首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jones NA  Geraghty RJ 《Virology》2004,324(1):213-228
Expression of the herpes simplex virus type 1 (HSV-1) glycoproteins gB, gD, gH, and gL is necessary and sufficient to cause cell fusion. To identify the requirements for a membrane-spanning domain in HSV-1 glycoprotein-induced cell fusion, we created gB, gD, and gH mutants with transmembrane and cytoplasmic domains replaced by a glycosylphosphatidylinositol (gpi)-addition sequence. The corresponding gBgpi, gDgpi, and gHgpi proteins were expressed with wild-type efficiency at the cell surface and were linked to the plasma membrane via a gpi anchor. The gDgpi mutant promoted cell fusion near wild-type gD levels when co-expressed with gB, gH, and gL in a cell-mixing fusion assay, indicating that the gD transmembrane and cytoplasmic domains were not required for fusion activity. A plasma membrane link was required for fusion because a gD mutant lacking a transmembrane and cytoplasmic domain was nonfunctional for fusion. The gDgpi mutant was also able to cooperate with wild-type gB, gH, and gL to form syncytia, albeit at a size smaller than those formed in the wild-type situation. The gBgpi and gHgpi mutants were unable to promote fusion when expressed with the other wild-type viral glycoproteins, highlighting the requirement of the specific transmembrane and cytoplasmic domains for gB and gH function.  相似文献   

2.
Pertel PE  Fridberg A  Parish ML  Spear PG 《Virology》2001,279(1):313-324
To characterize cellular factors required for herpes simplex virus type 1 (HSV-1)-induced cell fusion, we used an efficient and quantitative assay relying on expression of HSV-1 glycoproteins in transfected cells. We showed the following: (1) Cell fusion depended not only on expression of four viral glycoproteins (gB, gD, and gH-gL), as previously shown, but also on expression of cell surface entry receptors specific for gD. (2) Cell fusion required expression of all four glycoproteins in the same cell. (3) Heparan sulfate was not required for cell fusion. (4) Coexpression of receptor with the four glycoproteins in the same cell reduced fusion activity, indicating that interaction of gD and receptor can limit polykaryocyte formation. Overall, the viral and cellular determinants of HSV-1-induced cell fusion are similar to those for viral entry, except that HSV-1 entry is significantly enhanced by binding of virus to cell surface heparan sulfate.  相似文献   

3.
Human antibodies specific for glycoprotein C (gC1) of herpes simplex virus type 1 (HSV-1) neutralized the virus infectivity and efficiently inhibited attachment of HSV-1 to human HaCaT keratinocytes and to murine mutant L cells expressing either heparan sulfate or chondroitin sulfate at the cell surface. Similar activities were observed with anti-gC1 monoclonal antibody B1C1. In addition to HaCaT and L cells, B1C1 antibody neutralized HSV-1 infectivity in simian GMK AH1 cells mildly pre-treated with heparinase III. Human anti-gC1 antibodies efficiently competed with the binding of gC1 to B1C1 antibody whose epitope overlaps a part of the attachment domain of gC1. Human anti-gC1 and B1C1 antibodies extended survival time of mice experimentally infected with HSV-1. We conclude that in HaCaT cells and in cell systems showing restricted expression of glycosaminoglycans, human and some monoclonal anti-gC1 antibodies can target the cell-binding domain of this protein and neutralize viral infectivity.  相似文献   

4.
Roller DG  Dollery SJ  Doyle JL  Nicola AV 《Virology》2008,382(2):207-216
Fusion-from-without (FFWO) is the rapid induction of cell fusion by virions in the absence of viral protein synthesis. The combination of two amino acid mutations in envelope glycoprotein B (gB), one in the ectodomain and one in the cytoplasmic tail, can confer FFWO activity to wild type herpes simplex virus (HSV). In this report, we analyzed the entry and cell fusion phenotypes of HSV that contains FFWO gB, with emphasis on the cellular receptors for HSV, nectin-1, nectin-2 and HVEM. The ability of an HSV strain with FFWO gB to efficiently mediate FFWO via a specific gD-receptor correlated with its ability to mediate viral entry by that receptor. A FFWO form of gB was not sufficient to switch the entry of HSV from a pH-dependent, endocytic pathway to a direct fusion, pH-independent pathway. The conformation of gB with FFWO activity was not globally altered relative to wild type. However, distinct monoclonal antibodies had reduced reactivity with FFWO gB, suggesting an altered antigenic structure relative to wild type. FFWO was blocked by preincubation of virions with neutralizing antibodies to gB or gD. Together with previous studies, the results indicate that the roles of gB in FFWO and in virus-cell fusion during entry are related but not identical. This study also suggests that the FFWO function of gB is not a specific determinant for the selection of HSV entry pathway and that antigenic differences in FFWO gB may reflect its enhanced fusion activity.  相似文献   

5.
We report the construction of two HSV-1 recombinants encoding chimeric forms of the E2 glycoprotein of HCV-1a composed of the ectodomain of E2 (aa384-611 or 384-711) fused to different parts of the transmembrane and cytoplasmic domain of the HSV-1 gC glycoprotein (gC). The parental HSV-1, known as KgBpK(-)gC(-), is deleted for gC and the main heparan sulphate (HS) binding domain of gB, and it exhibits impaired binding (ca. 80%) to HS compared to the wild type virus KOS [Laquerre, S., Argnani, R., Anderson, D.B., Zucchini, S., Manservigi, R., Glorioso, J.C., 1998. Heparan sulphate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J. Virol. 72, 6119-6130]. We show that gC:E2 proteins are efficiently expressed and transported to the cell surface. We also demonstrate that HSV-1 can incorporate both gC:E2 chimeric proteins into particles and show that incorporation of both chimeric molecules in the viral envelope partially restored binding (ca. 20%) of the HSV-1 recombinants to heparan sulphate. Finally, we showed that the gC:E2ScaI chimeric glycoprotein was able to bind a recombinant form of hCD81 and virion-expressed gC:E2ScaI permitted the binding of the HSV-1 recombinant virus to the hCD81 molecule.  相似文献   

6.
Qie L  Marcellino D  Herold BC 《Virology》1999,256(2):220-227
The initial step in herpes simplex virus (HSV) entry is binding of virion glycoprotein (g)C and/or gB to cell surface heparan sulfate. After this initial attachment, gD interacts with cell surface receptor or receptors, and the virion envelope fuses with the cell membrane. Fusion requires viral glycoproteins gB, gD, gL, and gH, but the cellular factors that participate in or the pathways activated by viral entry have not been defined. To determine whether signal transduction pathways are triggered by viral-cell fusion, we examined the association of viral entry with tyrosine phosphorylation of cellular proteins. Using immunoprecipitation and Western blotting, we found that at least three cytoplasmic host cell proteins, designated p80, p104, and p140, become tyrosine phosphorylated within 5-10 min after exposure to HSV-1 or HSV-2. However, no phosphorylation is detected when cells are exposed to a mutant virus deleted in gL that binds but fails to penetrate. Phosphorylation is restored when the gL-deletion virus is grown on a complementing cell line. Viral entry and the phosphorylation of p80, p104, and p140 are inhibited when cells are infected with virus in the presence of protein tyrosine kinase inhibitors. Taken together, these studies suggest that tyrosine phosphorylation of host cellular proteins is triggered by viral entry.  相似文献   

7.
L Pereira  M Ali  K Kousoulas  B Huo  T Banks 《Virology》1989,172(1):11-24
Herpes simplex virus 1 (HSV-1) glycoprotein B (gB) is a multifunctional glycoprotein required for infectivity; it is thought to promote fusion of the viral envelope with the cell membrane and entry of virions into cells. To map the antigenic and functional domains on gB, we constructed amino terminal derivatives lacking the entire carboxyl terminus and internal deletion mutants lacking defined regions of the extracellular and transmembrane domains. Transient expression of the mutants in COS-1 cells revealed that the amino terminal derivatives were released into the medium whereas those with deletions in the extracellular domain were mostly retained within the transfected cells. Analysis of intact gB and the amino terminal derivatives showed that the intact molecule formed dimers whereas the mutant derivatives did not. Reactions of the derivatives with a panel of well-characterized monoclonal antibodies to gB showed that the neutralizing epitopes cluster in two domains. The first maps in the amino terminal 190 residues and contains seven continuous epitopes, five of which are HSV-1-specific. Reactions of antibodies with a set of oligopeptides fine-mapped the epitopes between residues 1 and 47. The second domain is composed of discontinuous epitopes and was expressed by amino terminal derivatives that were at least 457 residues in length or longer. Eleven epitopes map in this region, including those of four potent neutralizing antibodies whose cognitive sites mapped between residues 273 and 298 in mapping studies using antibody-resistant mutants. Results of the present study indicate that the cognitive sites of these antibodies are assembled into the discontinuous domain by juxtaposing residues from the amino-terminal half of gB monomers.  相似文献   

8.
Three classes of HSV-1(F) mutants expressing a resistance phenotype to two highly potent-type common monoclonal antibodies, H126-5 and H233, to glycoprotein B (gB) were selected. Class 1 mutants, selected for resistance to neutralization from nonmutagenized virus stocks, expressed a gB which reacted in biotin-avidin-enhanced surface immunoassays and in immune precipitation tests with the selecting antibodies. Class 2 and 3 mutants were selected for nonreactivity in the biotin-avidin-enhanced surface immunoassay from BUdR-mutagenized, preneutralized virus stocks, but differ in that the selecting antibodies immune precipitated the gB of Class 2 but not that of Class 3. Mutants expressing a resistance phenotype to one monoclonal antibody (H126-5 or H233) invariably retained reactivity in all tests with the heterologous antibody, and recombinants resistant to both antibodies were produced by cotransfection of intact DNA of one mutant with a cloned DNA fragment from another mutant. Class 1 mutations were mapped by marker transfer to a 1734-bp DNA fragment. Class 2 and 3 mutations were mapped to a region defined by a maximum of 377 bp and a minimum of 46 bp, in a biotin-avidin-enhanced surface immunoassay with a panel of DNA fragments of HSV-1(F) BamHI G carrying staggered deletions across the region encoding gB. This region does not overlap the neutralizing antibody determinant site mapped by T.C. Holland, R.M. Sandri-Goldin, L.E. Holland, S.D. Marlin, M. Levine, and J. Glorioso (1983, J. Virol. 46, 649-652) and is located 3' to the ts lesion of HSV-1(HFEM)tsB5 and 5' to the syn3 locus of that virus. It was concluded that (i) inasmuch as the biotin-avidin-enhanced surface immunoassay does not destroy the virus contained in the plaque, it is a rapid and convenient method for both identification and selection of mutants reactive and nonreactive to specific monoclonal antibodies. (ii) gB may contain multiple domains carrying epitopic sites of neutralizing monoclonal antibodies. (iii) The resistance phenotype may arise from mutations which alter the conformation or the amino acid sequence of the epitope. These mutations might be differentiable on the basis of reactivity of mutated gB with selecting monoclonal antibody in nondenaturing and denaturing environments, respectively.  相似文献   

9.
CD8+ T lymphocytes recognize tumor and viral antigens bound to class I major histocompatibility complexes (MHC). Tumors and viruses may evade detection by preventing antigen presentation. The present study was designed to determine whether a soluble divalent fusion protein, containing the extracellular domains of a class I MHC molecule fused to beta2-microglobulin and the constant domains of IgG1, could induce an immune response in vivo. Administration to mice of the fusion protein loaded with a tumor peptide induced peptide-specific T cell activation and retarded tumor growth. Administration of the fusion protein loaded with a glycoprotein B (gB) peptide derived from herpes simplex virus type 1 (HSV-1) induced gB-specific cytotoxic T lymphocytes and protected mice from a lethal HSV-1 challenge. These data suggest that antigen-loaded MHC/IgG fusion proteins may enhance T cell immunity in conditions where antigen presentation is altered.  相似文献   

10.
Ruel N  Zago A  Spear PG 《Virology》2006,346(1):229-237
Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.  相似文献   

11.
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is a major virion component, essential for various steps of virus replication in cells, such as entry and maturation, and cell fusion. In addition, gB is a strong inducer of the immune response in humans and has been involved in neuropathogenesis. To analyze gB during infection, a recombinant HSV-1 was generated containing gB fused to the green fluorescent protein (GFP). The GFP-gB fusion protein was incorporated into fully infectious viral particles. In cells infected with the recombinant KGFP-gB, the spontaneous fluorescence emitted by the fusion protein was observed as early as 5 h post infection, and its transport through cell compartments was followed during an entire viral replication cycle. The results show that GFP can be inserted into an essential viral envelope component of HSV-1 such as gB while preserving the infectivity of the resulting recombinant. This virus allows the investigation of several events of the viral life cycle involving gB, and provides the basis for the development of new diagnostic assays.  相似文献   

12.
Bovine herpesvirus 2 (BHV-2) specifies a glycoprotein of 130 kDa (gB BHV-2) which shows extensive homology to glycoprotein B (gB-1) of herpes simplex virus 1 (HSV-1). The BHV-2-specific 130-kDa glycoprotein is able to induce cross-reacting antibodies, some of which even cross-neutralize HSV-1. In order to determine the genome localization of gB BHV-2 and in order to identify conserved antigenic domains in both glycoproteins, we established libraries of subgenic fragments of BHV-2 and HSV-1 DNA in the prokaryotic expression vector lambda gt11 and screened them with cross-reacting monoclonal antibodies which allowed us to identify recombinant lambda gt11 clones expressing gB fusion protein. Nucleotide sequencing of inserted DNA fragments within these recombinant lambda gt11 clones revealed that they originated from the carboxy-terminal part of the major DNA-binding proteins (dbp) of BHV-2 (dbp BHV-2) and its counterpart ICP8 in HSV-1. Antisera raised against the beta-galactosidase fusion protein of recombinant phage lambda-113/2 coding for an 84 amino acid (aa) polypeptide originating from dbp BHV-2 neutralized infectivity of BHV-2 and HSV-1 in the presence of complement and precipitated [3H] glucosamine-labeled gB BHV-2 and gB-1. This antiserum also reacts with ICP8 and presumably with dbp BHV-2. Two hypotheses are discussed to explain this unexpected result: (i) epitopes in the carboxy-terminal part of gB BHV-2 and gB-1 are similar to antigenic determinants in the amino-terminal region of the gBs, thus providing cross-reacting antibody-binding sites; (iii) during gene expression a carboxy-terminal part of dbp BHV-2 and ICP8 genes might be spliced to the amino-terminal region of the glycoproteins gB BHV-2 and gB-1.  相似文献   

13.
Cell surface heparan sulfate functions as a co-receptor in HSV-1 entry. In order to study its significance in context with specific gD receptors (nectin-1, HVEM, and 3-O-sulfated heparan sulfate) a low speed centrifugation based virus inoculation (spinoculation) method was used. The experiments were performed at 1200 x g using glycosylaminoglycan positive (GAG+) or deficient (GAG-) cells expressing gD receptors. Clearly, spinoculation of GAG- nectin-1 or HVEM cells enhanced significantly viral entry compared to similar but unspun cells. The enhanced entry was due to increased virus deposition at the cell surface and not due to pelleting of the virus. Among the gD receptors, spinoculated GAG- HVEM cells showed restoration of HSV-1 entry compared to unspinoculated GAG+ HVEM cells. In contrast, spinoculated GAG- nectin-1 cells showed less entry than unspinoculated GAG+ nectin-1 cells. GAG- 3-O-sulfotransferase-expressing cells or heparinase treated GAG+ 3-O-sulfated heparan sulfate cells, in contrast, remained resistant to entry even after spinoculation. To investigate further, any potential effects of centrifugation on membrane fusion, a virus-free cell fusion assay was performed. Clearly, spinning had no effects on cell fusion, nor could it replace the need for all four essential glycoproteins. Taken together these results suggest that heparan sulfate plays a role of an attachment receptor, which could be substituted by spinoculation. This effect, however, varies with the gD receptor used, which in turn, could be used as a means for identifying gD receptor usage for entry into a cell type.  相似文献   

14.
The interaction of the glycoprotein gB of Aujesky's disease virus (ADV, Suid herpesvirus 1) with heparan sulfates of BHK-21 cells was studied. The study used the native glycoprotein gB purified from the virus envelope by affinity chromatography based on gB-specific monoclonal antibodies. The cellular binding of the glycoprotein gB was specific and dose-dependent. Heparin, a structural analogue of heparan sulfates, inhibited the cellular binding of gB. The herapinase treatment of cells also resulted in the inhibition of the cellular binding of gB. The purified glycoprotein gB bound to heparin-Sepharose and was specifically eluated by heparin. The denaturation of gB was followed by 70-80% decreases in its binding to Sepharose-immobilized heparin. The findings may lead to the conclusion that plasma cell membranous heparan sulfates are one of the glycoprotein gB receptors in ADV. At the same time the heparin-binding site of ADV gB is at least partially conformation-dependent.  相似文献   

15.
16.
Summary A panel of monoclonal antibodies to glycoprotein B (gB) of herpes simplex virus 1 (HSV-1) reacted in immune precipitation and in immunofluorescence tests with a glycoprotein 130,000 in apparent molecular weight specified by bovine herpesvirus 2 (BHV-2). Two cross reactive antibodies neutralized the heterologous virus. These results suggest that the BHV-2 glycoprotein is the homologue of HSV-1 gB and shares structural and functional domains expressed on the gB gene product.  相似文献   

17.
18.
A library of subgenomic fragments of bovine herpesvirus type 2 (BHV-2) DNA was constructed in the expression cloning vector lambda gt11 and screened with monoclonal antibodies to the glycoprotein gb BHV-2, which is homologous to glycoprotein gB (gB-1) of herpes simplex virus type 1 (HSV-1). Lambda gt11 clones containing gB BHV-2-specific sequences were used to identify lambda EMBL3 vectors with DNA inserts which contained the complete gB BHV-2 gene. Nucleotide sequencing revealed that the gB BHV-2 gene is highly conserved compared to gB-1. The amino acid sequences and the predicted secondary structures of both glycoproteins are very similar. Two further open reading frames (ORF) in close vicinity to the gene encoding gB BHV-2 showed considerable homology to HSV-1 genes. They code for the major DNA-binding protein (dbp) of BHV-2 and a putative 72-kDa polypeptide. The gene of the latter protein corresponding to ICP18.5 of HSV-1 is interspersed between the ORFs of gB BHV-2 and the dbp of BHV-2. All three genes map in the unique long region of the genome. Their homology and the colinear arrangement compared to HSV-1 indicate a close relationship between the two viruses.  相似文献   

19.
D Navarro  P Paz  L Pereira 《Virology》1992,186(1):99-112
Herpes simplex virus 1 glycoprotein B (gB) is one of 10 glycoproteins in the virion envelope and in the membranes of infected cells. It is required for infection of cells in culture and functions in penetration of the cell by fusing the virion envelope with the plasma membrane. In studies to map the functional domains on HSV-1 gB, we reported that epitopes of potent neutralizing antibodies cluster in three major antigenic domains, D1, D2, and D5a. D1 contains continuous epitopes in the very amino terminus of gB. D2 comprises discontinuous epitopes that are assembled on gB derivatives 457 amino acids in length. D5a contains discontinuous epitopes that map between amino acids 600 and 690. We have now analyzed the function of these domains in virion infectivity by a detailed examination of the effects of 16 neutralizing antibodies on virion adsorption, penetration, plaque development, and cell fusion. Our results are as follows. (i) Ten antibodies with complement-independent neutralizing activity blocked penetration of virions into cells but not their adsorption to the cell surface. Treating cell-bound, neutralized virus with the fusogenic agent polyethylene glycol promoted their entry into cells. (ii) Ten antibodies with complement-dependent and -independent neutralizing activity interfered with plaque development by preventing spread of virus from infected to neighboring uninfected cells. (iii) Nine neutralizing antibodies, all complement-independent, prevented cell fusion induced by strain HFEM syn. We conclude that domains mapping in three regions of gB function in penetration of virions into cells, and that most neutralizing antibodies to these domains also block cell-to-cell spread of virus and cell fusion. The findings that three complement-independent neutralizing antibodies that blocked penetration did not inhibit plaque development, and that only one of these blocked cell fusion, indicate that the cell-to-cell spread of virus and cell fusion are related processes, but not identical to the penetration function.  相似文献   

20.
Previous papers have reported that the syncytial mutant HSV-1(13)S11 carries three segregable syn mutations and exhibits its altered phenotype in four different cell lines, i.e. HEp-2, VERO, BHK and HEL both at 34 degrees C and 39 degrees C. Those studies have shown that one of three syncytial loci, designated Syn 5, is located in the Bam HI Q fragment spanning map units 0.296-0.317 of the prototype arrangement. Recombinants obtained from marker transfer experiments with donor BamHI Q fragment, have shown that locus Syn 5 is able to induce cell-to-cell fusion in VERO, BHK and HEL but not in HEp-2 cells. In this paper we have characterized the syn mutant HSV-1(13)S11 with regard to plaque morphology, synthesis of viral polypeptides and glycoproteins, thymidine kinase activity and physical map position of locus Syn 5 on the genome. Pertinent to the syn phenotype, earlier papers claimed that two different polypeptides, thymidine kinase (TK) and glycoprotein H (gH), whose genes map in BamHI Q, may be responsible for the fusion activity. Functional studies on the TK of the syn mutant HSV-1(13)S11 indicate that this polypeptide accumulates normally in infected cells and is a fully active enzyme. The other gene product, gH, has been studied with SDS-PAGE and in radioimmunoprecipitation (RIP) experiments using specific monoclonal antibodies. The results indicate that the amount of gH accumulation in the syn mutant-infected cells is greater than its parental strain. However, new marker transfer experiments described here located locus Syn 5 in 663 base pairs between SstI and EcoRI restriction endonuclease sites at the right end of the BamHI Q fragment, where TK gene overlaps in opposite orientation with UL 24 gene. Altogether these results indicate that the Syn 5 locus segregates from the gene specifying gH, to a region encompassing portions of the TK and UL 24 genes, and that the syn mutation does not affect the expression or activity of TK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号