changes in surface morphology of the microspheres. In vivo experiments demonstrated that a single shot of hCG-loaded PLGA microspheres could produce a comparable antibody response with the inoculation of free hCG four times.  相似文献   

11.
The aim of this study was to develop ethylcellulose microspheres for prolonged drug delivery with reduced burst effect. Ethylcellulose microspheres loaded with ibuprofen were prepared with and without polystyrene, which was used to retard drug release from ethylcellulose microspheres. Ibuprofen-loaded ethylcellulose microspheres with a polystyrene content of 0-25% were prepared by the solvent evaporation technique and characterized by drug loading, infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. The in vitro release studies were performed to study the influence of polystyrene on ibuprofen release from ethylcellulose microspheres. The microspheres showed 28-46% of drug loading and 80-92% of entrapment, depending on polymer/drug ratio. The infrared spectrum and thermogram showed stable character of ibuprofen in the microspheres and revealed an absence of drug polymer interaction. The prepared microspheres were spherical in shape and had a size range of 0.1-4 microm. Ethylcellulose/polystyrene microspheres showed prolonged drug release and less burst effect when compared to microspheres prepared with ethylcellulose alone. Microspheres prepared with an ethylcellulose/polystyrene ratio of 80:20 gave a required release pattern for oral drug delivery. The presence of polystyrene above this ratio gave release over 24 h. To find out the mechanism of drug release from ethylcellulose/polystyrene microspheres, the data obtained from in vitro release were fitted in various kinetic models. High correlation was obtained in Higuchi and Korsmeyer-Peppas models. The drug release from ethylcellulose/polystyrene microspheres was found to be diffusion controlled.  相似文献   

12.
A modified w/o/w emulsion solvent evaporation technique was adopted to prepare human Chorionic Gonadotropin (hCG)-loaded polylactide (PLA) or poly(lactide-co-glycolide) (PLGA) microspheres. The effects of preparative parameters, such as stirring rate, polymer MW and concentration, and the composition of both the inner aqueous phase and oil phase etc., on hCG entrapment efficiency and microsphere characteristics were investigated. It was found that by adding 20% glycerol into the inner aqueous phase and 40% acetone into the oil phase, smooth microspheres approximately 1 microm in diameter could be produced with high hCG entrapment efficiency (>90%). In vitro release test showed a burst release of hCG from PLGA (75:25) microspheres, followed by sustained release of 55% hCG over 2 months. The initial hCG burst from PLGA microspheres increased with the glycerol concentration in the inner aqueous phase, but decreased to a low value (ca. 20%) with the addition of acetone into the oil phase, which could be attributed to the associated changes in surface morphology of the microspheres. In vivo experiments demonstrated that a single shot of hCG-loaded PLGA microspheres could produce a comparable antibody response with the inoculation of free hCG four times.  相似文献   

13.
Present study aims to prepare and evaluate niacin microspheres. Niacin-ethyl cellulose microspheres were prepared by water-in-oil-in-oil double emulsion solvent diffusion method. Spherical, free flowing microspheres having an entrapment efficiency of 72% were obtained. The effect of polymer-drug ratio, surfactant concentration for secondary emulsion process and stirring speed of emulsification process were evaluated with respect to entrapment efficiency, in vitro drug release behavior and particle size. FT-IR and DSC analyses confirmed the absence of drug-polymer interaction. The in vitro release profile could be altered significantly by changing various processing and formulation parameters to give a controlled release of drug from the microspheres. The percentage yield was 85%, particle size range was 405 to 560 μm. The drug release was controlled for 10 h. The in vitro release profiles from optimized formulations were applied on various kinetic models. The best fit with the highest correlation coefficient was observed in Higuchi model, indicating diffusion controlled principle. The in vitro release profiles of optimized formulation was studied and compared with commercially available niacin extended release formulation.  相似文献   

14.
The study is concerned with the development of cellulose acetate microspheres by the o/w emulsification and solvent evaporation method in the presence of polyvinyl alcohol as an emulsifying agent. The influence of process parameters such as solvent mixture (acetone + dichloromethane) composition, concentration of the emulsifying agent and speed of stirring has been examined. The microspheres have been analysed for their size, drug loading capacity and release kinetics. Spherical and smooth surfaced microspheres with encapsulation efficiencies ranging between 73-98% were obtained. Use of acetone in the oil phase drastically reduced the particle size. Slow drug release from microspheres occurred up to ~8h and the release was found to be non-Fickian. An optimization procedure was employed to investigate and identify the key parameters affecting the properties of the microspheres. A 3 3 randomized full factorial design was used in the analyses of the data. A linear model with interactive terms was generated using a multiple linear regression approach. The statistical analysis confirms the significant effect of solvent composition and concentration of emulsifying agent on the drug release characteristics.  相似文献   

15.
In this paper, ibuprofen was encapsulated into microspheres by oil-in-water (o/w) emulsion solvent evaporation method. Biodegradable polymers with certain compositions and characteristics such as polylactide (PLA), poly(epsilon-caprolactone) (PCL) and their block copolymer were used to prepare the microspheres. The results indicate that, under the same processing conditions, the drug entrapment efficiency was similar (approximately 80%) for microspheres prepared with PLA and P(LA-b-CL) (78.7/21.3 by mole), but it was only 25.4% for PCL microspheres. The in vitro drug release rate decreased in the order of PCL, P(LA-b-CL) (78.7/21.3 by mole) and PLA microspheres. PCL microspheres showed more serious burst release during the first day (almost 80%) than P(LA-b-CL) (50%) and PLA microspheres (18%). The complete ibuprofen release duration from the last two kinds of microspheres exceeded 1 month. Characterization of the microspheres by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and polarized optical microscope (POM) revealed that ibuprofen was amorphous in PCL microspheres and partially crystalline in P(LA-b-CL) and PLA microspheres. The different release behaviour of ibuprofen from the three kinds of microspheres could be attributed to the different crystallinity of the studied polymers and drug dispersion state in polymer matrices. All the above results suggest that the copolymer with a certain ratio of lactide to -caprolactone could have potential applications for long-term ibuprofen release.  相似文献   

16.
Abstract

The objective of this study was to produce biodegradable poly(lactide-co-glycolide) (PLGA; 50/50) microspheres by an oil-in-oil (o/o) solvent evaporation method to prolong the in vitro release of ovalbumin (OVA) as a model protein. The effects, on loading efficiency, microsphere yield, morphology and drug release, of two dispersing agents, aluminum tristearate and Span 80, in mineral oil were examined. PLGA 50/50 microspheres containing OVA powder (sieved through a 53 μm mesh) were prepared using an o/o solvent evaporation method. When aluminum tristearate was employed as a dispersing agent, the loading efficiency and yield of OVA had maximum values of 89 and 72% at 0·15% (w/v) aluminum tristearate, respectively. Morphology studies suggested that the obtained microspheres were spherical, and had a smooth surface. The diameters of the microspheres ranged between 100 and 200 μm. The loading efficiency, or yield, for microspheres decreased significantly above or below 0·15% (w/v) aluminum tristearate, and microspheres wkh irregular shapes were observed. The minimum sedimentation volume ratio (F) was obtained at a dispersity of carbon black particles in ethanol containing 0·15% (w/v) aluminum tristearate by a sedimentation study, and the cloudy supernatant suggested a defiocculated suspension. However, on the contrary, when Span 80 was added into the mineral oil as a dispersing agent, the concentration of Span 80 had little or no effect on the characteristics of the prepared microspheres. Drug loadings (60–70%) were obtained within the Span 80 concentrations employed in the present study (0·05–1·0% (w/v)). The yields were also in the same levels. The microspheres prepared in mineral oil containing Span 80 had an average diameter less than 50 μm in all cases. Sustained-release characteristics were demonstrated for PLGA microspheres prepared in mineral oil containing aluminum tristearate as a dispersing agent, even though a burst release at the initial phase was observed. This initial burst release from PLGA microspheres was reduced to some extent by micronization of the OVA powder using a planetary-type ball mill. However, PLGA microspheres prepared in mineral oil containing Span 80 as a dispersing agent, exhibited a large initial burst release. This burst release seems to be due to the smaller size of microspheres and the OVA powder adhering to the surface of PLGA microspheres (confirmed by scanning electron microscope (SEM) study).  相似文献   

17.
The objective of the present study was to optimize and evaluate in vitro gastroretentive performance of rifampicin microparticles. Formulations were optimized using design of experiments by employing a 4-factor, 3-level Box-Behnken statistical design. Independent variables studied were the ratio of polymers (Eudragit RSPO: ethyl cellulose), inert drug dispersing agent (talc), surfactant (sodium dodecyl sulfate) and stirring speed. The dependent variables were particle size and entrapment efficiency. Response surface plots were drawn, statistical validity of the polynomials was validated and the optimized formulation was characterized by Fourier Transform-InfraRed spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Entrapment efficiency and particle size were determined. The designed microparticles have average particle size from 14.10 μm to 45.63 μm and entrapment efficiency from 38.14% to 94.81%. Optimized microparticles showed particle size and drug entrapment, 51.53 μm and 83.43%, respectively with sustained drug release behavior up to 12?h. In the present study, rifampicin microspheres were successfully prepared by a quasi-emulsion solvent diffusion technique for prolonged drug release. FT-IR and DSC studies did not reveal any significant drug interactions. The drug release was found to be controlled for more than 12?h by following zero order release pattern.  相似文献   

18.
Present study describes the development of a new formulation of levonorgestrel and ethinylestradiol based on double emulsion-solvent evaporation technique using poly(epsilon-caprolactone) (PCL) as biodegradable polymer. The effect of polymer concentration on microspheres and entrapment of drug into microspheres were studied. PCL was selected because of its hydrophobicity and advantages over other biodegradable polymers. Characterization of biodegradable polymer used for controlled drug delivery is essential to ensure reproducibility of in vitro and in vivo performances. The selected characterisation techniques established for PCL microspheres include its loading and entrapment efficiencies, DSC to analyse thermal behaviour, SEM to observe surface morphology, drug content of microspheres and in vitro release of drugs from microspheres. The SEM reports showed that microspheres were with smooth surface and DSC thermograms revealed no interaction between drug and polymer. The entrapment was found to be 58 and 47% for 1:10 and 1:5 batches and in vitro release studies showed that about 69.7% of LNG and 66.7% of EE from 1:10 batch and about 80% of LNG and 75.5% of EE from 1:5 batch for 150 days.  相似文献   

19.
The study is concerned with the development of cellulose acetate microspheres by the o/w emulsification and solvent evaporation method in the presence of polyvinyl alcohol as an emulsifying agent. The influence of process parameters such as solvent mixture (acetone + dichloromethane) composition, concentration of the emulsifying agent and speed of stirring has been examined. The microspheres have been analysed for their size, drug loading capacity and release kinetics. Spherical and smooth surfaced microspheres with encapsulation efficiencies ranging between 73-98%, were obtained. Use of acetone in the oil phase drastically reduced the particle size. Slow drug release from microspheres occurred up to approximately 8 h and the release was found to be non-Fickian. An optimization procedure was employed to investigate and identify the key parameters affecting the properties of the microspheres. A 33 randomized full factorial design was used in the analyses of the data. A linear model with interactive terms was generated using a multiple linear regression approach. The statistical analysis confirms the significant effect of solvent composition and concentration of emulsifying agent on the drug release characteristics.  相似文献   

20.
A multiple-unit-type oral floating dosage form (FDF) of 5-Fluorouracil (5-FU) was developed to prolong gastric residence time for the treatment of stomach cancer. The floating microspheres were prepared by solvent evaporation method. The prepared microspheres were characterized for their micromeretic properties, floating behavior and entrapment efficiency; as well by Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), thin layer chromatography (TLC) and scanning electron microscopy (SEM). The in vitro release studies and floating behavior were performed in HCl buffer pH 1.2, Phosphate buffer pH 4.5 and in Simulated Gastric Fluid (SGF). The best fit release kinetics was achieved with Higuchi plot. The yields of preparation were very high and low entrapment efficiencies were noticed with larger particle size for all the formulations. Mean particle size, entrapment efficiency and production yield were highly influenced by polymer concentration. It was concluded from the present investigation that porous Ethylcellulose microspheres are promising controlled release as well as stomach targeted carriers for 5-FU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号