首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 964 毫秒
1.
2.
BACKGROUND AND PURPOSE: To determine potential improvements in treatment outcome for patients with hypopharyngeal carcinoma, T4N0M0, using proton and intensity modulated photon radiotherapy (IMRT) compared to a standard 3D conformal radiotherapy treatment (3D-CRT) in terms of local tumour control probability, TCP, and normal tissue complication probability (NTCP) for the spinal cord and the parotid glands using. PATIENTS AND METHODS: Using the three-dimensional treatment-planning system, Helax-TMS, 5 patients were planned with protons, IMRT, and 3D-CRT plans. The prescribed dose used was 30 fractions x 2.39 Gy for the protons and IMRT and 35 fractions x 2.00 Gy for 3D-CRT. The treatment plans were evaluated using dose volume data and dose response models were used to calculate TCP and NTCP. The target volumes were delineated to spare the parotid glands. A dose escalation was made for protons and IMRT using NTCP constraints to the spinal cord. RESULTS: On average, protons and IMRT increase TCP by 17% compared to 3D-CRT. For the spinal cord NTCP values are zero for all methods and patients. Average NTCP values for the parotid glands were >90% for 3D-CRT and significantly lower for protons and IMRT varying from 43-65%. The average parotid gland dose was 33 Gy for the protons, 38 Gy for IMRT and 48 Gy for 3D-CRT. CONCLUSIONS: Protons and IMRT gave a significant TCP increase compared to 3D-CRT while no significant difference between protons and IMRT was found. Protons generally show lower non-target tissue doses, which indicates a possibility for further dose escalation. Large individual dose differences between protons and IMRT for parotid glands indicate that some patients may benefit more from protons and others from IMRT.  相似文献   

3.
OBJECTIVE: Our aim was to evaluate predictors of xerostomia in patients with head and neck cancers treated with intensity-modulated radiation therapy (IMRT). METHODS: Thirty-three patients with pharyngeal cancer were evaluated for xerostomia after having been treated with IMRT. All patients were treated with whole-neck irradiation of 46-50 Gy by IMRT, followed by boost IMRT to the high-risk clinical target volume to a total dose of 56-70 Gy in 28-35 fractions (median, 68 Gy). For boost IMRT, a second computed tomography (CT-2) scan was done in the third to fourth week of IMRT. Xerostomia was scored 3-4 months after the start of IMRT. RESULTS: The mean doses to the contralateral and ipsilateral parotid glands were 24.0 +/- 6.2 and 30.3 +/- 6.6 Gy, respectively. Among the 33 patients, xerostomia of grades 0, 1, 2 and 3 was noted in one, 18, 12 and two patients, respectively. Although the mean dose to the parotid glands was not correlated with the grade of xerostomia, the initial volume of the parotid glands was correlated with the grade of xerostomia (P = 0.04). Of 17 patients with small parotid glands (< or =38.8 ml) on initial CT (CT-1), 11 (65%) showed grade 2 or grade 3 xerostomia, whereas only three (19%) of 16 patients with larger parotid glands showed grade 2 xerostomia (P < 0.05). The mean volume of the parotid glands on CT-1 was 43.1 +/- 15.2 ml, but decreased significantly to 32.0 +/- 11.4 ml (74%) on CT-2 (P < 0.0001). CONCLUSIONS: Initial volumes of the parotid glands are significantly correlated with the grade of xerostomia in patients treated with IMRT. The volume of the parotid glands decreased significantly during the course of IMRT.  相似文献   

4.
PURPOSE: To evaluate the dosimetric parameters of three-dimensional conformal radiotherapy (3D-CRT) in locally advanced head-and-neck tumors (Stage II and above) and the effects on xerostomia. METHODS AND MATERIALS: A total of 49 patients with histologically proven squamous cell cancer of the head and neck were consecutively treated with 3D-CRT using a one-point setup technique; 17 had larynx cancer, 12 oropharynx, 12 oral cavity, and 6 nasopharynx cancer; 2 had other sites of cancer. Of the 49 patients, 41 received postoperative RT and 8 definitive treatment. Also, 13 were treated with cisplatin-based chemotherapy before and during RT; in 6 cases, 5-fluorouracil was added. The follow-up time was 484-567 days (median, 530 days). RESULTS: One-point setup can deliver 96% of the prescribed dose to the isocenter, to the whole planning target volume, including all node levels of the neck and without overdosages. The mean dose to the primary planning target volume was 49.54 +/- 4.82 Gy (51.53 +/- 5.47 Gy for larynx cases). The average dose to the contralateral parotid gland was approximately 38 Gy (30 Gy for larynx cases). The maximal dose to the spinal cord was 46 Gy. A Grade 0 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer xerostomia score corresponded to a mean dose of 30 Gy to one parotid gland. A lower xerostomia score with a lower mean parotid dose and longer follow-up seemed to give rise to a sort of functional recovery phenomenon. CONCLUSION: Three dimensional-CRT in head-and-neck cancers permits good coverage of the planning target volume with about 10-11 segments and one isocenter. With a mean dose of approximately 30 Gy to the contralateral parotid, we observed no or mild xerostomia.  相似文献   

5.
PURPOSE: To systematically evaluate four different techniques of radiation therapy (RT) used to treat non-small-cell lung cancer and to determine their efficacy in meeting multiple normal-tissue constraints while maximizing tumor coverage and achieving dose escalation. METHODS AND MATERIALS: Treatment planning was performed for 18 patients with Stage I to IIIB inoperable non-small-cell lung cancer using four different RT techniques to treat the primary lung tumor +/- the hilar/mediastinal lymph nodes: (1) Intensity-modulated radiation therapy (IMRT), (2) Optimized three-dimensional conformal RT (3D-CRT) using multiple beam angles, (3) Limited 3D-CRT using only 2 to 3 beams, and (4) Traditional RT using elective nodal irradiation (ENI) to treat the mediastinum. All patients underwent virtual simulation, including a CT scan and (18)fluorodeoxyglucose positron emission tomography scan, fused to the CT to create a composite tumor volume. For IMRT and 3D-CRT, the target included the primary tumor and regional nodes either > or =1.0 cm in short-axis dimension on CT or with increased uptake on PET. For ENI, the target included the primary tumor plus the ipsilateral hilum and mediastinum from the inferior head of the clavicle to at least 5.0 cm below the carina. The goal was to deliver 70 Gy to > or =99% of the planning target volume (PTV) in 35 daily fractions (46 Gy to electively treated mediastinum) while meeting multiple normal-tissue dose constraints. Heterogeneity correction was applied to all dose calculations (maximum allowable heterogeneity within PTV 30%). Pulmonary and esophageal constraints were as follows: lung V(20) < or =25%, mean lung dose < or =15 Gy, esophagus V(50) < or =25%, mean esophageal dose < or =25 Gy. At the completion of all planning, the four techniques were contrasted for their ability to achieve the set dose constraints and deliver tumoricidal RT doses. RESULTS: Requiring a minimum dose of 70 Gy within the PTV, we found that IMRT was associated with a greater degree of heterogeneity within the target and, correspondingly, higher mean doses and tumor control probabilities (TCPs), 7%-8% greater than 3D-CRT and 14%-16% greater than ENI. Comparing the treatment techniques in this manner, we found only minor differences between 3D-CRT and IMRT, but clearly greater risks of pulmonary and esophageal toxicity with ENI. The mean lung V(20) was 36% with ENI vs. 23%-25% with the three other techniques, whereas the average mean lung dose was approximately 21.5 Gy (ENI) vs. 15.5 Gy (others). Similarly, the mean esophagus V(50) was doubled with ENI, to 34% rather than 15%-18%. To account for differences in heterogeneity, we also compared the techniques giving each plan a tumor control probability equivalent to that of the optimized 3D-CRT plan delivering 70 Gy. Using this method, IMRT and 3D-CRT offered similar results in node-negative cases (mean lung and esophageal normal-tissue complication probability [NTCP] of approximately 10% and 2%-7%, respectively), but ENI was distinctly worse (mean NTCPs of 29% and 20%). In node-positive cases, however, IMRT reduced the lung V(20) and mean dose by approximately 15% and lung NTCP by 30%, compared to 3D-CRT. Compared to ENI, the reductions were 50% and >100%. Again, for node-positive cases, especially where the gross tumor volume was close to the esophagus, IMRT reduced the mean esophagus V(50) by 40% (vs. 3D-CRT) to 145% (vs. ENI). The esophageal NTCP was at least doubled converting from IMRT to 3D-CRT and tripled converting from IMRT to ENI. Finally, the total number of fractions for each plan was increased or decreased until all outlined normal-tissue constraints were reached/satisfied. While meeting all constraints, IMRT or 3D-CRT increased the deliverable dose in node-negative patients by >200% over ENI. In node-positive patients, IMRT increased the deliverable dose 25%-30% over 3D-CRT and 130%-140% over ENI. The use of 3D-CRT without IMRT increased the deliverable RT dose >80% over ENI. Using a limited number of 3D-CRT beams decreased the lung V(20), mean dose, and NTCP in node-positive patients. CONCLUSION: The use of 3D-CRT, particul mean dose, and NTCP in node-positive patients.The use of 3D-CRT, particularly with only 3 to 4 beam angles, has the ability to reduce normal-tissue toxicity, but has limited potential for dose escalation beyond the current standard in node-positive patients. IMRT is of limited additional value (compared to 3D-CRT) in node-negative cases, but is beneficial in node-positive cases and in cases with target volumes close to the esophagus. When meeting all normal-tissue constraints in node-positive patients, IMRT can deliver RT doses 25%-30% greater than 3D-CRT and 130%-140% greater than ENI. Whereas the possibility of dose escalation is severely limited with ENI, the potential for pulmonary and esophageal toxicity is clearly increased.  相似文献   

6.
AimsThere is considerable controversy surrounding target volume definition for parotid-sparing intensity modulated radiotherapy (IMRT) for head and neck cancer. The aim of this study was to evaluate the dosimetric and radiobiological predictors of outcome anticipated by application of the detailed target volume definition guidelines agreed for the UK multicentre randomised controlled trial of parotid-sparing IMRT (PARSPORT).Materials and methodsFive patients eligible for the study were delineated using the trial guidelines. Following the protocol, plans were produced to treat these volumes with three-dimensional radiotherapy (control arm) and IMRT aimed to spare dose to the contralateral parotid gland (experimental arm). Dosimetric comparisons were made between plans, and normal tissue complication probability (NTCP) modelling for salivary glands was carried out.ResultsDoses delivered to the planning target volumes (PTV) were similar with each technique, although IMRT produced more homogeneous irradiation of the PTV. Mean doses to the contralateral parotid gland were 22.4 ± 1.7 Gy with the IMRT plans vs 60.0 ± 7.2 Gy with three-dimensional radiotherapy, P = 0.0003. Calculated contralateral parotid gland NTCP values for grade 2 xerostomia were 20–22% for IMRT and 98–100% for three-dimensional radiotherapy (P < 0.0001).ConclusionPre-clinical evaluation of the PARSPORT trial target volume definition guidelines provides theoretical support for a significant reduction in xerostomia rates. These data await confirmation from the clinical trial results.  相似文献   

7.
PURPOSE: To compare intensity-modulated radiotherapy (IMRT) with two-dimensional RT (2D-RT) and three-dimensional conformal radiotherapy (3D-CRT) treatment plans in different stages of nasopharyngeal carcinoma and to explore the feasibility of dose escalation in locally advanced disease. MATERIALS AND METHODS: Three patients with different stages (T1N0M0, T2bN2M0 with retrostyloid extension, and T4N2M0) were selected, and 2D-RT, 3D-CRT, and IMRT treatment plans (66 Gy) were made for each of them and compared with respect to target coverage, normal tissue sparing, and tumor control probability/normal tissue complication probability values. In the Stage T2b and T4 patients, the IMRT 66-Gy plan was combined with a 3D-CRT 14-Gy boost plan using a 3-mm micromultileaf collimator, and the dose-volume histograms of the summed plans were compared with their corresponding 66-Gy 2D-RT plans. RESULTS: In the dosimetric comparison of 2D-RT, 3D-CRT, and IMRT treatment plans, the T1N0M0 patient had better sparing of the parotid glands and temporomandibular joints with IMRT (dose to 50% parotid volume, 57 Gy, 50 Gy, and 31 Gy, respectively). In the T2bN2M0 patient, the dose to 95% volume of the planning target volume improved from 57.5 Gy in 2D-RT to 64.8 Gy in 3D-CRT and 68 Gy in IMRT. In the T4N2M0 patient, improvement in both target coverage and brainstem/temporal lobe sparing was seen with IMRT planning. In the dose-escalation study for locally advanced disease, IMRT 66 Gy plus 14 Gy 3D-CRT boost achieved an improvement in the therapeutic ratio by delivering a higher dose to the target while keeping the normal organs below the maximal tolerance dose. CONCLUSIONS: IMRT is useful in treating all stages of nonmetastatic nasopharyngeal carcinoma because of its dosimetric advantages. In early-stage disease, it provides better parotid gland sparing. In locally advanced disease, IMRT offers better tumor coverage and normal organ sparing and allows room for dose escalation.  相似文献   

8.
PURPOSE: The optimal technique for postoperative radiotherapy (RT) after extrapleural pleuropneumonectomy (EPP) of malignant pleural mesothelioma (MPM) remains debated. METHODS AND MATERIALS: The data from 8 right-sided and 9 left-sided consecutive cases of MPM treated with RT after radical EPP were reviewed. Of the 17 patients, 8 had been treated with three-dimensional (3D) conformal RT (3D-CRT) and 9 with intensity-modulated RT (IMRT) with 6-MV photons. The clinical outcome and adverse events were assessed. For comparative planning, each case was replanned with 3D-CRT using photons and electrons or with IMRT. Homogeneity, doses to the organs at risk, and target volume coverage were analyzed. RESULTS: Both techniques yielded acceptable plans. The dose coverage and homogeneity of IMRT increased by 7.7% for the first planning target volume and 9.7% for the second planning target volume, ensuring >or=95% of the prescribed dose compared with 3D-CRT (p < 0.01). Compared with 3D-CRT, IMRT increased the dose to the contralateral lung, with an increase in the mean lung dose of 7.8 Gy and an increase in the volume receiving 13 Gy and 20 Gy by 20.5% and 7.2%, respectively (p < 0.01). A negligible dose increase to the contralateral kidney and liver was observed. No differences were seen for the spinal cord and ipsilateral kidney. Two adverse events of clinical relevant lung toxicity were observed with IMRT. CONCLUSION: Intensity-modulated RT and 3D-CRT are both suitable for adjuvant RT. IMRT improves the planning target volume coverage but delivered greater doses to the organs at risk. Rigid dose constraints for the lung should be respected.  相似文献   

9.
PURPOSE: To compare intensity-modulated radiotherapy (IMRT) treatment plans with three-dimensional conformal radiotherapy (3D-CRT) plans to investigate the suitability of IMRT for the treatment of tumors of the parotid gland. METHODS AND MATERIALS: One 3D-CRT treatment plan and 10 IMRT treatment plans with differing beam arrangements were produced for each of nine patient data sets. The plans were compared using regret analysis, dose conformity, dose to organs at risk, and uncomplicated tumor control probability (UTCP). RESULTS: The target dose was comparable in the 3D-CRT and IMRT plans, although improvements were seen when seven and nine IMRT fields were used. IMRT reduced the mean dose to the contralateral parotid gland and the maximum doses to the brain and the spinal cord, but increased the ipsilateral lens dose in some cases. Each IMRT arrangement produced a higher UTCP than the 3D-CRT plans; the largest absolute difference was 9.6%. CONCLUSIONS: IMRT is a suitable means for treating cancer of the parotid, and a five-field class solution is proposed. It produced substantial sparing of organs at risk and higher UTCPs than 3D-CRT and should enable dose escalation.  相似文献   

10.
PURPOSE: To investigate the role of intensity-modulated radiation therapy (IMRT) to irradiate the prostate gland and pelvic lymph nodes while sparing critical pelvic organs, and to optimize the number of beams required. METHODS AND MATERIALS: Target, small bowel, colon, rectum, and bladder were outlined on CT planning scans of 10 men with prostate cancer. Optimized conventional (RT) and 3-dimensional conformal radiotherapy (3D-CRT) plans were created and compared to inverse-planned IMRT dose distributions using dose-volume histograms. Optimization of beam number was undertaken for the IMRT plans. RESULTS: With RT the mean percentage volume of small bowel and colon receiving >45 Gy was 21.4 +/- 5.4%. For 3D-CRT it was 18.3 +/- 7.7% (p = 0.0043) and for 9-field IMRT it was 5.3 +/- 1.8% (p < 0.001 compared to 3D-CRT). For 7, 5, and 3 IMRT fields, it was 6.4 +/- 2.9%, 7.2 +/- 2.8%, and 8.4 +/- 3.8% (all p < 0.001 compared to 3D-CRT). The rectal volume irradiated >45 Gy was reduced from 50.5 +/- 16.3% (3D-CRT) to 5.8 +/- 2.1% by 9-field IMRT (p < 0. 001) and bladder from 52.2 +/- 12.8% to 7 +/- 2.8% (p < 0.001). Similar benefits were maintained for 7, 5, and 3 IMRT fields. CONCLUSIONS: The reduction in critical pelvic organ irradiation seen with IMRT may reduce side effects in patients, and allow modest dose escalation within acceptable complication rates. These reductions were maintained with 3-5 IMRT field plans which potentially allow less complex delivery techniques and shorter delivery times.  相似文献   

11.
12.
Introduction: The treatment of midline tumors in the head and neck by conventional radiotherapy almost invariably results in xerostomia. This study analyzes whether a simple three-dimensional conformal radiotherapy (3D-CRT) technique with beam intensity modulation (BIM) (using a 10-MV beam of the MM50 Racetrack Microtron) can spare parotid and submandibular glands without compromising the dose distribution in the planning target volume (PTV).

Methods: For 15 T2 tumors of the tonsillar fossa with extension into the soft palate (To) and 15 T3 tumors of the supraglottic larynx (SgL), conventional treatment plans, consisting of lateral parallel opposed beams, were used for irradiation of both the primary tumor (70 Gy) and the elective neck regions (46 Gy). Separately, for each tumor a 3-D conformal treatment plan was developed using the 3-D computer planning system, CadPlan, and Optimize, a noncommercial program to compute optimal beam profiles. Beam angles were selected with the intention of optimal sparing of the salivary glands. The intensity of the beams was then modulated to achieve a homogeneous dose distribution in the target for the given 3D-CRT techniques. The dose distributions, dose–volume histograms (DVHs) of target and salivary glands, tumor control probabilities (TCPs), salivary gland volumes absorbing a biologically equivalent dose of greater than 40 or 50 Gy, and normal tissue complication probabilities (NTCPs) of each treatment plan were computed. The parameters of the 3D-CRT plans were compared with those of the conventional plans.

Results: In comparison with the conventional technique, the dose homogeneity in the target volume was improved by the conformal technique for both tumor sites. In addition, for the SgL conformal technique, the average volumes of the parotid glands absorbing a BED of greater than 40 Gy (V40) decreased by 23%, and of the submandibular glands by 7% (V40) and 6% (V50). Consequently, the average NTCPs for the parotid and submandibular glands were reduced by 7% and 6%, respectively. For the To conformal techniques, the V40 of the parotid glands was decreased on average by 31%, resulting in an average reduction of the NTCP by 49%. Both the average V50 and the NTCP of the submandibular glands were decreased by 7%.

Conclusion: For primary tumors of the oropharynx, the parotid glands could be spared to a considerable degree with the 3D-CRT technique. However, particularly the ipsilateral submandibular gland could not be spared. For primary tumors of the larynx, the 3D-CRT technique allows sparing of all salivary glands to a considerable and probably clinically relevant degree. Moreover, the conformal techniques resulted in an increased dose homogeneity in the PTV of both tumor sites.  相似文献   


13.
PURPOSE: To develop an intensity modulated radiotherapy (IMRT) technique for postmastectomy RT that improves target coverage while sparing all appropriate normal tissues. MATERIALS AND METHODS: IMRT plans were generated using an in-house optimization system. Priority was given to matching the heart doses achieved with partially wide tangent fields (PWTFs) while maintaining 50 Gy +/- 5% to the chest wall, internal mammary nodes, and supraclavicular nodes. Other normal tissue doses were then minimized. Metrics for plan comparisons included minimal, maximal, and mean doses and normal tissue complication probability. RESULTS: IMRT resulted in more uniform chest wall coverage than did PWTFs. The average chest wall minimal dose was 43.7 +/- 1.1 Gy for IMRT and 31.2 +/- 16.5 Gy for PWTFs (p = 0.04). The average internal mammary node minimal dose was 42.8 +/- 2.1 Gy for IMRT and 21.8 +/- 13.2 Gy for PWTFs (p = 0.001). IMRT matched the <1% heart normal tissue complication probability achieved using PWTFs. The average contralateral breast mean dose was 2.8 +/- 1.7 Gy for IMRT, but a greater breast volume was exposed compared with PWTFs. The mean ipsilateral lung normal tissue complication probability was lower for IMRT (0.0) than for PWTFs (0.07 +/- 0.07; p = 0.02). The mean contralateral lung dose was greater for IMRT (5.8 +/- 1.8 Gy) than for PWTFs (1.6 +/- 0.1 Gy; p = <0.0001). CONCLUSION: A new IMRT technique achieves full target coverage while maintaining similar doses to heart and ipsilateral lung as conventional techniques. However, contralateral lung and breast volumes exposed to low doses were increased with IMRT and will need to be reduced in future studies.  相似文献   

14.
15.
PURPOSE: To determine whether the use of intensity-modulated radiotherapy (IMRT) would lead to improved dosimetry for the breast and regional nodes. METHODS AND MATERIALS: Ten patients with left-sided breast cancer were selected. The clinical target volume included left breast and internal mammillary (IM), supraclavicular (SC), and axillary (AX) nodes. The critical structures included heart, right and left lungs, contralateral breast, esophagus, thyroid, and humeral head. Conventional and a series of IMRT plans were generated for comparison. RESULTS: The average heart D(3) was reduced from 31.4 +/- 18.9 with three-dimensional conformal radiotherapy (3D-CRT) to 15 +/- 7.2 Gy with 9-field (9-FLD IMRT). The average left lung D(30) was also decreased from 27.9 +/- 11.5 Gy (3D-CRT) to 12.6 +/- 8.2 Gy (9-FLD IMRT). The average contralateral breast D(2) was reduced from 4.4 +/- 5.3 Gy (3D-CRT) to 1.8 +/- 1.2 Gy (4-FLD IMRT). Esophagus D(2) was increased from 9.3 +/- 8.1 Gy (3D-CRT) to 29.4 +/- 5.4 (9-FLD IMRT); thyroid D(50) was increased from 0.9 +/- 0.6 Gy (3D-CRT) to 11.9 +/- 6.6 (9-FLD IMRT); humeral head D(2) was increased from 36.1 +/- 13.1 Gy (3D-CRT) to 39.9 +/- 6.5 (9-FLD IMRT). CONCLUSIONS: The use of IMRT improves breast and regional node coverage while decreasing doses to the lungs, heart, and contralateral breast when compared with 3D-CRT. Doses to esophagus, thyroid, and humeral head, however, were increased with IMRT.  相似文献   

16.
[目的]总结鼻咽癌调强放疗后腮腺功能影响因素。[方法]收集2008年7月至2009年8月初治的20例鼻咽癌调强放疗靶区及腮腺剂量学参数,随访其放疗后3个月口干情况,分析腮腺受照剂量与口干分级之间的关系。[结果]20例接受调强放疗鼻咽癌腮腺平均剂量41.25Gy,患侧腮腺V20:96.77%,V30:80.56%,V40:52.43%,健侧腮腺V20:971.47%,V30:69.95%,V40:40.85%。放疗后3个月轻度、中度、重度口干发生率分别为15%、55%、30%,口干分级与腮腺平均剂量、患侧及健侧腮腺V20、V30、V40呈正相关。[结论]鼻咽癌调强放疗后腮腺功能与腮腺受照体积、剂量显著相关。  相似文献   

17.

Purpose

To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes.

Materials and methods

For 13 patients, four treatment combinations were compared; 3D-conformal RT (i.e., forward IMRT) in free-breathing 3D-CRT(FB), 3D-CRT(vmDIBH), 2 partial arcs VMAT(FB), and VMAT(vmDIBH). Prescribed dose was 42.56 Gy in 16 fractions. For 10 additional patients, 3D-CRT and VMAT in vmDIBH only were also compared.

Results

Dose conformity, PTV coverage, ipsilateral and total lung doses were significantly better for VMAT plans compared to 3D-CRT. Mean heart dose (Dmean,heart) reduction in 3D-CRT(vmDIBH) was between 0.9 and 8.6 Gy, depending on initial Dmean,heart (in 3D-CRT(FB) plans). VMAT(vmDIBH) reduced the Dmean,heart further when Dmean,heart was still >3.2 Gy in 3D-CRT(vmDIBH). Mean contralateral breast dose was higher for VMAT plans (2.7 Gy) compared to 3DCRT plans (0.7 Gy).

Conclusions

VMAT and 3D-CRT(vmDIBH) significantly reduced heart dose for patients treated with locoregional RT of left-sided breast cancer. When Dmean,heart exceeded 3.2 Gy in 3D-CRT(vmDIBH) plans, VMAT(vmDIBH) resulted in a cumulative heart dose reduction. VMAT also provided better target coverage and reduced ipsilateral lung dose, at the expense of a small increase in the dose to the contralateral breast.  相似文献   

18.

Background

We conducted a dosimetric comparison of an ipsilateral beam arrangement for intensity modulated radiotherapy (IMRT) with off-axis beams.

Patients and methods

Six patients who received post-operative radiotherapy (RT) for parotid malignancies were used in this dosimetric study. Four treatment plans were created for each CT data set (24 plans): 1) ipsilateral 4-field off-axis IMRT (4fld-OA), 2) conventional wedge pair (WP), 3) 7 field co-planar IMRT (7fld), and 4) ipsilateral co-planar 4-field quartet IMRT (4fld-CP). Dose, volume statistics for the planning target volumes (PTVs) and planning risk volumes (PRVs) were compared for the four treatment techniques.

Results

Wedge pair plans inadequately covered the deep aspect of the PTV. The 7-field IMRT plans delivered the largest low dose volumes to normal tissues. Mean dose to the contralateral parotid was highest for 7 field IMRT. Mean dose to the contralateral submandibular gland was highest for 7 field IMRT and WP. 7 field IMRT plans had the highest dose to the oral cavity. The mean doses to the brainstem, spinal cord, ipsilateral temporal lobe, cerrebellum and ipsilateral cochlea were similar among the four techniques.

Conclusions

For postoperative treatment of the parotid bed, 4-field ipsilateral IMRT techniques provided excellent coverage while maximally sparing the contralateral parotid gland and submandibular gland.  相似文献   

19.
20.
AimsDryness of the mouth is one of the most distressing chronic toxicities of radiation therapy in head and neck cancers. In this study, parotid function was assessed in patients with locally advanced head and neck cancers undergoing intensity-modulated radiotherapy (IMRT) with or without chemotherapy. Parotid function was assessed with the help of a questionnaire and parotid scintigraphy, especially with regards to unilateral sparing of the parotid gland.Materials and methodsIn total, 19 patients were treated with compensator-based IMRT between February 2003 and March 2004. The dose to the clinical target volume ranged between 66 and 70 Gy in 30–35 fractions to 95% of the isodose volume. Ipsilateral high-risk neck nodes received an average dose of 60 Gy and the contralateral low-risk neck received a dose of 54–56 Gy. Eight of 19 patients also received concomitant chemotherapy.ResultsSubjective toxicity to the parotid glands was assessed with the help of a questionnaire at 0, 3 and 6 months and objective toxicity was assessed with parotid scintigraphy at 0 and 3 months. The mean dose to the ipsilateral parotid gland ranged from 19.5 to 52.8 Gy (mean 33.14 Gy) and the mean dose to the contralateral gland was 11.1–46.6 Gy (mean 26.85 Gy). At a median follow-up of 13 months, 9/19 patients had no symptoms of dryness of the mouth (grade I), 8/19 had mild dryness of the mouth (grade II) and only 2/19 had grade III xerostomia, although the parotid gland could only be spared on one side in most of the patients.ConclusionsMinimising the radiation dose to one of the parotid glands with the help of IMRT in patients with advanced head and neck cancers can prevent xerostomia in most patients and parotid scintigraphy is a useful method of documenting xerostomia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号