首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

3.
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.Protein toxins from venomous organisms have been invaluable tools for studying the ion channel proteins they target. For example, in the case of voltage-activated potassium (Kv) channels, pore-blocking scorpion toxins were used to identify the pore-forming region of the channel (1, 2), and gating modifier tarantula toxins that bind to S1–S4 voltage-sensing domains have helped to identify structural motifs that move at the protein–lipid interface (35). In many instances, these toxin–channel interactions are highly specific, allowing them to be used in target validation and drug development (68).Tarantula toxins are a particularly interesting class of protein toxins that have been found to target all three families of voltage-activated cation channels (3, 912), stretch-activated cation channels (1315), as well as ligand-gated ion channels as diverse as acid-sensing ion channels (ASIC) (1621) and transient receptor potential (TRP) channels (22, 23). The tarantula toxins targeting these ion channels belong to the inhibitor cystine knot (ICK) family of venom toxins that are stabilized by three disulfide bonds at the core of the molecule (16, 17, 2431). Although conventional tarantula toxins vary in length from 30 to 40 aa and contain one ICK motif, the recently discovered double-knot toxin (DkTx) that specifically targets TRPV1 channels contains two separable lobes, each containing its own ICK motif (22, 23).One unifying feature of all tarantula toxins studied thus far is that they act on ion channels by modifying the gating properties of the channel. The best studied of these are the tarantula toxins targeting voltage-activated cation channels, where the toxins bind to the S3b–S4 voltage sensor paddle motif (5, 3236), a helix-turn-helix motif within S1–S4 voltage-sensing domains that moves in response to changes in membrane voltage (3741). Toxins binding to S3b–S4 motifs can influence voltage sensor activation, opening and closing of the pore, or the process of inactivation (4, 5, 36, 4246). The tarantula toxin PcTx1 can promote opening of ASIC channels at neutral pH (16, 18), and DkTx opens TRPV1 in the absence of other stimuli (22, 23), suggesting that these toxin stabilize open states of their target channels.For many of these tarantula toxins, the lipid membrane plays a key role in the mechanism of inhibition. Strong membrane partitioning has been demonstrated for a range of toxins targeting S1–S4 domains in voltage-activated channels (27, 44, 4750), and for GsMTx4 (14, 50), a tarantula toxin that inhibits opening of stretch-activated cation channels in astrocytes, as well as the cloned stretch-activated Piezo1 channel (13, 15). In experiments on stretch-activated channels, both the d- and l-enantiomers of GsMTx4 are active (14, 50), implying that the toxin may not bind directly to the channel. In addition, both forms of the toxin alter the conductance and lifetimes of gramicidin channels (14), suggesting that the toxin inhibits stretch-activated channels by perturbing the interface between the membrane and the channel. In the case of Kv channels, the S1–S4 domains are embedded in the lipid bilayer and interact intimately with lipids (48, 51, 52) and modification in the lipid composition can dramatically alter gating of the channel (48, 5356). In one study on the gating of the Kv2.1/Kv1.2 paddle chimera (53), the tarantula toxin VSTx1 was proposed to inhibit Kv channels by modifying the forces acting between the channel and the membrane. Although these studies implicate a key role for the membrane in the activity of Kv and stretch-activated channels, and for the action of tarantula toxins, the influence of the toxin on membrane structure and dynamics have not been directly examined. The goal of the present study was to localize a tarantula toxin in membranes using structural approaches and to investigate the influence of the toxin on the structure of the lipid bilayer.  相似文献   

4.
Background and objectives: Natriuretic peptides have been suggested to be of value in risk stratification in dialysis patients. Data in patients on peritoneal dialysis remain limited.Design, setting, participants, & measurements: Patients of the ADEMEX trial (ADEquacy of peritoneal dialysis in MEXico) were randomized to a control group [standard 4 × 2L continuous ambulatory peritoneal dialysis (CAPD); n = 484] and an intervention group (CAPD with a target creatinine clearance ≥60L/wk/1.73 m2; n = 481). Natriuretic peptides were measured at baseline and correlated with other parameters as well as evaluated for effects on patient outcomes.Results: Control group and intervention group were comparable at baseline with respect to all measured parameters. Baseline values of natriuretic peptides were elevated and correlated significantly with levels of residual renal function but not with body size or diabetes. Baseline values of N-terminal fragment of B-type natriuretic peptide (NT-proBNP) but not proANP(1–30), proANP(31–67), or proANP(1–98) were independently highly predictive of overall survival and cardiovascular mortality. Volume removal was also significantly correlated with patient survival.Conclusions. NT-proBNP have a significant predictive value for survival of CAPD patients and may be of value in guiding risk stratification and potentially targeted therapeutic interventions.Plasma levels of cardiac natriuretic peptides are elevated in patients with chronic kidney disease, owing to impairment of renal function, hypertension, hypervolemia, and/or concomitant heart disease (17). Atrial natriuretic peptide (ANP) and particularly brain natriuretic peptide (BNP) levels are linked independently to left ventricular mass (35,816) and function (3,617) and predict total and cardiovascular mortality (1,3,8,10,12,18) as well as cardiac events (12,19). ANP and BNP decrease significantly during hemodialysis treatment but increase again during the interdialytic interval (1,2,4,6,7,14,17,2023). Levels in patients on peritoneal dialysis (PD) have been found to be lower than in patients on hemodialysis (11,2426), but the correlations with left ventricular function and structure are maintained in both types of dialysis modalities (11,15,27,28).The high mortality of patients on peritoneal dialysis and the failure of dialytic interventions to alter this mortality (29,30) necessitate renewed attention into novel methods of stratification and identification of patients at highest risk to be targeted for specific interventions. Cardiac natriuretic peptides are increasingly considered to fulfill this role in nonrenal patients. Evaluations of cardiac natriuretic peptides in patients on PD have been limited by small numbers (3,9,11,12,15,2426) and only one study examined correlations between natriuretic peptide levels and outcomes (12). The PD population enrolled in the ADEMEX trial offered us the opportunity to evaluate cardiac natriuretic peptides and their value in predicting outcomes in the largest clinical trial ever performed on PD (29,30). It is hoped that such an evaluation would identify patients at risk even in the absence of overt clinical disease and hence facilitate or encourage interventions with salutary outcomes.  相似文献   

5.
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras–GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras–GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras–GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12–induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras–GTP to stimulate Ras-induced senescence in nontransformed human cells.ASPP2, also known as 53BP2L, is a tumor suppressor whose expression is altered in human cancers (1). Importantly, targeting of the ASPP2 allele in two different mouse models reveals that ASPP2 heterozygous mice are prone to spontaneous and γ-irradiation–induced tumors, which rigorously demonstrates the role of ASPP2 as a tumor suppressor (2, 3). ASPP2 binds p53 via the C-terminal ankyrin-repeat and SH3 domain (46), is damage-inducible, and can enhance damage-induced apoptosis in part through a p53-mediated pathway (1, 2, 710). However, it remains unclear what biologic pathways and mechanisms mediate ASPP2 tumor suppressor function (1). Indeed, accumulating evidence demonstrates that ASPP2 also mediates nonapoptotic p53-independent pathways (1, 3, 1115).The induction of cellular senescence forms an important barrier to tumorigenesis in vivo (1621). It is well known that oncogenic Ras signaling induces senescence in normal nontransformed cells to prevent tumor initiation and maintain complex growth arrest pathways (16, 18, 2124). The level of oncogenic Ras activation influences its capacity to activate senescence; high levels of oncogenic H-RasV12 signaling leads to low grade tumors with senescence markers, which progress to invasive cancers upon senescence inactivation (25). Thus, tight control of Ras signaling is critical to ensure the proper biologic outcome in the correct cellular context (2628).The ASPP2 C terminus is important for promoting p53-dependent apoptosis (7). The ASPP2 N terminus may also suppress cell growth (1, 7, 2933). Alternative splicing can generate the ASPP2 N-terminal truncated protein BBP (also known as 53BP2S) that is less potent in suppressing cell growth (7, 34, 35). Although the ASPP2 C terminus mediates nuclear localization, full-length ASPP2 also localizes to the cytoplasm and plasma membrane to mediate extranuclear functions (7, 11, 12, 36). Structural studies of the ASPP2 N terminus reveal a β–Grasp ubiquitin-like fold as well as a potential Ras-binding (RB)/Ras-association (RA) domain (32). Moreover, ASPP2 can promote H-RasV12–induced senescence (13, 15). However, the molecular mechanism(s) of how ASPP2 directly promotes Ras signaling are complex and remain to be completely elucidated.Here, we explore the molecular mechanisms of how Ras-signaling is enhanced by ASPP2. We demonstrate that ASPP2: (i) binds Ras-GTP and stimulates Ras-induced ERK signaling via its N-terminal domain at the plasma membrane; (ii) enhances Ras-GTP loading and B-Raf/C-Raf dimerization and forms a ASPP2/Raf complex; (iii) stimulates Ras-induced C-Raf phosphorylation and activation; and (iv) potentiates H-RasV12–induced senescence in both primary human fibroblasts and neonatal human epidermal keratinocytes. These data provide mechanistic insight into ASPP2 function(s) and opens important avenues for investigation into its role as a tumor suppressor in human cancer.  相似文献   

6.
Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson’s disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC–DAn) in culture. Here, we showed that after the striatal transplantation of pNSC–DAn, (i) pNSC–DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC–DAn (and not from injured original cells). Thus, pNSC–DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder characterized by the specific loss of dopaminergic neurons in the substantia nigra pars compacta and their projecting axons, resulting in loss of dopamine (DA) release in the striatum (1). During the last two decades, cell-replacement therapy has proven, at least experimentally, to be a potential treatment for PD patients (27) and in animal models (815). The basic principle of cell therapy is to restore the DA release by transplanting new DA-like cells. Until recently, obtaining enough transplantable cells was a major bottleneck in the practicability of cell therapy for PD. One possible source is embryonic stem cells (ESCs), which can develop infinitely into self-renewable pluripotent cells with the potential to generate any type of cell, including DA neurons (DAns) (16, 17).Recently, several groups including us have introduced rapid and efficient ways to generate primitive neural stem cells (pNSCs) from human ESCs using small-molecule inhibitors under chemically defined conditions (12, 18, 19). These cells are nonpolarized neuroepithelia and retain plasticity upon treatment with neuronal developmental morphogens. Importantly, pNSCs differentiate into DAns (pNSC–DAn) with high efficiency (∼65%) after patterning by sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF8) in vitro, providing an immediate and renewable source of DAns for PD treatment. Importantly, the striatal transplantation of human ESC-derived DA-like neurons, including pNSC–DAn, are able to relieve the motor defects in a PD rat model (1113, 15, 1923). Before attempting clinical translation of pNSC–DAn, however, there are two fundamental open questions. (i) Can pNSC–DAn functionally restore the striatal DA levels in vivo? (ii) What cells release the restored DA, pNSC–DAn themselves or resident neurons/cells repaired by the transplants?Regarding question 1, a recent study using nafion-coated carbon fiber electrodes (CFEs) reported that the amperometric current is rescued in vivo by ESC (pNSC–DAn-like) therapy (19). Both norepinephrine (NE) and serotonin are present in the striatum (24, 25). However, CFE amperometry/chronoamperometry alone cannot distinguish DA from other monoamines in vivo, such as NE and serotonin (Fig. S1) (see also refs. 2628). Considering that the compounds released from grafted ESC-derived cells are unknown, the work of Kirkeby et al. was unable to determine whether DA or other monoamines are responsible for the restored amperometric signal. Thus, the key question of whether pNSC–DAn can rescue DA release needs to be reexamined for the identity of the restored amperometric signal in vivo.Regarding question 2, many studies have proposed that DA is probably released from the grafted cells (8, 12, 13, 20), whereas others have proposed that the grafted stem cells might restore striatal DA levels by rescuing injured original cells (29, 30). Thus, whether the grafted cells are actually capable of synthesizing and releasing DA in vivo must be investigated to determine the future cellular targets (residual cells versus pNSC–DAn) of treatment.To address these two mechanistic questions, advanced in vivo methods of DA identification and DA recording at high spatiotemporal resolution are required. Currently, microdialysis-based HPLC (HPLC) (3133) and CFE amperometric recordings (34, 35) have been used independently by different laboratories to assess evoked DA release from the striatum in vivo. The major advantage of microdialysis-based HPLC is to identify the substances secreted in the cell-grafted striatum (33), but its spatiotemporal resolution is too low to distinguish the DA release site (residual cells or pNSC–DAn). In contrast, the major advantage of CFE-based amperometry is its very high temporal (ms) and spatial (μm) resolution, making it possible to distinguish the DA release site (residual cells or pNSC–DAn) in cultured cells, brain slices, and in vivo (3439), but it is unable to distinguish between low-level endogenous oxidizable substances (DA versus serotonin and NE) in vivo.In the present study, we developed a challenging experimental paradigm of combining the two in vivo methods, microdialysis-based HPLC and CFE amperometry, to identify the evoked substance as DA and its release site as pNSC–DAn in the striatum of PD rats.  相似文献   

7.
Patients with pemphigus vulgaris (PV) harbor antibodies reactive against self-antigens expressed at the surface of keratinocytes, primarily desmoglein (Dsg) 3 and, to a lesser extent, Dsg1. Conventionally, only antibodies targeting these molecules have been thought to contribute to disease pathogenesis. This notion has been challenged by a growing pool of evidence that suggests that antibodies toward additional targets may play a role in disease. The aims of this study were to (i) establish high-throughput protein microarray technology as a method to investigate traditional and putative autoantibodies (autoAbs) in PV and (ii) use multiplexed protein array technology to define the scope and specificity of the autoAb response in PV. Our analysis demonstrated significant IgG reactivity in patients with PV toward the muscarinic acetylcholine receptor subtypes 3, 4, and 5 as well as thyroid peroxidase. Furthermore, we found that healthy first- and second-degree relatives of patients with PV express autoAbs toward desmoglein and non-Dsg targets. Our analysis also identified genetic elements, particularly HLA, as key drivers of autoAb expression. Finally, we show that patients with PV exhibit significantly reduced IgM reactivity toward disease-associated antigens relative to controls. The use of protein microarrays to profile the autoAb response in PV advanced the current understanding of disease and provided insight into the complex relationship between genetics and disease development.Pemphigus vulgaris (PV) is a blistering autoimmune skin disease characterized by the presence of autoantibodies (autoAbs) directed against keratinocyte surface antigens (1, 2). Although early immunofluorescence studies demonstrated the presence of autoAbs in patient sera that bound to the surface of keratinocytes, a direct role of autoAbs in disease pathogenesis was not established until purified patient IgG (PVIgG) was shown to elicit blister formation upon passive transfer in mice (3). The main targets of these autoAbs were identified as Desmoglein (Dsg) 3 and 1, cadherin proteins that constitute key components of desmosomes, protein complexes responsible for maintaining cell–cell adhesion (47). Later experiments in which patient sera depleted of anti-Dsg3 Abs failed to produce blisters when passively transferred to mice (8) seemingly cemented the notion that these autoAbs alone were responsible for blister formation. As a result, subsequent research in the field has focused primarily on autoAbs directed against Dsgs.The assertion that anti-Dsg autoAbs alone are pathogenic was first challenged when PVIgG, lacking any anti-Dsg1 autoAbs, produced blisters when passively transferred into Dsg3-null mice (9). Additionally, several studies have shown that anti-Dsg Ab titers do not necessarily correlate with disease activity, and a subset of patients with PV do not harbor any detectable anti-Dsg Abs (1014). The presence of pathogenic autoAbs directed against non-Dsg targets could account for these findings. Early studies established the presence of non-Dsg autoAbs in PV sera by showing that PVIgG depleted of anti-Dsg3 Abs recognized a number of non-Dsg antigens (15), and subsequent work identified several specific non-Dsg proteins as targets of autoAbs in PV (9, 1620).Currently, the scope and specificity of non-Dsg autoAbs in PV has not been fully examined, and the genetic factors underlying autoAb generation, including the impact of HLA allele expression on PV autoAb repertoires, are not well understood. Without a detailed understanding of the specificity of the autoimmune response, broad-scale immunosuppression, whose side effects alone can be severe or even life-threatening, remains the mainstay treatment of PV. Characterization of the scope and specificity of autoAbs in PV represents a potentially pivotal step toward a better understanding of disease mechanisms in pemphigus, facilitating the development of more specific and safe treatments.In recent years, the development of protein microarrays has enabled high-throughput analysis and improved sensitivity in the detection of autoAbs compared with conventional methods such as ELISA (21, 22). Array technology has been successfully used to assess autoAb responses in several autoimmune diseases, including systemic lupus erythematous, polymyositis, rheumatoid arthritis, and multiple sclerosis (2325). In the present study, we used protein array technology to experimentally examine the scope and specificity of autoAbs in PV. Candidate antigens were identified by a thorough review of the literature (5, 9, 2634). The selected proteins were printed onto glass slides and used to probe the serum of patients with pemphigus, healthy first- or second-degree relatives of patients with PV, and unrelated control subjects. By using this methodology, we clearly demonstrated increased autoAb reactivity in patients with active disease toward four non-Dsg antigenic targets in addition to Dsg3. We also found that, compared with the unrelated control group, related control subjects express greater IgG autoAb reactivity toward a subset of the antigens recognized by the patient autoAbs. Importantly, we found that autoAb reactivity in related control subjects is tightly associated with the expression of either of two HLA alleles known to be highly associated with PV susceptibility, DRB1*0402 and DQB1*0503. Surprisingly, in contrast to the IgG response, IgM reactivity toward Dsg and non-Dsg antigens was found to be depressed in patients with active pemphigus relative to unrelated control subjects.  相似文献   

8.
A problem in understanding eukaryotic DNA mismatch repair (MMR) mechanisms is linking insights into MMR mechanisms from genetics and cell-biology studies with those from biochemical studies of MMR proteins and reconstituted MMR reactions. This type of analysis has proven difficult because reconstitution approaches have been most successful for human MMR whereas analysis of MMR in vivo has been most advanced in the yeast Saccharomyces cerevisiae. Here, we describe the reconstitution of MMR reactions using purified S. cerevisiae proteins and mispair-containing DNA substrates. A mixture of MutS homolog 2 (Msh2)–MutS homolog 6, Exonuclease 1, replication protein A, replication factor C-Δ1N, proliferating cell nuclear antigen and DNA polymerase δ was found to repair substrates containing TG, CC, +1 (+T), +2 (+GC), and +4 (+ACGA) mispairs and either a 5′ or 3′ strand interruption with different efficiencies. The Msh2–MutS homolog 3 mispair recognition protein could substitute for the Msh2–Msh6 mispair recognition protein and showed a different specificity of repair of the different mispairs whereas addition of MutL homolog 1–postmeiotic segregation 1 had no affect on MMR. Repair was catalytic, with as many as 11 substrates repaired per molecule of Exo1. Repair of the substrates containing either a 5′ or 3′ strand interruption occurred by mispair binding-dependent 5′ excision and subsequent resynthesis with excision tracts of up to ∼2.9 kb occurring during the repair of the substrate with a 3′ strand interruption. The availability of this reconstituted MMR reaction now makes possible detailed biochemical studies of the wealth of mutations identified that affect S. cerevisiae MMR.DNA mismatch repair (MMR) is a critical DNA repair pathway that is coupled to DNA replication in eukaryotes where it corrects misincorporation errors made during DNA replication (19). This pathway prevents mutations and acts to prevent the development of cancer (10, 11). MMR also contributes to gene conversion by repairing mispaired bases that occur during the formation of recombination intermediates (3, 4, 12). Finally, MMR acts to suppress recombination between divergent but homologous DNA sequences, thereby preventing the formation of genome rearrangements that can result from nonallelic homologous recombination (4, 1315).Our knowledge of the mechanism of eukaryotic MMR comes from several general lines of investigation (39). Studies of bacterial MMR have provided a basic mechanistic framework for comparative studies (5). Genetic and cell-biology studies, primarily in Saccharomyces cerevisiae, have identified eukaryotic MMR genes, provided models for how their gene products define MMR pathways, and elucidated some of the details of how MMR pathways interact with replication (14). Reconstitution studies, primarily in human systems, have identified some of the catalytic features of eukaryotic MMR (79, 16, 17). Biochemical and structural studies of S. cerevisiae and human MMR proteins have provided information about the function of individual MMR proteins (69).In eukaryotic MMR, mispairs are bound by MutS homolog 2 (Msh2)–MutS homolog 6 (Msh6) and Msh2–MutS homolog 3 (Msh3), two partially redundant complexes of MutS-related proteins (3, 4, 18, 19). These complexes recruit a MutL-related complex, called MutL homoloh 1 (Mlh1)–postmeiotic segregation 1 (Pms1) in S. cerevisiae and Mlh1–postmeiotic segregation 2 (Pms2) in human and mouse (3, 4, 2023). The Mlh1–Pms1/Pms2 complex has an endonuclease activity suggested to play a role in the initiation of the excision step of MMR (24, 25). Downstream of mismatch recognition is a mispair excision step that can be catalyzed by Exonuclease 1 (Exo1) (2628); however, defects in both S. cerevisiae and mouse Exo1 result in only a partial MMR deficiency, suggesting the existence of additional excision mechanisms (26, 27, 29). DNA polymerase δ, the single-strand DNA binding protein replication protein A (RPA), the sliding clamp proliferating cell nuclear antigen (PCNA), and the clamp loader replication factor C (RFC) are also required for MMR at different steps, including activation of Mlh1–Pms1/Pms2, stimulation of Exo1, potentially in Exo1-independent mispair excision, and in the gap-filling resynthesis steps of MMR (3, 16, 17, 24, 27, 3036). Although much is known about these core MMR proteins, it is not well understood how eukaryotic MMR is coupled to DNA replication (1, 2), how excision is targeted to the newly replicated strand (1, 25, 3739), or how different MMR mechanisms such as Exo1-dependent and -independent subpathways are selected or how many such subpathways exist (1, 24, 27, 29).S. cerevisiae has provided a number of tools for studying MMR, including forward genetic screens for mutations affecting MMR, including dominant and separation-of-function mutations, the ability to evaluate structure-based mutations in vivo, cell biological tools for visualizing and analyzing MMR proteins in vivo, and overproduction of individual MMR proteins for biochemical analysis. However, linking these tools with biochemical systems that catalyze MMR reactions in vitro for mechanistic studies has not yet been possible. Here, we describe the development of MMR reactions reconstituted using purified proteins for the analysis of MMR mechanisms.  相似文献   

9.
Vesicle recycling is pivotal for maintaining reliable synaptic signaling, but its basic properties remain poorly understood. Here, we developed an approach to quantitatively analyze the kinetics of vesicle recycling with exquisite signal and temporal resolution at the calyx of Held synapse. The combination of this electrophysiological approach with electron microscopy revealed that ∼80% of vesicles (∼270,000 out of ∼330,000) in the nerve terminal are involved in recycling. Under sustained stimulation, recycled vesicles start to be reused in tens of seconds when ∼47% of the preserved vesicles in the recycling pool (RP) are depleted. The heterogeneity of vesicle recycling as well as two kinetic components of RP depletion revealed the existence of a replenishable pool of vesicles before the priming stage and led to a realistic kinetic model that assesses the size of the subpools of the RP. Thus, our study quantified the kinetics of vesicle recycling and kinetically dissected the whole vesicle pool in the calyceal terminal into the readily releasable pool (∼0.6%), the readily priming pool (∼46%), the premature pool (∼33%), and the resting pool (∼20%).Synaptic vesicle recycling ensures synaptic transmission during sustained neuronal activity (13). Despite its crucial role, the cycle is poorly understood. In contrast to vesicle exocytosis and endocytosis, which can be directly assayed by presynaptic capacitance measurements and postsynaptic current recordings, vesicle recycling is usually investigated by fluorescence imaging and electron microscopy (EM) with limited signal or temporal resolution (47). Likely owing to technical difficulties, the basic properties of vesicle recycling, such as the size of the recycling pool (RP) (3, 6, 811), the kinetics of vesicle recycling (6, 812), and how the RP supports synaptic transmission (1, 1315) remain to be elucidated. Classically, presynaptic vesicles can be functionally divided into three populations: the readily releasable pool (RRP), the reserve pool, and the resting pool (3, 16, 17). The RRP is defined as being composed of docked and immediately releasable vesicles (17), which are usually depleted by high-frequency stimulation, prolonged presynaptic depolarization, or the application of hypertonic solution (1821). The reserve pool functions as a reservoir and serves to maintain vesicle refilling into the RRP (2, 3). These two pools together are commonly referred to as the RP. The resting pool serves as a depot of vesicles for backup use (16, 22). However, it has been debated for a decade whether nerve terminals use the majority (∼100%, from electrophysiology) or only a small fraction (5–40%, from fluorescence imaging and EM) of vesicles in recycling, and whether the RP size undergoes dynamic changes during varied neuronal activity (6, 7, 2328).The use of vesicles in recycling is a critical determinant of synaptic transmission (1, 1315). However, it has never been rigorously determined how fast recently recaptured vesicles are organized to recycle and whether vesicles in the RP are homogeneously ready for use (25). Two forms of vesicle retrieval, “kiss-and-run” and full collapse, have been reported for many years. It is still ambiguous whether the rapidly recaptured vesicles in the kiss-and-run mode can be rapidly reused (2931).Here, we addressed the above issues by developing a new approach to quantify the basic properties of vesicle recycling with unparalleled precision. Different from previous studies in cultured cell systems, the present work combined electrophysiological measurements and EM observations at the calyx of Held synapse in acute brain slices, quantitatively analyzed synaptic vesicle recycling, and kinetically dissected the recycling vesicle pool. We propose a realistic kinetic model and provide new insights into the mechanism that ensures rate-limited but sustainable synaptic transmission.  相似文献   

10.
Global analysis of gene expression via RNA sequencing was conducted for trisomics for the left arm of chromosome 2 (2L) and compared with the normal genotype. The predominant response of genes on 2L was dosage compensation in that similar expression occurred in the trisomic compared with the diploid control. However, the male and female trisomic/normal expression ratio distributions for 2L genes differed in that females also showed a strong peak of genes with increased expression and males showed a peak of reduced expression relative to the opposite sex. For genes in other autosomal regions, the predominant response to trisomy was reduced expression to the inverse of the altered chromosomal dosage (2/3), but a minor peak of increased expression in females and further reduced expression in males were also found, illustrating a sexual dimorphism for the response to aneuploidy. Moreover, genes with sex-biased expression as revealed by comparing amounts in normal males and females showed responses of greater magnitude to trisomy 2L, suggesting that the genes involved in dosage-sensitive aneuploid effects also influence sex-biased expression. Each autosomal chromosome arm responded to 2L trisomy similarly, but the ratio distributions for X-linked genes were distinct in both sexes, illustrating an X chromosome-specific response to aneuploidy.Changes in chromosomal dosage have long been known to affect the phenotype or viability of an organism (14). Altering the dosage of individual chromosomes typically has a greater impact than varying the whole genome (57). This general rule led to the concept of “genomic balance” in that dosage changes of part of the genome produce a nonoptimal relationship of gene products. The interpretation afforded these observations was that genes on the aneuploid chromosome produce a dosage effect for the amount of gene product present in the cell (8).However, when gene expression studies were conducted on aneuploids, it became known that transacting modulations of gene product amounts were also more prevalent with aneuploidy than with whole-genome changes (914). Assays of enzyme activities, protein, and RNA levels revealed that any one chromosomal segment could modulate in trans the expression of genes throughout the genome (915). These modulations could be positively or negatively correlated with the changed chromosomal segment dosage, but inverse correlations were the most common (1013). For genes on the varied segment, not only were dosage effects observed, but dosage compensation was also observed, which results from a cancelation of gene dosage effects by inverse effects operating simultaneously on the varied genes (9, 10, 1418). This circumstance results in “autosomal” dosage compensation (14, 1618). Studies of trisomic X chromosomes examining selected endogenous genes or global RNA sequencing (RNA-seq) studies illustrate that the inverse effect can also account for sex chromosome dosage compensation in Drosophila (15, 1921). In concert, autosomal genes are largely inversely affected by trisomy of the X chromosome (15, 19, 21).The dosage effects of aneuploidy can be reduced to the action of single genes whose functions tend to be involved in heterogeneous aspects of gene regulation but which have in common membership in macromolecular complexes (8, 2224). This fact led to the hypothesis that genomic imbalance effects result from the altered stoichiometry of subunits that affects the function of the whole and that occurs from partial but not whole-genome dosage change (8, 2225). Genomic balance also affects the evolutionary trajectory of duplicate genes differently based on whether the mode of duplication is partial or whole-genome (22, 23).Here we used RNA-seq to examine global patterns of gene expression in male and female larvae trisomic for the left arm of chromosome 2 (2L). The results demonstrate the strong prevalence of aneuploidy dosage compensation and of transacting inverse effects. Furthermore, because both trisomic males and females could be examined, a sexual dimorphism of the aneuploid response was discovered. Also, the response of the X chromosome to trisomy 2L was found to be distinct from that of the autosomes, illustrating an X chromosome-specific effect. Genes with sex-biased expression, as determined by comparing normal males and females, responded more strongly to trisomy 2L. Collectively, the results illustrate the prevalence of the inverse dosage effect in trisomic Drosophila and suggest that the X chromosome has evolved a distinct response to genomic imbalance as would be expected under the hypothesis that X chromosome dosage compensation uses the inverse dosage effect as part of its mechanism (15).  相似文献   

11.
Tumor heterogeneity confounds cancer diagnosis and the outcome of therapy, necessitating analysis of tumor cell subsets within the tumor mass. Elevated expression of hyaluronan (HA) and HA receptors, receptor for HA-mediated motility (RHAMM)/HA-mediated motility receptor and cluster designation 44 (CD44), in breast tumors correlates with poor outcome. We hypothesized that a probe for detecting HA–HA receptor interactions may reveal breast cancer (BCa) cell heterogeneity relevant to tumor progression. A fluorescent HA (F-HA) probe containing a mixture of polymer sizes typical of tumor microenvironments (10–480 kDa), multiplexed profiling, and flow cytometry were used to monitor HA binding to BCa cell lines of different molecular subtypes. Formulae were developed to quantify binding heterogeneity and to measure invasion in vivo. Two subsets exhibiting differential binding (HA−/low vs. HAhigh) were isolated and characterized for morphology, growth, and invasion in culture and as xenografts in vivo. F-HA–binding amounts and degree of heterogeneity varied with BCa subtype, were highest in the malignant basal-like cell lines, and decreased upon reversion to a nonmalignant phenotype. Binding amounts correlated with CD44 and RHAMM displayed but binding heterogeneity appeared to arise from a differential ability of HA receptor-positive subpopulations to interact with F-HA. HAhigh subpopulations exhibited significantly higher local invasion and lung micrometastases but, unexpectedly, lower proliferation than either unsorted parental cells or the HA−/low subpopulation. Querying F-HA binding to aggressive tumor cells reveals a previously undetected form of heterogeneity that predicts invasive/metastatic behavior and that may aid both early identification of cancer patients susceptible to metastasis, and detection/therapy of invasive BCa subpopulations.Breast tumors display substantial heterogeneity driven by genetic and epigenetic mechanisms (13). These processes select and support tumor cell subpopulations with distinct phenotypes in proliferation, metastatic/invasive proclivity, and treatment susceptibility that contribute to clinical outcomes. Currently, there is a paucity of biomarkers to identify these subpopulations (312). Although detection of genetic heterogeneity may itself be a breast cancer (BCa) prognostic marker (3, 1315), the phenotypes manifested from this diversity are context-dependent. Therefore, phenotypic markers provide additional powerful tools for biological information required to design diagnostics and therapeutics. Glycomic approaches have enormous potential for revealing tumor cell phenotypic heterogeneity because glycans are themselves highly heterogeneous and their complexity reflects the nutritional, microenvironmental, and genetic dynamics of the tumors (1618).We used hyaluronan (HA) as a model carbohydrate ligand for probing heterogeneity in glycosaminoglycan–BCa cell receptor interactions. We reasoned this approach would reveal previously undetected cellular and functional heterogeneity linked to malignant progression because the diversity of cell glycosylation patterns, which can occur as covalent and noncovalent modifications of proteins and lipids as well as different sizes of such polysaccharides as HA, is unrivaled (16, 17, 19). In particular, tumor and wound microenvironments contain different sizes of HA polymers that bind differentially to cell receptors to activate signaling pathways regulating cell migration, invasion, survival, and proliferation (1922).More than other related glycosaminoglycans, HA accumulation within BCa tumor cells and peritumor stroma is a predictor of poor outcome (23) and of the conversion of the preinvasive form of BCa, ductal carcinoma in situ, to an early invasive form of BCa (24). HA is a nonantigenic and large, relatively simple, unbranched polymer, but the manner in which it is metabolized is highly complex (19, 25). There are literally thousands of different HA sizes in remodeling microenvironments, including tumors. HA polymers bind to cells via at least six known receptors (16, 19, 20, 2632). Two of these, cluster designation 44 (CD44) and receptor for HA-mediated motility/HA-mediated motility receptor (RHAMM/HMMR), form multivalent complexes with different ranges of HA sizes (19, 29, 33), and both receptors are implicated in BCa progression (1921, 23, 29, 30, 3336). Elevated CD44 expression in the peritumor stroma is associated with increased relapse (37), and in primary BCa cell subsets may contribute to tumor initiation and progression (3840). Elevated RHAMM expression in BCa tumor subsets is a prognostic indicator of poor outcome and increased metastasis (22, 33, 41). RHAMM polymorphisms may also be a factor in BCa susceptibility (42, 43).We postulated that multivalent interactions resulting from mixture of a polydisperse population of fluorescent HA (F-HA) sizes, typical of those found in remodeling microenvironments of wounds and tumors (19, 20, 29), with cellular HA receptors would uncover a heterogeneous binding pattern useful for sorting tumor cells into distinct subsets. We interrogated the binding of F-HA to BCa lines of different molecular subtypes, and related binding/uptake patterns to CD44 and RHAMM display, and to tumor cell growth, invasion, and metastasis.  相似文献   

12.
Antiretroviral therapy (ART) reduces the infectiousness of HIV-infected persons, but only after testing, linkage to care, and successful viral suppression. Thus, a large proportion of HIV transmission during a period of high infectiousness in the first few months after infection (“early transmission”) is perceived as a threat to the impact of HIV “treatment-as-prevention” strategies. We created a mathematical model of a heterosexual HIV epidemic to investigate how the proportion of early transmission affects the impact of ART on reducing HIV incidence. The model includes stages of HIV infection, flexible sexual mixing, and changes in risk behavior over the epidemic. The model was calibrated to HIV prevalence data from South Africa using a Bayesian framework. Immediately after ART was introduced, more early transmission was associated with a smaller reduction in HIV incidence rate—consistent with the concern that a large amount of early transmission reduces the impact of treatment on incidence. However, the proportion of early transmission was not strongly related to the long-term reduction in incidence. This was because more early transmission resulted in a shorter generation time, in which case lower values for the basic reproductive number (R0) are consistent with observed epidemic growth, and R0 was negatively correlated with long-term intervention impact. The fraction of early transmission depends on biological factors, behavioral patterns, and epidemic stage and alone does not predict long-term intervention impacts. However, early transmission may be an important determinant in the outcome of short-term trials and evaluation of programs.Recent studies have confirmed that effective antiretroviral therapy (ART) reduces the transmission of HIV among stable heterosexual couples (13). This finding has generated interest in understanding the population-level impact of HIV treatment on reducing the rate of new HIV infections in generalized epidemic settings (4). Research, including mathematical modeling (510), implementation research (11), and major randomized controlled trials (1214), are focused on how ART provision might be expanded strategically to maximize its public health benefits (15, 16).One concern is that if a large fraction of HIV transmission occurs shortly after a person becomes infected, before the person can be diagnosed and initiated on ART, this will limit the potential impact of HIV treatment on reducing HIV incidence (9, 17, 18). Data suggest that persons are more infectious during a short period of “early infection” after becoming infected with HIV (1922), although there is debate about the extent, duration, and determinants of elevated infectiousness (18, 23). The amount of transmission that occurs also will depend on patterns of sexual behavior and sexual networks (17, 2427). There have been estimates for the contribution of early infection to transmission from mathematical models (7, 17, 21, 2426) and phylogenetic analyses (2831), but these vary widely, from 5% to above 50% (23).In this study, we use a mathematical model to quantify how the proportion of transmission that comes from persons who have been infected recently affects the impact of treatment scale-up on HIV incidence. The model is calibrated to longitudinal HIV prevalence data from South Africa using a Bayesian framework. Thus, the model accounts for not only the early epidemic growth rate highlighted in previous research (5, 9, 18), but also the heterogeneity and sexual behavior change to explain the peak and decline in HIV incidence observed in sub-Saharan African HIV epidemics (32, 33).The model calibration allows uncertainty about factors that determine the amount of early transmission, including the relative infectiousness during early infection, heterogeneity in propensity for sexual risk behavior, assortativity in sexual partner selection, reduction in risk propensity over the life course, and population-wide reductions in risk behavior in response to the epidemic (32, 33). This results in multiple combinations of parameter values that are consistent with the observed epidemic and variation in the amount of early transmission. We simulated the impact of a treatment intervention and report how the proportion of early transmission correlates with the reduction in HIV incidence from the intervention over the short- and long-term.  相似文献   

13.
It is unknown whether anatomical specializations in the endbrains of different vertebrates determine the neuronal code to represent numerical quantity. Therefore, we recorded single-neuron activity from the endbrain of crows trained to judge the number of items in displays. Many neurons were tuned for numerosities irrespective of the physical appearance of the items, and their activity correlated with performance outcome. Comparison of both behavioral and neuronal representations of numerosity revealed that the data are best described by a logarithmically compressed scaling of numerical information, as postulated by the Weber–Fechner law. The behavioral and neuronal numerosity representations in the crow reflect surprisingly well those found in the primate association cortex. This finding suggests that distantly related vertebrates with independently developed endbrains adopted similar neuronal solutions to process quantity.Birds show elaborate quantification skills (13) that are of adaptive value in naturalistic situations like nest parasitism (4), food caching (5), or communication (6). The neuronal correlates of numerosity representations have only been explored in humans (79) and primates (1018), and they have been found to reside in the prefrontal and posterior parietal neocortices. In contrast to primates, birds lack a six-layered neocortex. The birds’ lineage diverged from mammals 300 Mya (19), at a time when the neocortex had not yet developed from the pallium of the endbrain. Instead, birds developed different pallial parts as dominant endbrain structures (20, 21) based on convergent evolution, with the nidopallium caudolaterale (NCL) as a high-level association area (2226). Where and how numerosity is encoded in vertebrates lacking a neocortex is unknown. Here, we show that neurons in the telencephalic NCL of corvid songbirds respond to numerosity and show a specific code for numerical information.  相似文献   

14.
Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase activity). The best deoxyribozyme decreases the half-life for phosphoserine hydrolysis from as high as >1010 y to <1 h. The phosphatase activity also occurs with nonpeptidic substrates but with reduced efficiency, indicating a preference for phosphopeptides. The newly identified deoxyribozymes can function with multiple turnover using free peptide substrates, have activity in the presence of human cell lysate or BSA, and catalyze dephosphorylation of a larger protein substrate, suggesting broader application of DNA catalysts as artificial phosphatases.Development of catalysts is a major impetus for much of modern chemical research. Nature’s biomolecular protein and RNA catalysts are responsible for a wide range of chemical reactions, and protein enzymes in particular can achieve large rate enhancements (1, 2). Although DNA catalysts are unknown in nature, in vitro selection [first pioneered for RNA (3)] is readily applied to identify catalytically active artificial DNA sequences (46). Importantly, DNA (and RNA) catalysts can be identified by starting with entirely random sequence pools, whereas directed evolution of proteins typically requires a known, catalytically active starting point (7, 8). A growing range of chemical reactions has been shown to be catalyzed by DNA (46). For DNA phosphodiester hydrolysis, the uncatalyzed (spontaneous) half-life for P–O bond cleavage of ∼30 million y is reduced to as little as 0.5 min by a DNA catalyst (9, 10). However, in this reaction the DNA catalyst interacts with its DNA substrate by extensive Watson–Crick base pairing, and such an approach cannot be generalized to nonoligonucleotide substrates such as peptides and proteins. With the exception of the ribosome, the natural ribozymes catalyze RNA cleavage and ligation, and they generally have more modest rate enhancements (1113), limited by the relatively high uncatalyzed half-lives of these reactions.DNA catalysts that covalently modify peptide and protein substrates are fundamentally interesting and likely have practical value, especially for biologically relevant chemical modifications. We have initiated studies into DNA-catalyzed modifications of amino acid side chains of peptide substrates, such as nucleopeptide linkage formation involving tyrosine and serine (1416). A major challenge in such studies is to achieve catalysis even though the DNA catalyst cannot engage in any preprogrammable Watson–Crick binding interactions with the substrate. In this report, we show that DNA can catalyze Zn2+-dependent hydrolysis of tyrosine and serine phosphomonoesters of peptide substrates (i.e., have phosphatase activity). The half-life for spontaneous phosphoserine hydrolysis at ∼37 °C is ∼4 × 1010 y as estimated on the basis of the half-life for methyl phosphate dianion (2), which emphasizes the difficulty of catalyzing this reaction. Our finding that Zn2+-dependent DNA catalysts can hydrolyze phosphoserine with half-life on the order of 1 h [or hydrolyze phosphotyrosine with half-life on the order of 1 min, versus spontaneous hydrolysis with half-life estimated as 2 × 104 y (2)] highlights the ability of DNA catalysts to achieve high rate enhancements by catalyzing otherwise very slow reactions. The new phosphatase DNA catalysts can function with multiple turnover using entirely free peptide substrates, which—unlike DNA substrates for DNA-catalyzed hydrolysis (9, 10)—inherently cannot interact with the DNA catalysts by Watson–Crick base pairing.  相似文献   

15.
Sequential activity of multineuronal spiking can be observed during theta and high-frequency ripple oscillations in the hippocampal CA1 region and is linked to experience, but the mechanisms underlying such sequences are unknown. We compared multineuronal spiking during theta oscillations, spontaneous ripples, and focal optically induced high-frequency oscillations (“synthetic” ripples) in freely moving mice. Firing rates and rate modulations of individual neurons, and multineuronal sequences of pyramidal cell and interneuron spiking, were correlated during theta oscillations, spontaneous ripples, and synthetic ripples. Interneuron spiking was crucial for sequence consistency. These results suggest that participation of single neurons and their sequential order in population events are not strictly determined by extrinsic inputs but also influenced by local-circuit properties, including synapses between local neurons and single-neuron biophysics.A hypothesized hallmark of cognition is self-organized sequential activation of neuronal assemblies (1). Self-organized neuronal sequences have been observed in several cortical structures (25) and neuronal models (67). In the hippocampus, sequential activity of place cells (8) may be induced by external landmarks perceived by the animal during spatial navigation (9) and conveyed to CA1 by the upstream CA3 region or layer 3 of the entorhinal cortex (10). Internally generated sequences have been also described in CA1 during theta oscillations in memory tasks (4, 11), raising the possibility that a given neuronal substrate is responsible for generating sequences at multiple time scales. The extensive recurrent excitatory collateral system of the CA3 region has been postulated to be critical in this process (4, 7, 12, 13).The sequential activity of place cells is “replayed” during sharp waves (SPW) in a temporally compressed form compared with rate modulation of place cells (1420) and may arise from the CA3 recurrent excitatory networks during immobility and slow wave sleep. The SPW-related convergent depolarization of CA1 neurons gives rise to a local, fast oscillatory event in the CA1 region (“ripple,” 140–180 Hz; refs. 8 and 21). Selective elimination of ripples during or after learning impairs memory performance (2224), suggesting that SPW ripple-related replay assists memory consolidation (12, 13). Although the local origin of the ripple oscillations is well demonstrated (25, 26), it has been tacitly assumed that the ripple-associated, sequentially ordered firing of CA1 neurons is synaptically driven by the upstream CA3 cell assemblies (12, 15), largely because excitatory recurrent collaterals in the CA1 region are sparse (27). However, sequential activity may also emerge by local mechanisms, patterned by the different biophysical properties of CA1 pyramidal cells and their interactions with local interneurons, which discharge at different times during a ripple (2830). A putative function of the rich variety of interneurons is temporal organization of principal cell spiking (2932). We tested the “local-circuit” hypothesis by comparing the probability of participation and sequential firing of CA1 neurons during theta oscillations, natural spontaneous ripple events, and “synthetic” ripples induced by local optogenetic activation of pyramidal neurons.  相似文献   

16.
DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.The ability to control, manipulate, and organize matter at the nanoscale has demonstrated immense potential for advancements in industrial technology, medicine, and materials (13). Bottom-up self-assembly has become a particularly promising area for nanofabrication (4, 5); however, to date designing complex motion at the nanoscale remains a challenge (69). Amino acid polymers exhibit well-defined and complex dynamics in natural systems and have been assembled into designed structures including nanotubes, sheets, and networks (1012), although the complexity of interactions that govern amino acid folding make designing complex geometries extremely challenging. DNA nanotechnology, on the other hand, has exploited well-understood assembly properties of DNA to create a variety of increasingly complex designed nanostructures (1315).Scaffolded DNA origami, the process of folding a long single-stranded DNA (ssDNA) strand into a custom structure (1618), has enabled the fabrication of nanoscale objects with unprecedented geometric complexity that have recently been implemented in applications such as containers for drug delivery (19, 20), nanopores for single-molecule sensing (2123), and templates for nanoparticles (24, 25) or proteins (2628). The majority of these and other applications of DNA origami have largely focused on static structures. Natural biomolecular machines, in contrast, have a rich diversity of functionalities that rely on complex but well-defined and reversible conformational changes. Currently, the scope of biomolecular nanotechnology is limited by an inability to achieve similar motion in designed nanosystems.DNA nanotechnology has enabled critical steps toward that goal starting with the work of Mao et al. (29), who developed a DNA nanostructure that took advantage of the B–Z transition of DNA to switch states. Since then, efforts to fabricate dynamic DNA systems have primarily focused on strand displacement approaches (30) mainly on systems comprising a few strands or arrays of strands undergoing ∼nm-scale motions (3137) in some cases guided by DNA origami templates (3840). More recently, strand displacement has been used to reconfigure DNA origami nanostructures, for example opening DNA containers (19, 41, 42), controlling molecular binding (43, 44), or reconfiguring structures (45). The largest triggerable structural change was achieved by Han et al. in a DNA origami Möbius strip (one-sided ribbon structure) that could be opened to approximately double in size (45). Constrained motion has been achieved in systems with rotational motion (19, 20, 32, 41, 44, 46, 47) in some cases to open lid-like components (19, 20, 41) or detect molecular binding (44, 48, 49). A few of these systems achieved reversible conformational changes (32, 41, 44, 46), although the motion path and flexibility were not studied. Constrained linear motion has remained largely unexplored. Linear displacements on the scale of a few nanometers have been demonstrated via conformational changes of DNA structure motifs (5055), strand invasion to open DNA hairpins (36, 55, 56), or the reversible sliding motion of a DNA tile actuator (56); these cases also did not investigate the motion path or flexibility of motion.Building on these prior studies, this work implements concepts from macroscopic machine design to build modular parts with constrained motion. We demonstrate an ability to tune the flexibility and range of motion and then integrate these parts into prototype mechanisms with designed 2D and 3D motion. We further demonstrate reversible actuation of a mechanism with complex conformational changes on minute timescales.  相似文献   

17.
To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously unseen intermediate position, corresponding to a tethered state. The chemical transitions underlying these structural transitions were identified by varying nucleotide conditions and carrying out parallel stopped-flow kinetics assays. At saturating ATP, kinesin-1 spends half of each stepping cycle with one head bound, specifying a structural state for each of two rate-limiting transitions. Analysis of stepping kinetics in varying nucleotides shows that ATP binding is required to properly enter the one-head–bound state, and hydrolysis is necessary to exit it at a physiological rate. These transitions differ from the standard model in which ATP binding drives full docking of the flexible neck linker domain of the motor. Thus, this work defines a consensus sequence of mechanochemical transitions that can be used to understand functional diversity across the kinesin superfamily.Kinesin-1 is a motor protein that steps processively toward microtubule plus-ends, tracking single protofilaments and hydrolyzing one ATP molecule per step (16). Step sizes corresponding to the tubulin dimer spacing of 8.2 nm are observed when the molecule is labeled by its C-terminal tail (710) and to a two-dimer spacing of 16.4 nm when a single motor domain is labeled (4, 11, 12), consistent with the motor walking in a hand-over-hand fashion. Kinesin has served as an important model system for advancing single-molecule techniques (710) and is clinically relevant for its role in neurodegenerative diseases (13), making dissection of its step a popular ongoing target of study.Despite decades of work, many essential components of the mechanochemical cycle remain disputed, including (i) how much time kinesin-1 spends in a one-head–bound (1HB) state when stepping at physiological ATP concentrations, (ii) whether the motor waits for ATP in a 1HB or two-heads–bound (2HB) state, and (iii) whether ATP hydrolysis occurs before or after tethered head attachment (4, 11, 1420). These questions are important because they are fundamental to the mechanism by which kinesins harness nucleotide-dependent structural changes to generate mechanical force in a manner optimized for their specific cellular tasks. Addressing these questions requires characterizing a transient 1HB state in the stepping cycle in which the unattached head is located between successive binding sites on the microtubule. This 1HB intermediate is associated with the force-generating powerstroke of the motor and underlies the detachment pathway that limits motor processivity. Optical trapping (7, 19, 21, 22) and single-molecule tracking studies (4, 811) have failed to detect this 1HB state during stepping. Single-molecule fluorescence approaches have detected a 1HB intermediate at limiting ATP concentrations (11, 12, 14, 15), but apart from one study that used autocorrelation analysis to detect a 3-ms intermediate (17), the 1HB state has been undetectable at physiological ATP concentrations.Single-molecule microscopy is a powerful tool for studying the kinetics of structural changes in macromolecules (23). Tracking steps and potential substeps for kinesin-1 at saturating ATP has until now been hampered by the high stepping rates of the motor (up to 100 s−1), which necessitates high frame rates, and the small step size (8.2 nm), which necessitates high spatial precision (7). Here, we apply interferometric scattering microscopy (iSCAT), a recently established single-molecule tool with high spatiotemporal resolution (2427) to directly visualize the structural changes underlying kinesin stepping. By labeling one motor domain in a dimeric motor, we detect a 1HB intermediate state in which the tethered head resides over the bound head for half the duration of the stepping cycle at saturating ATP. We further show that at physiological stepping rates, ATP binding is required to enter this 1HB state and that ATP hydrolysis is required to exit it. This work leads to a significant revision of the sequence and kinetics of mechanochemical transitions that make up the kinesin-1 stepping cycle and provides a framework for understanding functional diversity across the kinesin superfamily.  相似文献   

18.
Many viruses use molecular motors that generate large forces to package DNA to near-crystalline densities inside preformed viral proheads. Besides being a key step in viral assembly, this process is of interest as a model for understanding the physics of charged polymers under tight 3D confinement. A large number of theoretical studies have modeled DNA packaging, and the nature of the molecular dynamics and the forces resisting the tight confinement is a subject of wide debate. Here, we directly measure the packaging of single DNA molecules in bacteriophage phi29 with optical tweezers. Using a new technique in which we stall the motor and restart it after increasing waiting periods, we show that the DNA undergoes nonequilibrium conformational dynamics during packaging. We show that the relaxation time of the confined DNA is >10 min, which is longer than the time to package the viral genome and 60,000 times longer than that of the unconfined DNA in solution. Thus, the confined DNA molecule becomes kinetically constrained on the timescale of packaging, exhibiting glassy dynamics, which slows the motor, causes significant heterogeneity in packaging rates of individual viruses, and explains the frequent pausing observed in DNA translocation. These results support several recent hypotheses proposed based on polymer dynamics simulations and show that packaging cannot be fully understood by quasistatic thermodynamic models.DNA packaging is both a critical step in viral assembly and a unique model for understanding the physics of polymers under strong confinement. Before packaging, the DNA (∼6–60 µm long) forms a loose random coil of diameter ∼1–3 µm. After translocation into the viral prohead (∼50–100 nm in diameter), a ∼10,000-fold volume compaction is achieved. Packaging is driven by a powerful molecular motor that must work against the large forces resisting confinement arising from DNA bending, repulsion between DNA segments, and entropy loss (18).DNA packaging in bacteriophages phi29, lambda, and T4 has been directly measured via single-molecule manipulation with optical tweezers and the packaging motors have been shown to generate forces of >60 pN, among the highest known for biomotors, while translocating DNA at rates ranging from ∼100 bp (for phage phi29, which packages a 19.3-kbp genome into a 42 × 54-nm prohead shell) up to as high as ∼2,000 bp/s (for phage T4, which packages a 171-kbp genome into a 120 × 86-nm prohead) (915). The force resisting packaging rises steeply with prohead filling and has been proposed to play an important role in driving viral DNA ejection (16).Recently, a variety of theoretical models for viral DNA packaging have been proposed (35, 1721). The simplest treat DNA as an elastic rod with repulsive self-interactions and assume that packaging is a quasistatic thermodynamic process, i.e., that the DNA is able to continuously relax to a free-energy minimum state (35, 1921). The DNA arrangement is generally assumed to be an inverse spool with local hexagonal close packing between DNA segments, as suggested by electron microscopy and X-ray scattering studies (22, 23). Such models yield exact analytical predictions that reproduce many of the experimental trends, including the sharp rise in resistance during the latter stages of packaging (35, 20).Dynamic simulations, however, predict differing results. Depending on model and simulation protocol, some predict rapid equilibration into ordered spool or folded toroid conformations, whereas others predict nonequilibrium dynamics and disordered conformations (3, 6, 2431). The packaged DNA conformation also depends on ionic conditions, capsid size and shape, and shape of the internal core structure found in some phages (6, 30). Notably, some electron microscopy studies have also been interpreted as suggesting ordered spooled conformations (22), whereas others have been interpreted as suggesting partly disordered conformations (29). Although some simulations predict nonequilibrium dynamics, several potential caveats are that (i) the DNA has been represented by coarse-grained polymer models with various approximations for physical interactions (6), (ii) the packaging rate used in the simulations is >105 times higher than the measured packaging rate due to computational constraints (3, 2628), and (iii) it has been pointed out by some authors that simulation timescale cannot be directly related to experimental timescale because of the use of coarse-grained models for DNA (25, 28). As noted in early modeling studies, the calculations based on quasistatic models may represent a lower bound on the required packaging forces due to dissipative dynamic losses (4). Whether nonequilibrium dynamics play a significant role in real systems has thus remained an important open question.  相似文献   

19.
Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR–CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR–CD3 complexes. We found that only TCR–CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR–pMHC affinity determined the density of TCR–CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR–CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination.The activation of T cells orchestrates an adaptive immune response by translating antigen binding to the T-cell receptor (TCR) into appropriate cellular responses (14). The αβ TCR engages MHC molecules (or HLA) bound to antigenic peptides (pMHC) on the surface of antigen-presenting cells (5). The interaction of the TCR with pMHC is highly specific because T cells are able to distinguish rare foreign pMHC among abundant self pMHC molecules (6). TCR signaling is also extremely sensitive; even a single pMHC molecule is sufficient to trigger activation (79). TCRs are noncovalently coupled to the conserved multisubunit CD3 complex, comprising CD3εγ, CD3εδ, and CD3ζζ dimers (10), whose immunoreceptor tyrosine-based activation motifs (ITAMs) are phosphorylated upon pMHC engagement by the nonreceptor tyrosine kinase Lck (1, 2). ITAM phosphorylation is required for the recruitment and phosphorylation of the ζ-chain-associated protein kinase 70 kDa (Zap70) and the adaptor linker for activation of T cells (Lat) (11) to mediate downstream activation responses (12). Phosphorylation of the TCR–CD3 complex is one of the earliest detectable biochemical events in T-cell signaling and already at this level, important “activation decisions” are being made. For example, when the extent of ITAM phosphorylation was modulated through specific mutations, low levels of TCR–CD3 phosphorylation were sufficient for signaling through the Zap70–SLP-76–Lat pathway and cytokine production, whereas high levels of TCR–CD3 phosphorylation were required for Vav1-Numb-Notch signaling and T-cell proliferation (1214). However, how the TCR–CD3 complex encodes both the quality and quantity of pMHC molecules and steers signaling activities toward appropriate cellular outcomes is not fully understood (14).Although many of the molecular players and TCR signaling pathways have been identified and characterized by biochemical and genetic approaches (12, 15), the precise mechanism by which the binding of the TCR to pMHC results in phosphorylation of the TCR–CD3 complex, referred to as TCR triggering, still remains contested (1, 16). There is increasing evidence that the spatial reorganization of the TCR into micrometer- and submicron-sized clusters is involved in regulating T-cell activation (2, 11, 1719). With the advent of superresolution fluorescence microscopy, we have gained a much more nuanced picture of the spatial organization of TCR signaling proteins (3, 20). In particular, single-molecule localization microscopy [SMLM, including photoactivated localization microscopy (PALM) (21) and direct stochastic optical reconstruction microscopy (dSTORM) (22)] was used to report that at least a proportion of TCRs were organized into small clusters that were 30–300 nm in diameter, termed “nanoclusters” (23, 24). Similarly, Lat (2325), Lck (26), and Zap70 (24, 27) were also found to reside in nanoclusters that are extensively remodeled during T-cell activation. The link between preexisting and pMHC-induced nanoclustering and signaling activities is not clear at present and is the focus of the present study.To identify the functional role of TCR nanoclusters, we used two-color SMLM data and integrated a cluster detection method, density-based spatial clustering of applications with noise (DBSCAN) (28) with a customized colocalization analysis (29). This process allowed us to distinguish phosphorylated from nonphosphorylated TCR–CD3 complex clusters in intact T cells and identify the spatial organization at which individual TCR–CD3 complexes had the highest signaling efficiency. We found that not all TCR–CD3 complexes had the same likelihood of being phosphorylated, even with excess doses of high-affinity pMHC molecules. The signaling efficiency of the TCR–CD3 complex was dependent upon the distance to neighboring complexes so that dense nanoclusters had the highest TCR triggering efficiency.  相似文献   

20.
The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.Solar-to-fuels conversions provide a path to harnessing the ubiquitous albeit intermittent renewable energy resource offered by the sun (16). Efficient catalysis of transformations of energy consequence (713) mandates the coupling of electron transfer (ET) to proton transfer (PT) in proton-coupled electron transfer (PCET) reactions (1420). In the absence of PCET, intermediates possessing equilibrium potentials that are prohibitively large depreciate the storage capacity offered by the solar-to-fuels conversion process. The coupling of protons to changes in electron equivalency offers the possibility of restricting the equilibrium potentials of the redox steps to a more narrow potential range, thereby minimizing the overpotential required to sustain catalysis at a desired turnover rate. Thus, the exploitation of PCET pathways to permit potential-leveling effects is a crucial prerequisite for the efficient catalytic conversion reactions of energy relevant molecules.PCET reactions may be classified into stepwise and concerted pathways (14, 16, 20, 21). Stepwise PCET may involve ET first followed by PT (ETPT), or PT followed by ET (PTET). In concerted proton–electron transfers (CPET), the proton and electron traverse a common transition state. Whereas concerted pathways avoid the formation of thermodynamically costly intermediates, CPET reactions may incur kinetic penalties associated with the requirements for proton tunneling (19, 20, 22). The competition between these dynamics during catalysis determines the most efficient route of reaction. Studies that explore the interplay between these factors are crucial to designing catalytic reactions of high efficiency. Along these lines, the incorporation of proton relays in the second coordination sphere of molecular catalysts has emerged as a useful tool in optimizing PCET transformations (2329). We have focused on the synthesis and mechanistic investigation of a class of metalloporphyrin molecules attached to a xanthene backbone bearing a carboxylic acid functional group—“hangman” porphyrins (1-M, Scheme 1) (23, 30, 31). These hangman porphyrins have been especially useful for examining the PCET reactions of O2 (25, 32, 33), H2O (34), and H2 (35). Recently, we established quantitatively the value of the hangman effect for hydrogen evolution reaction (HER) by cobalt hangman porphyrin 1-Co (Scheme 1) (35). Mechanistic studies (36) unveiled a stepwise ETPT generation of a formal CoII hydride intermediate from the CoI resting state. Comparison of the catalysis of 1-Co with its nonhangman cobalt porphyrin congener showed that a significant catalytic enhancement of the HER was manifested in a rapid intramolecular rate-limiting PT (kPT = 8.5 × 106 s–1) from the pendant acid. In contrast, the corresponding second-order rate constant for proton transfer of the nonhangman was 103 M–1⋅s–1.Open in a separate windowScheme 1.Cobalt and nickel hangman complexes.The intramolecular PT should be mediated by the pKa of the metal. Indeed, the basicity of the metal center relative to a given acidity of the proton relay may be a critical determinant in the HER (37). We now show that the nickel hangman porphyrin 1-Ni (Scheme 1) offers an improvement in catalytic activity over its cobalt analog owing to a change in the PCET mechanism. By comparing HER activity of the Ni hangman catalyst with the Co hangman catalyst, a unified HER mechanism begins to emerge for complexes that use a secondary coordination sphere to manage PCET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号